
Automatic Detection of Refactorings for Libraries and Frameworks

Danny Dig, Can Comertoglu, Darko Marinov, Ralph Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N. Goodwin Ave., Urbana, IL 61801, USA

{dig, comertoglu, marinov, johnson}@cs.uiuc.edu

Abstract

Current work on automatic detection of refactorings typ-
ically assumes a closed-world, i.e., codebases used only
in-house. Changes in closed-world happen abruptly, and
refactorings are easier to spot. Libraries and frameworks
are developed to be reused outside the organization and
therefore the changes do not happen overnight but fol-
low a long deprecate-replace-remove cycle. Obsolete en-
tities will coexist with their newer counterparts until they
are no longer supported. This lifecycle introduces enough
noise that current tools cannot accurately detect the refac-
torings. We propose a methodology and a tool that fits with
an open-world paradigm. We use a Shingles algorithm to
detect clones of the same entity and then refine the results
with semantic analysis. Preliminary evaluation shows that
our method scales for real-life libraries and can accurately
detect when entities are renamed or moved.

1. Introduction

Part of maintaining a software system is updating it to
use the latest version of its components. Developers like to
reuse software components because it lets them build a sys-
tem more quickly, but then the system depends on the com-
ponents that they reused. Ideally, the interface to a com-
ponent never changes. In practice, new versions of soft-
ware components often change their interfaces and so re-
quire systems that use the components to be changed be-
fore the new versions can be used. Our goal is to reduce the
burden of reuse on maintenance. This requires either reduc-
ing the amount of change or reducing the cost of adapting
to change.

An important kind of change to object-oriented software
is a refactoring. Refactorings [FBB+99] are program trans-
formations that change the structure of a program but not
its behavior. Refactorings include changing the names of
classes and methods, moving methods and variables from
one class to another, and splitting methods or classes. In

[DJ05] we analyze quantitatively and qualitatively the API
changes that break compatibility with older clients. We
learned out that for three commonly used frameworks and
one library, more than 80% of API changes were refactor-
ings. Moving and renaming entities represent a large part of
these refactorings.

Current work [APM04, DDN00, GZ05, RD03] detects
refactorings automatically under a closed-world assump-
tion. (codebases used only in-house). In this world changes
happen abruptly and refactorings are easier to spot. Li-
braries and frameworks are developed to be reused outside
the organization and therefore the changes don’t happen
overnight but follow a long deprecate-replace-remove cy-
cle. Obsolete entities will coexist with their newer counter-
parts until they are no longer supported. This lifecycle in-
troduces enough noise that current tools cannot accurately
detect the refactorings.

Consider for instance a change such as renam-
ing class Category to class Logger in log4j
(http://logging.apache.org/log4j/docs).
In order to maintain compatibility with old clients, class
Logger (the new name) inherits from classCategory .
The constructor ofCategory became protected so that
users cant create categories directly but invoke instead the
creational methodgetInstance() . This method re-
turns instances of the new classLogger . Any method in
Category that returned on object of typeCategory be-
came deprecated. Clients should replace all the refer-
ences toCategory with references toLogger . The two
classes still coexist, butCategory will be deleted eventu-
ally.

This paper describes a methodology and a tool to auto-
matically detect the refactorings that took place in between
two versions of a component. Our target are libraries and
frameworks that strive to maintain backward compatibility.
For this reason, our strategy is based on clone detection.
Once we find the clones among multiple versions, we ana-
lyze the relationship between them.

The size of real-life libraries and frameworks usually

http://logging.apache.org/log4j/docs

varies from a few KLOC to millions of LOC. To analyze
the larger applications, we first employ some cheap tech-
niques to detect potential candidates for restructuring. We
use the Shingles encoding [Bro97] (a technique from In-
formation Retrieval) to detect code that is similar between
two versions. We further refine and classify the candidates
using more expensive and powerful techniques like Call
Graphs and AST queries. We built RefactoringCrawler, a re-
search prototype to detect refactorings in Java programs. Al-
though the implementation analyzes Java source files only,
the ideas presented in this paper can be easily applied to
other programming languages. RefactoringCrawler is a plu-
gin for the Eclipse development environment that currently
detects renamings of methods, classes and packages as well
as method moves. Preliminary evaluation on code bases
ranging from 62 KLOC to 100 KLOC shows that Refac-
toringCrawler scales for real-life applications.

