
Automated Testing of Eclipse and NetBeans
Refactoring Tools∗

Brett Daniel Danny Dig Kely Garcia Darko Marinov
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{bdaniel3, dig, kgarcia2, marinov}@cs.uiuc.edu

ABSTRACT
This position paper presents our experience in automated
testing of Eclipse and NetBeans refactoring tools. Test in-
puts for these tools are Java programs. We have developed
ASTGen, a framework for automated generation of abstract
syntax trees (ASTs) that represent Java programs. ASTGen
allows developers to write imperative generators whose exe-
cutions produce ASTs. ASTGen offers a library of generic,
reusable, and composable generators that make it relatively
easy to build more complex generators. We have developed
about a dozen of complex generators and applied them to
test at least six refactorings in each tool. So far, we have
found 28 unique, new bugs and reported them, 13 in Eclipse
Bugzilla and 15 in NetBeans Issuezilla. This is ongoing
work, and the numbers are increasing.

We advocate the importance of automated testing—not
only automated execution of manually written tests (using
JUnit or XTest) but also automated generation of test in-
puts. We have developed several oracles that programmati-
cally check whether a refactoring tool correctly made some
program transformations (or gave warning that a specific
refactoring should not apply to the given input program).

We hope that this paper motivates developers of refac-
toring tools to incorporate such generation and oracles into
their tools. While most refactoring tools are already quite
reliable, we believe that the use of such generation would
further increase reliability, to the benefit of all users of refac-
toring tools. Moreover, we argue that such generation can
be useful for testing other related tools that take (Java)
programs as inputs. To encourage collaboration and enable
others to try out ASTGen, we have made our ASTGen code
and all experimental results publicly available at the AST-
Gen web page, http://mir.cs.uiuc.edu/astgen

1. WHY AUTOMATED GENERATION?
Testing involves several activities, including generation of

test inputs (and expected outputs), execution of test inputs,
and checking of obtained outputs. For a refactoring tool,
each input consists of a program and a refactoring to apply,
and each output is either a refactored program or a warning
if the specific transformation might change the program’s
semantics.

∗This paper is based on the work [1] to be presented at
the 6th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2007) in
Dubrovnik, Croatia.

It is often said that manual testing is tedious and error-
prone. Indeed, developers of refactoring tools automate a
large portion of testing. For instance, we have counted 2,673
JUnit tests for the major refactorings in Eclipse version 3.2.
JUnit automatically executes these tests and checks the ob-
tained outputs. However, JUnit does not automatically gen-
erate test inputs, and to the best of our knowledge, Eclipse
developers manually wrote their JUnit tests.

Automated generation of test inputs has one significant
benefit: it makes it easier to generate a large number of test
inputs, which hopefully results in a more thorough testing
and enables finding bugs before they are encountered in pro-
duction runs. However, automated generation of test inputs,
especially for refactoring tools, poses several challenges. We
discuss these challenges and our solution.

1.1 Generation of Input Programs
How does one automatically generate valid Java programs

to give as inputs to a refactoring tool? There is no obvi-
ous answer. While simpler test inputs, say one integer or a
sequence of integers, can be generated even randomly, it is
unclear how one could randomly generate sequence of char-
acters (or abstract syntax trees) that satisfy the syntactic
and semantic constraints for a valid Java program. More-
over, even if one could generate programs randomly, how
would one ensure that these programs have properties rele-
vant to the refactoring under test?

We have developed the ASTGen framework to generate
a large number of relevant Java programs. ASTGen is not
fully automatic. It requires developer to write a class (which
we call generator) that can produce test inputs relevant to
a specific refactoring. ASTGen provides a library for gen-
eration of simple AST nodes. This library makes it easy to
build more complex combinations of AST nodes. We have
written several generators that produce Java programs for
testing refactoring engines. More details are in the confer-
ence paper [1]. We point out that the generators do not
always produce programs that compile. (The column “CI”
in Figure 1 shows how many of the generated inputs compile
and are thus valid inputs for a refactoring.)

1.2 Execution of Refactorings
How does one automatically run a refactoring tool on the

automatically generated input programs? This is seemingly
an easy task: just develop a piece of code that (efficiently)
runs a specific refactoring on each of the generated pro-
grams. However, we have encountered a number of prob-
lems while developing this piece of code, in both Eclipse and



Generation Oracles Bug
Refactoring Generator TGI Time CI WS DNC C/I Diff Reports

[min:sec] Ecl NB Ecl NB Ecl NB

Rename(Method) MethodReference 9540 89:12 9540 3816 0 0 0 0 5724 0 0
Rename(Field) FieldReference 3960 28:20 1512 0 0 0 304 0 40 0 1

