
An Infrastructure Approach to
Improving Effectiveness of
Android UI Testing Tools

Wenyu Wang, Wing Lam, Tao Xie
{wenyu2, winglam2}@illinois.edu

taoxie@pku.edu.cn

CNS-1564274
CCF-1763788
CCF-1816615

Automatically explore the app through UIs, just like human users

1

Action(s)
(screen tap, key press, ..)

Capturing of screen content

Test
device

Test
tool

Test record
and report

Test effectiveness
report

Code coverage
of crashes

👍 Little human effort 👍 Scalable with numerous devices 👍 Deeper functionality saturation

Automated UI Testing For Android Apps

How much do these two types
of operations affect testing

effectiveness?

…

Infrastructure Efficiency: A Motivational Study

2

UI Capturing UI Event Execution
Misc Interaction Tool Internal

34%

36%

9%

21%

• Break down of testing time usages
• 3 tools using UIAutomator from the 2018 study [1]

• Including one re-implemented Monkey (baseline tool), Chimp

• 15 industrial apps from the study, each run for 1-hour
• 1m+ to 1b+ downloads, 3.3MB to 93MB APK sizes

[1] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng, and Tao Xie.
An empirical study of android test generation tools in industrial cases (ASE 2018)

70% of testing time is spent
on just two types of operations!

Save time from these operations →
More actions within limited testing time →
Better testing effectiveness!

Our Approach (Toller)

3

• Goal: Fast UI Hierarchy Capturing + UI Event Execution
• Direct access to app UI data structures & event handlers
• Low-overhead communication with in-app agent

App Code
(.dex)

Toller
Agent

Android Framework
(App Space)

App VM

Unix socket
over ADB

Test Tool

UI Hierarchy Capturing

4

..
<node
text="Settings”
class="android.widget.TextView” />
..
..
<node
class="android.widget.LinearLayout”>
<node
resource-id="icon”
class="android.widget.ImageView” />
<node
text="Data usage”
resource-id="title”
class="android.widget.TextView” />
..

</node>
<node
class="android.widget.LinearLayout”>
..
<node
text="Display”
resource-id="title”
class="android.widget.TextView” />
..

</node>

Test
device

Test
tool

UI Hierarchy Capturing

UI Event Execution

Obtain structured on-screen contents
from the test device

Mechanism Of UI Hierarchy Capturing
(UIAutomator)

5

App Code
(.dex)

UIAutomator
Agent

Android Framework
(App Space)

App VM

Test Tool

RPC

UIAutomator
ServiceIPC

Android
UI System
Services

IPC

Mechanism Of UI Hierarchy Capturing
(Toller)

6

Test Tool

RPC

UIAutomator
ServiceIPC

Android
UI System
Services

IPC

Unix socket
over ADB

Toller facilitates
direct access to UI

data structures!

App Code
(.dex)

UIAutomator
Agent

Android Framework
(App Space)

App VM

Toller
Agent

click test

UI Event Execution

7

App VM

Low-level event
tapping (x,y)

on screen

High-level event
e.g., tapping button X

Test
device

Test
tool

UI Hierarchy Capturing

UI Event Execution

Event Handler
X’s OnClickListener

translate

inject

dispatch

Surface
Flinger

Window
Manager

Hardware
Composer

Android UI System

Toller facilitates
direct access to
event handlers!

Evaluation Outline

•RQ1: Efficiency of two types of operations
•RQ2: Code coverage improvement
•RQ3: Crash triggering ability improvement
•RQ4: Code/crash overlap with and without Toller
• Please see paper[1] for details

•RQ5: Breakdown of improvements by enhancing types
of two operations
• Please see paper[1] for details

8

[1] https://wenyu.io/pub/issta21-toller.pdf

https://wenyu.io/pub/issta21-toller.pdf

RQ1: Efficiency Comparison

9

• Same testing time, with and without Toller

• Fallback to UIAutomator on unhandled cases
Toller substantially accelerates

two types of operations

Avg time usage of single operations Total # of operations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Chimp WCTester Stoat Chimp WCTester Stoat

Original Enhanced

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Chimp WCTester Stoat Chimp WCTester Stoat

Original Enhanced
UI Event Execution UI Event ExecutionUI Hierarchy Capturing UI Hierarchy Capturing

-97%

-97%

-77% -40%

1.5x

-95%

-18%

1.8x

35.3x
2.6x

1.3x

21.0x

RQ2: Code Coverage Improvement

+11.8%, 10.4%, 70.1% on CH, WT, and ST

#apps with highest coverage:

10

MK = Monkey, CH = Chimp (re-implemented Monkey), WT = WCTester, ST = Stoat

• 3 one-hour runs for each (tool, app)
• Average # of Java methods covered after

testing starts

Toller-induced coverage
improvements are substantial
enough to change relative tool

competitiveness

MK CH WT ST

Without Toller

4 8 3 0

With Toller

2 5 5 3

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 #
 o

f C
ov

er
ed

 M
et

ho
ds

Time Elapsed (mins)

Ape_O Ape_S WCTester_O WCTester_E

RQ2: Code Coverage Improvement
• Additionally evaluate on Ape
• More advanced algorithm than tools from the 2018 study
• No mention of leveraging private APIs for UI Hierarchy Capturing
• Slow (no efficient infra. support) vs. Original (with infra. support)

11

ApeS lower than
WCTesterE for
~40 minutes

Tools with less
advanced algorithm but
efficient infra. support
could outperform tools
with more advanced

algorithm but no
efficient infra. support

9.7% improvement
from ApeS to ApeO

10.4% improvement
from WCTesterO to

WCTesterE

RQ3: Crash Triggering Improvement

• Cumulative # of distinct crashes, identified by stacktraces

• 3.6x, 1.5x, 1.4x for three enhanced tools; 1.8x for Ape
• For the majority of (tool, app) pairs, more crashes are found by enhanced tool versions

12

MK = Monkey, CH = Chimp (re-implemented Monkey), WT = WCTester, ST = Stoat

Efficient infrastructure
helps tools trigger

substantially more crashes

Recap & Conclusion

• Over 70% of testing time budget is for Android testing tools' use of test
infrastructure
• Use of test infrastructure can be made much more efficient with TOLLER

• 10.4% - 70.1% code coverage improvement, 1.4x - 3.6x unique crashes detected
depending on tool

• Code and data available at https://github.com/TOLLER-Android/main

Efficient infrastructure support is useful for effective Android UI testing tools,
complementary with existing algorithmic advances

13

https://github.com/TOLLER-Android/main