2. Methodology

This section describes the overall process that we use to
detect refactorings. Section 3 and section 4 give more de-
tails about the specifics of each technique.

There are two main challenges to automatic detection
of refactorings that happened in reusable components. The
first is the size of the code to be analyzed. Expensive se-
mantic analysis (like complete AST or Call Graph compar-
isons) can detect structural evolution but does not scale up
to the size of real-life applications containing millions of
nodes. Using only syntactic analysis might be cheaper, but
it is very fallible to renamings of object entities.

We use instead a hybrid of syntactic and semantic analy-
sis. We employ syntactic analysis on the bulk of the code
to create a list of potential candidates. We only have to em-
ploy semantic analysis on these candidates.

The second challenge is the noise introduced because of
preserving backward compatibility.

Our methodology is depicted in figure 1. In step 1, we
parse the source files into a lightweight graph that is equiv-
alent to the lightweight AST. We call it “lightweight” be-
cause the parsing stops at the declaration of the methods
and fields in classes. Our tool then employs a cheap syntac-
tic analysis based on the Shingle encodings of the method
bodies (step 2). Shingles are fingerprints with the property
that if a document changes by a small amount, its shingles
also change by a small amount, therefore fragments that are
similar can be detected. This technique is less susceptible to
renamings than the traditional string matching techniques.
The product of this step is pairs of entities that have sim-
ilar Shingles encodings among two versions of the library,
with separate pairs for methods, classes and packages. We
prune those elements that have exactly the same fully qual-
ified name in both versions.

Figure 1. Methodology

Now (step 3) we do semantic analysis of only the remain-
ing candidates. This set is considerably smaller than the the
set of nodes in the lightweight graph. We embellish the orig-
inal graph with the call graphs for the methods, classes and
package candidates. Strategies for detecting specific refac-
torings are applied (step 4) over the resulting graph. Each
detection strategy provides feedback (step 5) to the em-
bellished graph that subsequent refactorings use during fur-
ther analysis.

This feedback (step 5) is invaluable when there are
multiple refactorings that happened to the same en-
tity. (This step is not implemented in the current prototype
of the tool.) Consider this real scenario from log4j li-
brary. ClassCategory was renamed to classLogger
and getRoot() in class Category was renamed to
getRootLogger() in class Logger . After detect-
ing thatCategory is renamed toLogger , semantical in-
formation is added in the node of classLogger , denoting
that its old name wasCategory . When we look for re-
named methods we only compare methods in the same
class. Now becauseLogger is equivalent (rename) to
Category , the strategy for detecting renamed meth-
ods will correctly spotgetRootLogger() as being
a rename ofgetRoot() , even though the two meth-
ods are in different classes.

3. Shingles Encoding

To identify possible candidates for refactorings, Refac-
toringCrawler first determines sets ofsimilar methods,
classes, and packages. RefactoringCrawler uses the Shin-
gles algorithm [Bro97] to compute a hash value for
each method and determines two methods to be simi-
lar iff they have similar hash values. Unlike the traditional

2

Figure 2. Shingles Encoding

hashing functions that map even the small change of the in-
put to a completely different hash value, the Shingles al-
gorithm maps small perturbations of the input to small
changes in the hash values.

