
Automated GUI Refactoring and Test Script Repair
(Position Paper)

Brett Daniel1, Qingzhou Luo1, Mehdi Mirzaaghaei2

Danny Dig1, Darko Marinov1, Mauro Pezzè2

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{+, qluo2, dig, marinov}@illinois.edu
2Faculty of Informatics, University of Lugano, Switzerland

{mehdi.mirzaaghaei,mauro.pezze}@usi.ch

ABSTRACT

To improve the overall user experience, graphical user in-
terfaces (GUIs) of successful software systems evolve con-
tinuously. While the evolution is beneficial for end users, it
creates several problems for developers and testers. Devel-
opers need to manually change the GUI code. Testers need
to manually inspect and repair highly fragile test scripts.
This is time-consuming and error-prone.

The state-of-the-art tools for automatic GUI test repair
use a black-box approach: they try to infer the changes be-
tween two GUI versions and then apply these changes to the
test scripts. However, inferring these changes is challenging.

We propose a white-box approach where the GUI changes
are automated and knowledge about them is reused to repair
the test cases appropriately. We use GUI refactorings as a
means to encode the evolution of the GUIs. We envision
a smart IDE that will record these refactorings precisely as
they happen and will use them to change the GUI code and
to repair test cases. We illustrate our approach through
an example, discuss challenges that should be overcome to
turn our vision into reality, and present a research agenda
to address these challenges.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Design

Keywords: Graphical user interfaces, GUI refactoring, au-
tomated GUI testing, GUI maintenance

1. PROBLEM ANDMOTIVATION

Graphical user interfaces (GUIs) are an indispensable part
of today’s software. Most GUIs are designed using rapid
prototyping [15], which continuously evolves the GUI in a
quest to improve the overall user experience and keep users
engaged. The rate of change in GUIs can be even higher
than in the core domain logic. For instance, popular web-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETSE ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0808-3/11/07 ...$10.00.

based systems like email and social media, as well as desktop
applications like office suites, routinely revamp their GUIs,
while the core underlying system stays relatively the same.

Testing GUI-based applications is usually different from
conventional software because these applications require in-
teraction between the user and the application. Many soft-
ware organizations rely on manual GUI testing to provide
user interactions, which is error-prone, tedious, and time-
consuming. Automated GUI testing often involves test-
ing frameworks that simulate user interaction with GUIs
through test scripts [6,10,14,17,21,22]. Because GUI-based
applications are complex and have a large number of inter-
action sequences, writing the test scripts is non-trivial, and
there is a high incentive to reuse these scripts. The fact
that GUI-based applications change frequently exacerbates
the problem of GUI testing. Maintenance of GUI test scripts
is tedious and error-prone, and can be even more costly than
manual GUI testing [8].

For an example of real GUI evolution, consider Figure 1
that shows screenshots corresponding to revisions 844 and
845 of the Sigmah project [19], described as follows [18]:
“Sigmah is an open source, web-based project monitoring
and management system for the UN, NGOs ...” The partic-
ular dialog box is used for loading a project document of a
given type. In revision 844 these three types are presented
as three radio buttons, and in revision 845 these three types
are presented as a listbox with three items. As a running
example to discuss our approach, we will use our own sim-
plified code, written with the SWT toolkit, instead of the
actual Sigmah code because the latter was rather repetitive
(and even had a copy-paste bug in revision 844).

Figure 2(a) shows an automated test script, written with
the SWTBot testing framework [21], for the window with the
radio buttons. This script enters a document name, clicks
on one of the radio buttons, and clicks on the OK button. Fig-
ure 2(b) shows the corresponding test script for the window
with the listbox. Note the change that replaces a click on
the radio button with a selection of the corresponding item
from the listbox. After the developers (manually) changed
the GUI, the test script also needs to be updated.

