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ABSTRACT
During regression testing, developers rely on the pass or fail out-
comes of tests to check whether changes broke existing function-
ality. Thus, flaky tests, which nondeterministically pass or fail on
the same code, are problematic because they provide misleading
signals during regression testing. Although flaky tests are the focus
of several existing studies, none of them study (1) the reoccurrence,
runtimes, and time-before-fix of flaky tests, and (2) flaky tests in-
depth on proprietary projects.

This paper fills this knowledge gap about flaky tests and investi-
gates whether prior categorization work on flaky tests also apply
to proprietary projects. Specifically, we study the lifecycle of flaky
tests in six large-scale proprietary projects at Microsoft. We find, as
in prior work, that asynchronous calls are the leading cause of flaky
tests in these Microsoft projects. Therefore, we propose the first
automated solution, called Flakiness and Time Balancer (FaTB), to
reduce the frequency of flaky-test failures caused by asynchronous
calls. Our evaluation of five such flaky tests shows that FaTB can
reduce the running times of these tests by up to 78% without em-
pirically affecting the frequency of their flaky-test failures. Lastly,
our study finds several cases where developers claim they “fixed” a
flaky test but our empirical experiments show that their changes
do not fix or reduce these tests’ frequency of flaky-test failures.
Future studies should be more cautious when basing their results
on changes that developers claim to be “fixes”.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Developers typically rely on regression testing to ensure that their
recent changes do not introduce faults. Ideally, test failures during
regression testing would reliably signal issues with the developers’
recent changes. Unfortunately, tests that pass and fail nondeter-
ministically on the same code prohibit this ideal. These tests are
commonly called flaky tests [10, 20], and they negatively impact
developers by providing misleading signals about the developers’
recent changes.

Flaky tests are a major problem in both industry and research.
In recent years, several companies have reported the impact flaky
tests have on them. Micco [23] reported that 1.5% of all test runs at
Google are flaky, and that almost 16% of their 4.2million individual
tests fail independently of changes in code or tests. Similarly, our
previous work [18] reported that about 4.6% of the tests in five
Microsoft projects are flaky. At Facebook, Harman andO’Hearn [14]
even proposed to adopt the position that all tests are flaky (ATAF)
and that researchers should rethink testing techniques knowing
that they will be used in an ATAF world.

There are a few studies of flaky tests that focus on common
categories of flaky-test fixes [20, 25], approaches for detecting flaky
tests [11, 13, 19, 27, 31], and automatic approaches for fixing flaky
tests [25, 28]. Although this existing work helped substantially
advance the topic of flaky tests, none of them study (1) the reoc-
currence, execution time (or runtime for short), and time-before-fix
of flaky tests, which can be relevant to the impact and possible
solutions of flaky tests, and (2) flaky tests in-depth on proprietary
projects. Studying flaky tests in-depth specifically on the categoriza-
tion of them on proprietary projects can be important to understand
whether new or existing techniques for dealing with flaky tests
would work well for both proprietary and open-source projects.

To fill this knowledge gap, we study the lifecycle of flaky tests
on six large-scale, diverse proprietary projects at Microsoft. Specif-
ically, we study the overall lifecycle—prevalence, reproducibility,
characteristics (e.g., reoccurrence, runtimes), categories, and reso-
lution (e.g., time-before-fix) of flaky tests. Our study of prevalence
and reproducibility reveals the substantial negative impact that
flaky tests have on developers at Microsoft, while our study on the
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characteristics, categories, and resolution of flaky tests confirms
that some of the findings from studies on open-source projects also
hold for proprietary projects. For example, similar to two prior stud-
ies [20, 25] on flaky tests in open-source projects, we also find that
the most common category of flaky tests in proprietary projects is
the Async Wait category. Tests in this category are flaky because
they make asynchronous calls without properly waiting for the
call to return. Realizing the substantial impact that flaky tests have
on developers at Microsoft and how common Async Wait flaky
tests (or Async Wait tests for short) are, we propose an automated
solution to alleviate the negative impact of these tests.

Our automated solution, called the Flakiness and Time Balancer
(FaTB), alleviates the negative impact of Async Wait tests. Specif-
ically, FaTB identifies the method calls in the test code that are
related to timeouts or thread waits, and then calculates the fre-
quency that the flaky test will fail (or flaky-test-failure rate for
short). Based on the current flaky-test-failure rate, FaTB will then
try various time values and outputs the minimum time values that
developers should use depending on their tolerance for flaky-test
failures. Our evaluation of FaTB on five versions each of five flaky
tests shows that the tests can run up to 78% faster and still achieve
the same flaky-test-failure rate as before. More importantly, we also
find that for some tests, the developers thought that they “fixed”
the flaky tests by increasing some time values in the tests, but our
empirical experiments show that these time values actually have
no effect on the tests’ flaky-test-failure rates. Our finding suggests
that what developers claim as “fixes” for flaky tests in bug reports,
commit messages, etc. can be unreliable. Although, some existing
flaky-test studies [20, 25] relied on these claims from developers,
future work should be more cautious when basing their results on
changes that developers claim to be “fixes”.

In summary, we present the following main contributions.

(1) We confirm whether the categorization findings on flaky
tests of prior studies [20, 25] conducted on open-source
projects are true for the 6 proprietary projects at Microsoft.

(2) We study the lifecycle of flaky tests, which helps us under-
stand them and demonstrates the need for our automated
solution. As part of our study, we are the first to investigate
the reoccurrence, runtimes, and time-before-fix of flaky tests.
The data we use for our study is available online [4].