The Shingles algorithm takes as input a sequence of to-
kens and uses sliding windows to compute the hash value
that is a bag of integers called shingles. RefactoringCrawler
applies it to a method by treating the method body as a
sequence of tokens. The algorithm takes two parameters
W , the length of the sliding window, andS, the maximum
size of the resulting bag. Given a sequence of tokens, the
algorithm computes bag of shingles by finding all subse-
quences of lengthW , computing the shingle for each subse-
quence, and selecting theS minimum shingles. We use Ra-
bin’s Hash Function [Rab81] to compute the shingles val-
ues. If there are less thanS subsequences, then the bag con-
sists of less thanS integers. The parameterS acts as the
upper bound for the space needed to represent shingles: a
large value makes calculations expensive, and a small value
makes it hard to distinguish strings.

Figure 2 shows the result of calculating the shingles for
two method bodies whereW = 2 andS = 10; these val-
ues seem to work well for Java programs. The differences in
the bodies and the shingle values are underlined. Notice that
the small changes in the tokens produce only small changes
in the shingle representation, enabling RefactoringCrawler
to find the similarities between methods.

RefactoringCrawler uses the shingles for methods to
compute shingles for classes and packages. The shingles of
a class are computed by taking the union of the shingles of
the methods and selecting the minimumSclass values. Sim-
ilarly, the shingles of a package are computed by taking the
union of the shingles of the classes and selecting the min-
imum Spackage values. This way, RefactoringCrawler effi-
ciently computates shingles values and avoids recomputa-
tions [RILD04].

RefactoringCrawler uses the shingles to find candidates

for the specified refactorings. More specifically, letB1 and
B2 be bags of shingles for a pair of methods, classes, or
packages. RefactoringCrawler computes similarity as the
average overlap of these two bags

|B1∩B2|
|B1| + |B2∩B1|

|B2|

2
.

If this similarity value is above the user-specified threshold,
the pair is considered as candidates for refactorings.

4. Detection Strategies

Each refactoring requires a different detection strategy.
We have implemented four strategies in RefactoringCrawler
to detect four types of refactorings. Each strategy is imple-
mented by two predicates,IsRelevant and IsAlike .
The strategy will first select a pair of elements (meth-
ods/classes/packages) that have similar shingles, and then
applyIsRelevant andIsAlike to see if they represent
a refactoring.IsRelevant is a cheap syntactic test that
is not based on shingles but is based on the refactoring be-
ing detected.IsAlike indicates whether one element is
the result of refactoring the other element. It tends to be ex-
pensive, so is only performed after less expensive tests have
succeeded.
Rename Method:PredicateIsRelevant takes in a pair
of methods that have similar shingles encoding. It responds
whether both elements have different names and have the
same parent class.

IsRelevant(η1, η2) =
haveSameParentClass(η1, η2)
∧ haveDifferentName(η1, η2)
PredicateIsAlike lazily finds the call sites of each

method and then responds whether or not the two meth-
ods have the same call graph (similarity is over the speci-
fied threshold).
Rename Class:IsRelevant takes in a pair of classes
that have similar shingles encoding. It responds whether the
classes have different names.

IsRelevant(η1, η2) =
haveDifferentName(η1, η2)
PredicateIsAlike finds all the methods of each class

and all the places where instances of the class are created. It
computes the similarity of classes based on the similarity of
their methods and the similarity of places that instantiates
the classes. It returns whether or not this similarity is larger
than the user-specified threshold.
Rename Package:IsRelevant takes in a pair of pack-
ages that have similar shingles encoding. It responds
whether the packages have different names.

IsRelevant(η1, η2) =
haveDifferentName(η1, η2)
PredicateIsAlike lazily finds the import statements

referencing the packages. An “imports” edge from each

3

compilation unit that imports the package to the package
declaration is added. The predicate responds whether or not
two packages are imported by the same compilation units.
Move Method: IsRelevant takes in a pair of methods
that have similar shingles encoding. It responds whether the
methods have the same name but are in different classes.