The example change is an instance of GUI refactoring [13,
16], which we define using Model-View-Controller [11]:

Definition: A GUI refactoring only changes the visual
aspects of a GUI (and correspondingly the view and con-
troller parts of the code that implement the GUI) but not the
way it behaves (i.e., not the underlying model).

http://mir.cs.illinois.edu/~bdaniel3/
http://mir.cs.illinois.edu/~qluo2
http://www.inf.usi.ch/phd/mirzaaghaei/
https://netfiles.uiuc.edu/dig/www
http://mir.cs.illinois.edu/~marinov/
http://www.inf.usi.ch/faculty/pezze/

(a) Sigmah revision 844 (three Radio buttons) (b) Sigmah revision 845 (one ListBox with three items)

Figure 1: Evolution of the Sigmah GUI from Radio buttons to ListBox

1 public void testRadioButton(Display display) throws Exception {
2 bot = new SWTBot();
3 bot.text(0).setText(”local.txt”);
4 bot.radio(”Local partner”).click();
5 bot.button(”OK”).click();
6 assertTrue(bot.label(”Local partner”).isVisible()); }

(a) Test local partner for Radio buttons

1 public void testDropdownMenu(Display display) throws Exception {
2 bot = new SWTBot();
3 bot.text(0).setText(”local.txt”);
4 bot.comboBox(0).setSelection(”Local partner”);
5 bot.button(”OK”).click();
6 assertTrue(bot.label(”Local partner”).isVisible()); }

(b) Test local partner for ListBox

Figure 2: An example SWTBot test, updated from Radio buttons to ListBox

We can call the example refactoring ReplaceRadioBut-

tonsWithListBox. This refactoring changes only the view
(from Radio buttons to ListBox) and the controller (the
events) but does not change the underlying model: the old
and the new GUI feed from the same array of three Strings.
We elaborate on this example in Section 3.

Researchers have proposed different approaches to auto-
mate updating of GUI test scripts, e.g., [9, 10]. All these
approaches infer changes to the GUI between different pro-
gram versions. We call these approaches black-box because
they focus on the GUI widgets and not on the GUI code.
Moreover, even when considering the GUI code, they need
to infer the changes. Because such inference is challenging
and inaccurate, the automatic updating of test scripts still
requires a lot of user involvement and confirmation.

The most widely practiced development process for GUI
evolution indeed remains labor-intensive: developers manu-
ally change GUIs (both the view that displays the data and
the controller that processes the events), and testers man-
ually change test scripts to match GUI changes. This is
the case even when the changes are GUI refactorings that
do not modify the underlying logic. Contrast this with the
high level of automation when refactoring the core domain
logic code along with its unit tests: developers use auto-
mated refactoring tools provided in IDEs to carry out the
changes in both the domain logic and the test code.

2. PROPOSED RESEARCH AGENDA

We hypothesize that automated GUI refactoring could im-
prove software productivity in GUI evolution. Getting more
information from GUI developers about GUI code changes
would help in updating GUI test scripts. We propose an
approach that (i) makes it easier for GUI developers to
make changes, (ii) automates recording of these changes,
and (iii) automates applications of corresponding updates
to the GUI test scripts. We envision automated support in
the IDEs and GUI design tools that would allow developers
to apply GUI refactorings in the future, much like they can
apply code refactorings now. We refer to our approach as
white-box because it is aware of the changes made to the
GUI code and carries them over to the GUI test scripts.

To realize our vision, we propose these research steps.
Study GUI Evolution: We will empirically study how

GUIs evolve to identify the most common types of changes.

Our previous study on evolution of APIs for object-oriented
components found that over 80% of changes are API refac-
torings [4], which only change the names or locations of API
elements but not the way they behave. Similarly, we expect
a number of GUI changes to be GUI refactorings. Through
our example, we already described the ReplaceRadioBut-

tonsWithListBox refactoring. A related refactoring would
be ReplaceTwoRadioButtonsWithCheckBox. For in-
stance, a GUI change from Eclipse 3.5 to 3.6 replaced two
radio buttons with a checkbox in the dialog for creating
new Java projects. While some GUI refactorings have been
briefly described [13], we are not aware of an extensive cata-
log of GUI refactorings. As an outcome of our work, we ex-
pect to provide such a catalog, similar to catalogs of object-
oriented API refactorings [5].