EncapsulateField

ClassArrayField 72 0:45 72 0 0 48 0 0 48 1 0
FieldReference 3960 15:19 1512 0 0 320 432 14 121 4 3

DoubleClassFieldRef. 14850 41:45 3969 0 0 187 256 100 511 1 2
DoubleClassGetterSetter 576 8:45 417 216 0 162 162 18 216 2 2

PushDownField
DoubleClassFieldRef. 4635 10:56 1064 760 380 152 228 0 380 2 2

DoubleClassParentDecl. 360 6:50 270 246 168 18 90 0 78 1 2
PullUpField DoubleClassChildDecl. 60 1:14 44 0 18 10 6 0 44 1 1

MemberToTop
ClassRelationships 70 0:36 51 0 0 0 2 0 2 0 1

DoubleClassFieldRef. 6600 29:04 2824 0 0 353 507 0 2824 1 1

Total Bugs: 13 15

Figure 1: Refactorings tested and bugs reported, Ecl = Eclipse, NB = NetBeans
TGI = Total Generated Inputs, Time in [min:sec], CI = Compilable Inputs,
WS = WarningStatus, DNC = DoesNotCompile, C/I = Custom/Inverse, Diff. = Differential

NetBeans. These problems have been partly due to certain
design decisions in these refactoring tools.

Two key problems that we encountered were (1) how to
reduce the dependency of the refactoring under test from
the rest of the IDE and (2) how to efficiently execute the
refactorings. We still have not solved the first problem sat-
isfactorily in Eclipse. Namely, our testing of refactorings
requires that we run Eclipse in the GUI mode, which not
only slows down the execution but also disallows using (fast)
servers with a text-only connection. We still have not solved
the second problem satisfactorily in NetBeans. Namely, our
testing does not release all the resources after each refactor-
ing. (Specifically, it creates a new project for each input pro-
gram.) This results in an increasing memory usage over time
and requires that we rerun NetBeans several times, split-
ting a large number of input programs into several smaller
batches that can each fit into one run. We hope that de-
velopers of refactoring tools can provide better “hooks” for
running automatically generated inputs programs.

1.3 Checking of Outputs
How does one automatically check the outputs that a refac-

toring tool produces for the automatically generated inputs?
While this problem is related to checking correctness of com-
pilers [2] (the output program should be semantically equiv-
alent to the input program), in addition, the refactored pro-
gram should have the intended changes.

We have developed a variety of oracles for programmatic
checking of refactoring tools. The simplest oracle checks
that the refactoring tool does not throw an uncaught excep-
tion, but we have not found such a case in either Eclipse or
NetBeans. The WarningStatus (WS) oracle checks whether
the tool produces a warning or a refactored program. The
DoesNotCompile (DNC) oracle checks whether the refac-
tored program compiles. The Custom/Invertible (C/I) or-
acle checks specific structural properties (e.g., moving an
entity should indeed create the entity in the new location)
or invertibilty (e.g., renaming an entity from A to B and
then from B to A should produce the same starting input
program). The Differential (Diff) oracle [2] gives the same
input program to both Eclipse and NetBeans and compares
whether they produce the same output.

1.4 Experimental Results
When is testing with automatically generated inputs ap-

plicable? There are at least two benefits of manually writ-

ten tests. First, in test-driven development, the tests are
written even before writing the code, and thus such tests
help in designing the code. Second, in regression testing,
when developers want to get a quick feedback about the
code changes they are making, it is better to use a smaller
number of tests manually written (or previously manually
selected from some automatically generated tests) than to
use a large number of automatically generated tests. How-
ever, we claim that when developers can run tests for longer
time or want to exercise their code more thoroughly, it is ap-
propriate to use automatically generated tests (in addition
to manually written tests).

Figure 1 shows some of our experimental results that sup-
port the above claim. (The full results are available in the
conference paper [1].) The “Time” column shows the total
time required to generate the input programs and to run
them in Eclipse. Running is over an order of magnitude
slower than generation. Testing each refactoring takes less
than an hour and a half (on a a dual-processor 1.8 Ghz
machine), and the entire suite can be run overnight. The
benefit is finding new bugs, as shown by a total of 28 new
bugs in Eclipse and NetBeans.

2. BEYOND REFACTORING TOOLS
We believe that automated testing based on ASTGen gen-

erators is useful beyond refactoring tools. In principle, any
tool that operates on programs (or abstract syntax trees)
could benefit from ASTGen. The main question is how
easy/hard it is to write the generators that produce inter-
esting programs that satisfy the required constraints. We
plan to investigate this in new application domains, e.g., in
other parts of Eclipse and NetBeans IDEs.

3. REFERENCES
[1] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated

testing of refactoring engines. In ESEC/FSE 2007, Dubrovnik,
Croatia, Sept. 2007. (To appear.).

[2] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1), 1998.