IsRelevant(η1, η2) =
haveSameName(η1, η2)
∧ haveDifferentParentClass(η1, η2)
PredicateIsAlike lazily finds the call sites of each

method in the pair. The predicate distinguishes between
methods whose declaration classes happen to be renamings
of each other. The predicate responds whether or not two
methods have the same call graph (similarity is over the
specified threshold).
Other Refactorings: The techniques presented here
have the potential to detect other refactorings: extract
method, pull-up/push-down method, replace method call,
split/merge class, change method signature. All these refac-
torings involve restructuring bodies of code into chunks
that are similar across two versions. Since our tech-
nique can detect code that is similar across two versions,
these refactorings (and more) are all in our realm.

5. Implementation: RefactoringCrawler, an
Eclipse plug-in

We implemented these detection strategies in a plugin for
the Eclipse development environment. We assume that the
two versions of the components to be compared are loaded
as projects inside the Eclipse workspace. The user has to
select the two projects for which RefactoringCrawler de-
tects refactorings. The user can control various parameters
like the size of the sliding window for the shingles encoding
(see Section 3), the number of shingles encodings to repre-
sent the digital signature of an method, class or package and
the threshold to be used by the ISALIKE predicate (see fig-
ure 3). Except for the threshold, MoveMethod refactoring
uses the same parameters like RenameMethod to detect po-
tential method candidates.

RefactoringCrawler performs the analysis and returns
back the results inside an Eclipse view (see figure 4). The re-
sults are grouped in categories corresponding to each refac-
toring strategy that was selected in the settings window.
Double clicking on any leaf Java element opens an editor
having selected the declaration of that particular Java ele-
ment.

We evaluated the performance of RefactoringCrawler on
a real case study library. We chose log4j, a popular open-
source library for logging the execution of Java code. We
chose for comparison version 1.2 (May 2002) and version
1.3alpha6 (January 2005). The library passed through an ex-
pansionary phase and it grew from 30KLOC to 62KLOC.
We picked randomly a method that existed in both ver-

Figure 3. Settings Window

Figure 4. Refactoring View

sion, namely Hierarchy.exists(). In version 1.3 we renamed
this method to Hierarchy.existsRenamed() using the refac-
toring engine. It took RefactoringCrawler 50 seconds (on
a Pentium 4 at 1.33GHz with 1GB of RAM and the set-
tings shown in figure 3) to find out the renamed methods.
The Shingles comparison produced 81 pairs of candi-
date methods. Most of these are further prunned by se-
mantic analysis. The results are shown in figure 4.
Among other renamings, RefactoringCrawler found the re-
name method that we performed and it announced that the
refactored nodes are both in Hierarchy class and in Logger-
Repository (which is the interface that Hierarchy extends).
One rename that shows the noise introduced by back-
ward compatibility, happened in class MDC. Log4J design-
ers intended to rename methodput() to put0() but be-
cause of backward compatibility reasons, they still keep
it in version 1.3. Theput() method merely delegates to
put0() . RefactoringCrawler correctly spots this as a re-
name. With a threshold of 0.6, RefactoringCrawler found
two false positives, namely methodsgetAddress() and
parseAddress() in classSMTPAppender . When ex-
amining the methods, they have very similar bodies and
have the same call graph. When we repeated the exper-
iment with threshold raised to 0.7, RefactoringCrawler
discards them.

4

Manual analysis of the two versions of the library reveals
that there are about 8 other method renames. This method
renamings happened in classes that were renamed too and
our preliminary implementation does not detect them. This
happens because step 5 in the methodology (section 2, see
figure 1) is not implemented in the tool yet.