Automated Support for Refactoring GUI Code:

We will develop techniques and tools that GUI designers
and developers can use to easier evolve their GUIs. We
need to extend current IDEs to support GUI refactorings.
For example, rather than manually editing the code to re-
place radio buttons with a listbox, a developer could select
a group of radio buttons and click on an automated refac-
toring, ReplaceRadioButtonsWithListBox. As for all
refactorings, the IDE would perform an analysis (potentially
not only static but a hybrid dynamic and static analysis) to
identify whether the refactoring can proceed, and if so, it
would perform an appropriate transformation of the code.
This transformation includes (i) changing the code related
to the view, i.e., code that creates GUI widgets (e.g., creat-
ing ListBox instead of Radio buttons), (ii) changing the code
related to the controller identity, i.e., types/names of events
being handled (e.g., OnSelect instead of OnClick), and/or
(iii) changing the code of event handlers (e.g., updating the
communication with the model but not the model itself).

The resulting IDE extension would not only perform the
refactoring changes but also record the refactorings con-
ducted by the GUI developer by capturing the mapping be-
tween original and modified GUI widgets (i.e., objects and
methods used in the widgets). Our previous contribution
to the Eclipse IDE [3] extends its refactoring engine with
an infrastructure for recording refactorings, along with their
parameters. We will build on this infrastructure to record
GUI refactorings as well.

Automated Repair of GUI Test Scripts: Our main
motivation is to make it easier to update GUI test scripts:

making it easier for developers to change GUIs through au-
tomated refactorings is a way to “trick” the developers into
providing mapping information necessary to update GUI
test scripts. Rather than attempting to infer the changes
that developers made, we would have a detailed recording
of their changes. We will develop techniques and tools that
can systematically apply corresponding changes to the ex-
isting test scripts, specifically to the references to the GUI
objects affected by GUI modifications. For each refactoring
(and some testing framework), we would synthesize an ap-
propriate transformation that can automate update of test
scripts. For example, replacing a set of radio buttons with a
listbox in the GUI (when using SWTBot for tests) requires
changing some click events into setSelection events. Note
that it is non-trivial to find which events should be changed
(because many click events can be on unchanged widgets
such as the OK button in our running example); we anticipate
building on the state-of-the-art results in static analysis for
GUI test scripts [6] (to identify type of GUI objects) and
likely combining them with a dynamic analysis (to iden-
tify precise object ids). The key in enabling us to perform
precise, automated updates of test scripts is having precise
mapping from GUI evolution. An additional advantage of
our approach is that it need not examine all the test scripts
to understand if they are broken; instead, it can refactor
only the test scripts that are affected by the GUI changes.

Note that we propose to automate only (widely used) GUI
refactorings, which by definition preserve behavior. There
are many other GUI changes that do not preserve behavior.
As a trivial example, consider adding a fourth radio button
to the three existing buttons. As a more involved example,
consider adding an error message when a non-existent file
name is entered. It is unclear how to automatically update
the GUI code for such changes in general, the same way that
the existing automated code refactorings do not attempt to
automate arbitrary non-behavior-preserving code changes.

3. EXAMPLE

To illustrate the challenges and potential solutions in our
approach, we elaborate on the example ReplaceRadioBut-

tonsWithListBox refactoring. Figures 3 and 4 show sam-
ple code that implements an evolution scenario similar to
the one in Figure 1. Figure 3 is the common code for both
versions to create the main window.

Figure 4(a) shows the code that creates Radio button wid-
gets and sets up event handlers for them. (In this simple
example, the handlers only record the selected item so that
it can be printed later.) Figure 4(b) shows the code that cre-
ates a list box, called a Combo (of DROP_DOWN kind) in SWT,
and sets up an event handler for it. The differences are
highlighted, and they are of two types.

The difference in the view is that the radio buttons are
replaced with a list box. For this example, it means that
the creation of the widget objects is not done in the loop
but before the loop (only one widget is created), and the
type is changed from Button to Combo. Similarly, the setting
of event handler (addSelectionListener) is not done in the
loop but after the loop. Note that in general a group of radio
buttons could have a different handler for each button. It is a
precondition of the ReplaceRadioButtonsWithListBox

refactoring that all buttons have the same handler (because
that one would be reused for the list box). This is indeed
the most common case, but a refactoring tool would need to

1 Display display = new Display(); Shell shell = new Shell(display);
2 // ... code to create a file selector
3 String[] projectType = new String[]{
4 ”Local partner”, ”NGO project”, ”Funding project”};
5 createWidgets(shell, projectType);
6 shell.pack(); shell.open();

Figure 3: Common SWT Code for Both Versions

check for this and warn the programmer if the precondition
is violated.