6. Related Work

There exists some tool support for detecting and classi-
fying structural evolution, mostly spawned from the reengi-
neering community. Detection of class splitting and merg-
ing was the main target of the current tools described in
[APM04, DDN00, GZ05, RD03]. Demeyer et al. [DDN00]
use a set of object-oriented change metrics and heuristics to
detect refactorings that will serve as markers for the reverse
engineer. Antonio et. all [APM04] use a technique inspired
from the Information Retrieval to detect discontinuities in
classes (e.g. a class was replaced with another one, a class
was split into two, or two classes merge into one). Based on
Vector Space cosine similarity, they compare the class iden-
tifiers found in two subsequent releases. Therefore, if a class
say Resolver was present in version n, but disappears in ver-
sion n+1 and a new class SimpleResolver appears in ver-
sion n+1, they conclude that a class replacement happened.
Godfrey and Zou [GZ05] are the closest to the way how we
envision detecting structural changes. They implemented a
tool that can detect for procedural code some refactorings
like renaming, move method, split and merge. Where as we
start from shingles encodings analysis, they employ origin
analysis along with more expensive analysis like call hierar-
chy to detect and classify these changes. Rysselberghe and
Demeyer [RD03] use a clone finding tool (Duploc) to de-
tect methods that were moved across the classes.

Clone detection based on Shingles encoding is a research
interest in other fields like internet content management and
file storage. Ramaswamy et al. [RILD04] worked on au-
tomatic detection of duplicated fragments in dynamically
generated web pages. Since dynamic web pages cannot be
cached, at least fragments can be cached thus improving
web server’s performance. For detecting such fragments,
they use shingles encoding. Udi [Mam93] and Kulkarni
[KDLT04] employ Shingles-based algorithms to detect re-
dundancy in the file system. They propose more efficient
storage after eliminating redundancy.

Existing work on automatic detection of refactorings
addresses some of the needs of reverse engineers who
must understand at a high level how and why components
evolved. For this reason, most of the current work focuses
on detecting merging and splitting of classes. However, in
order to automatically migrate component-based applica-
tions we need to know at the API level what are the changes.
Our work complements existing work because we must look
also for lower level refactorings that affect the signatures of

methods. We also address some of the limitations of exist-
ing work with respect to renamings and noise introduced
because of preserving backward compatibility.

7. Conclusions

This paper presents a methodology and a tool to de-
tect refactorings that happened between two versions of a
reusable component. A trace of refactorings helps in the au-
tomatic migration of component-based applications. Based
on Shingles encoding, our tool quickly detects a list of
potential candidates. More powerful techniques based on
semantic analysis are employed to further refine the list
of initial candidates. Preliminary evaluation of Refactor-
ingCrawler shows that the methodolgy seems to scale for
the size of real-life applications.

References

[APM04] G. Antoniol, M. Di Penta, and E. Merlo. An auto-
matic approach to identify class evolution discontinu-
ities. in Proceedings of the 7th International Work-
shop on Principles of Software Evolution, 2004.

[Bro97] A. Broder. On resemblance and containment of docu-
ments.in Proceedings of SEQUENCES, 1997.

[DDN00] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics.in Proceedings of
OOPSLA, 2000.

[DJ05] D. Dig and R. Johnson. The role of refactoring in the
api evolution.submitted to ICSM, 2005.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts.Refactoring: Improving the Design of Ex-
isting Code. Adison-Wesley, 1999.

[GZ05] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities.IEEE
Transactions on Software Engineering, 2005.

[KDLT04] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Re-
dundancy elimination within large collections of files.
USENIX, 2004.

[Mam93] Udi Mamber. Finding similar files in a large file sys-
tem. Tech Report 93-33, University of Arizona, 1993.

[Rab81] M. O. Rabin. Fingerprinting by random polynomi-
als. Technical report, Center for Research in Comput-
ing Technology, 1981.

[RD03] F. Van Rysselberghe and S. Demeyer. Reconstruction
of successful software evolution using clone detection.
Proceedings of the International Workshop on Princi-
ples of Software Evolution, 2003.

[RILD04] L. Ramaswany, A. Iyengar, L. Liu, and F. Douglis. Au-
tomatic detection of fragments in dynamically gener-
ated web pages.WWW, 2004.

5

	Introduction
	Methodology
	Shingles Encoding
	Detection Strategies
	Implementation: RefactoringCrawler, an Eclipse plug-in
	Related Work
	Conclusions