The main body of the loop is setting the values for either
the text of radio buttons or the items in the list. In this
example, the change would be relatively easy to automate.
(The implicit assumption here is that the refactoring tool is
specialized for a toolkit and knows how to map appropri-
ate methods such as setText to add.) However, note that
the original code could have been written in a different way:
rather than having a general loop, it could have unrolled the
loop for radio buttons for the three values in items. It would
make the automation of the change much harder (and likely
infeasible) for the refactoring tool. However, we expect that
the developers would realize the benefit of the GUI refactor-
ing tool and appropriately design their code to enable easier
future refactoring.

The difference in the controller is in the event widgetSe-

lected. In this particular case, the name of the event is the
same. However, in general, this name could change (e.g., it
could have been the case that for list box the event is called
itemSelected), so the refactoring tool would need to know
how to map the events. Moreover, the handler body need to
be updated. In this case, the body was simply getting the
text from the selected item. The only change is from Button

to Combo. Again, the refactoring tool would need to apply
an appropriate mapping.

After updating the code, our refactoring engine would up-
date the GUI test scripts. Figure 2 shows SWTBot scripts
before and after the refactoring. The tool would need to
identify where the scripts sent events to the changed objects
and would need to appropriately send (different) events to
the new objects. In this example, the change is in Line 4
of Figure 2(a) which sent click to the Local Partner radio
button. To refactor the test case, the refactoring tool would
need to call setSelection with two parameters: the (new)
list box and the selected item. The first parameter may be
acquired automatically from the mapping of old and new
widgets, or could be provided by the user. The second pa-
rameter is the value of the selected item, which is Local

partner in this case.
From this simple example we can see several challenges

in refactoring GUIs and GUI test scripts. While traditional
code refactorings are derived from the language semantics,
GUI refactorings additionally depend on the libraries and
toolkits being used. We do not expect to support all toolk-
its but rather to focus only on one. Still, identifying whether
a GUI refactoring can apply and what changes to make is
highly non-trivial. We expect that a partially automated
tool that requires some help from developers would still be
valuable and make it easier to change GUI code than a com-
pletely manual approach. Last but not least, identifying
where and how exactly to change GUI test scripts remains
an open problem. We plan to pursue this line of research by
working on many examples and generalizing from the expe-
rience. The running example presented in this paper is only
the starting point.

1 private void createWidgets(Shell shell, String[] items) {
2 createWidgetsWithEvent(shell, items,
3 new SelectionAdapter() {
4 public void widgetSelected(SelectionEvent e) {
5 selectedItem = ((Button) e.widget).getText();
6 } }); }
7 private void createWidgetsWithEvent(final Shell shell, String[] items,

SelectionAdapter selectionAdapter) {
8 for (String i : items) {
9 Button b = new Button(shell, SWT.RADIO);

10 b.setText(i);
11 b.addSelectionListener(selectionAdapter); }
12 // ... code to create an OK button and display a message box
13 }

(a) Radio Buttons

1 private void createWidgets(Shell shell, String[] items) {
2 createWidgetsWithEvent(shell, items,
3 new SelectionAdapter() {
4 public void widgetSelected(SelectionEvent e) {
5 selectedItem = ((Combo) e.widget).getText();
6 } }); }
7 private void createWidgetsWithEvent(final Shell shell, String[] items,

SelectionAdapter selectionAdapter) {
8 Combo c = new Combo(shell, SWT.DROP DOWN);
9 for (String i : items) {

10 c.add(i); }
11 c.addSelectionListener(selectionAdapter);
12 // ... code to create an OK button and display a message box
13 }

(b) Dropdown List

Figure 4: Evolved GUI code in SWT

4. RELATED WORK

There is a large body of research on maintaining GUI
code and tests. Li and Wohlstadter [12] used dynamic in-
formation to show generated GUI widgets in a GUI editor
and to help GUI editors to map source code to GUI views
when code changes. Goderis et al. [7] use a declarative meta
language to increase the maintainability of GUIs by finding
and modularizing crosscutting concerns. Many researchers
address the reverse engineering of user interfaces to sup-
port migration to modern GUI systems [1,2]. For example,
Abrams et al. [1] create a level of abstraction for GUIs with
adding a layer of XML based GUIs. Staiger et al. [20] instead
use static, whole-program analysis for reverse-engineering
GUIs and extracting possible interactions between widgets.

Nagarajan and Memon [16] proposed an event-based pro-
filing for refactoring GUI-based applications via changes in
the GUI layout and removal of unused event handlers. Our
proposal aims to provide a set of GUI refactorings for devel-
opers and to automate the entire process, both in GUI views
and their corresponding controllers. Memon et al. proposed
a technique that repairs obsolete GUI tests by modeling
GUIs with event-flow graphs [14]. To help in understanding
GUI test scripts, Fu et al. introduced an approach [6] to in-
fer the type of widgets and map them to code components.
Grechanik et al. offer an approach to identifying changes
between two GUI applications and automatically maintain-
ing test scripts by comparing the successive GUI trees [9].
Huang et al. used genetic algorithms to repair broken GUI
test cases and to generate new test cases [10]. Our test repair
proposal is built upon our proposed automatic GUI refac-
toring, and we believe that we can achieve higher accuracy
in a more automatic way.

Acknowledgments The first author passed away on De-
cember 5, 2010. Brett contributed significantly to the initial
discussions on GUI refactorings. Brett will be missed dearly
by his family, friends, and colleagues.

We thank anonymous reviewers for comments on a previ-
ous version of this paper. This material is based upon work
partially supported by the US National Science Foundation
under Grant No. CCF-0746856.

5. REFERENCES

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster. UIML: An appliance-
independent XML user interface language. In WWW,
1999.

[2] A. De Lucia, R. Francese, G. Scanniello, G. Tortora,
and N. Vitiello. A strategy and an Eclipse based
environment for the migration of legacy systems to
multi-tier web-based architectures. In ICSM, 2006.

[3] D. Dig. Automated Upgrading of Component-based
Applications. PhD thesis, UIUC, 2007.

[4] D. Dig and R. Johnson. The role of refactorings in
API evolution. In ICSM, 2005.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 1999.

[6] C. Fu, M. Grechanik, and Q. Xie. Inferring types of
references to GUI objects in test scripts. In ICST,
2009.

[7] S. Goderis, D. Deridder, E. V. Paesschen, and
T. D’Hondt. DEUCE : A declarative framework for
extricating user interface concerns. JOT, 2007.

[8] M. Grechanik, Q. Xie, and C. Fu. Experimental
assessment of manual versus tool-based maintenance
of GUI-directed test scripts. In ICSM, 2009.

[9] M. Grechanik, Q. Xie, and C. Fu. Maintaining and
evolving GUI-directed test scripts. In ICSE, 2009.

[10] S. Huang, M. Cohen, and A. Memon. Repairing GUI
test suites using a genetic algorithm. In ICST, 2010.

[11] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
Smalltalk-80. JOOP, 1988.

[12] P. Li and E. Wohlstadter. View-based maintenance of
graphical user interfaces. In AOSD, 2008.

[13] M. Marinillo. Professional Java User Interfaces.
Wiley, 2006.

[14] A. Memon. Automatically repairing event
sequence-based GUI test suites for regression testing.
ACM TOSEM, 2008.

[15] B. A. Myers. User interface software tools. ACM
TOCHI, 1995.

[16] A. Nagarajan and A. Memon. Refactoring using
event-based profiling. In REFACE, 2003.

[17] Selenium home. http://seleniumhq.org/.

[18] Sigmah home. http://code.google.com/p/sigma-h/.

[19] http://sigma-h.googlecode.com/svn/trunk/.

[20] S. Staiger. Static analysis of programs with graphical
user interface. In CSMR, 2007.

[21] SWTBot home. http://www.eclipse.org/swtbot/.

[22] Q. Xie, M. Grechanik, and C. Fu. REST: A tool for
reducing effort in script-based testing. In ICSM, 2008.

http://seleniumhq.org/
http://code.google.com/p/sigma-h/
http://sigma-h.googlecode.com/svn/trunk/
http://www.eclipse.org/swtbot/

	Problem and Motivation
	Proposed Research Agenda
	Example
	Related work
	References