(3) We propose an automated solution, called FaTB, to balance
test flakiness and runtime. Our empirical experiments show
that FaTB can help tests run up to 78% faster and the tests
will still have the same flaky-test-failure rates as before.

(4) We show that categorization based on changes developers
claim as “fixes” can be unreliable. Our finding invalidates a
main assumption of prior studies [20, 25], and reveals the
need for future work to more cautiously use such “fixes” and
to confirm flaky-test fixes.

2 BACKGROUND
Microsoft uses a modern build and test service framework on the
cloud, called CloudBuild [9]. CloudBuild is an incremental and
distributed system for building code and executing tests, similar to
other engineering systems such as Bazel [2] and Buck [3]. When
CloudBuild receives a build request with a change, it identifies all

modules that are impacted by the change. CloudBuild executes
the tests only in those impacted modules, and skips the remaining
modules’ tests, since none of their dependencies changed. Note
that, within a module, CloudBuild always executes all tests in the
same order (sorted alphabetically).

To address the misleading signals of flaky tests, CloudBuild offers
a comprehensive flaky test management system called Flakes, that
includes four major features: Detection, Reporting, Suppression,
and Resolution. The Detection feature aims at inferring flaky tests
among all tests executed by CloudBuild.More specifically, whenever
there is a test failure, CloudBuild automatically retries the test once
by default, and if the retry passes, then the test is considered flaky
and the build continues. Once a test is considered flaky, Flakes
proceeds to Reporting where it reports the flaky test to developers
by automatically creating a bug report. These bug reports help
notify developers of the flaky tests and encourages the developers
to fix the flaky tests. Note that Flakes will link multiple flaky tests
to the same bug report by looking for similarities in the flaky tests’
error messages. Doing so prevents tests with the same root cause
from creating many different bug reports.

For Suppression, Flakes updates a suppression file that maintains
all known flaky tests within the project. Specifically, Flakes adds
information (e.g., error message, bug report URL, code version, fully-
qualified test name) about a test to the suppression file when a test is
found to be flaky. This suppression file is primarily used to suppress
future failures of flaky tests, since they are known to be flaky already.
Flakes can suppress these failures to help reduce developers’ effort
in diagnosing test failures due to flaky tests. However, to discourage
developers from fully relying on suppressions to deal with flaky
tests, Flakes simply suppresses the failures for 30 days by default.
Finally, for Resolution, when developers close a bug report related
to a flaky test, Flakes automatically removes the test from the
suppression file. If the test is found to be flaky later, Flakes will
reopen a new bug report and repeat all of the steps above. Today,
Flakes is used by 11 projects in total at Microsoft. Of these 11
projects, Flakes has already found at least one flaky test in six of the
projects. Across all of these projects, Flakes has created over 4,000
bug reports and between May to August 2019, Flakes suppressed
over 218,000 flaky-test failures for these six projects.

3 STUDY SETUP
This section describes the projects and datasets of flaky tests we
use in our study, the research questions of our study, and how we
use the datasets for each question.

3.1 Evaluation projects
Table 1 provides some statistics collected during July 2019, over a
30-day period, for six projects that use Flakes. Each of these projects
has at least one flaky test in it currently or had one sometime in
its past. Due to company confidentiality reasons, the names of the
projects are anonymized. None of the authors has worked on any
of the projects that uses Flakes. In the table, Column 2 shows the
number of distinct tests in each project. Column 3 shows the number
of failed builds for each project. Column 4 shows the number of
tests executed in all builds. Note that CloudBuild does not execute
all tests in each build; rather, it executes only those tests that are
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Table 1: Statistics of the projects with flaky tests using Flakes during July 2019 (over a 30-day period).

# Failed # Test Median build # Flaky-test # Builds with
Project # Tests Builds executions time (min) failures flaky-test failures Project purpose
ProjA 7,281 2,127 2,045,513 29 157 68 ( 3.2%) Ads
ProjB 29,589 13,025 45,063,356 21 17,064 1,133 ( 8.7%) Cloud computing
ProjC 2,866 2,047 1,429,295 3 24 22 ( 1.1%) Engr. infrastructure
ProjD 3,182 9,371 28,557,302 10 39 35 ( 0.4%) Database
ProjE 7,939 847 4,702,325 11 734 302 (35.7%) Engr. Monitoring
ProjF 4,197 491 332,557 27 1,775 133 (27.1%) Search

Table 2: Flaky-test statistics of the projects in our study.
*ProjB’s pull requests (PRs) are inaccessible for our study.

# Flaky # Fixed # Flaky test
Project tests flaky tests w/ PRs
ProjA 10 3 2
ProjB 352 31 *0
ProjC 73 63 8
ProjD 1453 878 96
ProjE 176 64 27
ProjF 25 1 1
Total 2089 1040 134

within the modules impacted by the change. Column 5 presents
the median time of each build in minutes, and Column 6 shows the
number of total flaky-test failures suppressed by Flakes. Column 7
shows the number and percentage of failed builds that contained
at least one flaky-test failure suppressed by Flakes. Note that each
of these builds can have more than one flaky-test failure. Finally,
Column 8 shows the purpose of the project. As this table shows, the
projects that use Flakes and have at least one flaky test are quite
diverse. Specifically, the median build times for these projects vary
from 3 to 29 minutes and they all have distinct purposes.

3.2 Datasets
We conduct our study of flaky tests at Microsoft using three datasets.
Figure 1 shows an overview for how we obtain these three datasets
from the six projects that use Flakes. As Figure 1 shows, we obtain
the datasets using three main steps, with each subsequent step
using some or all of the data in the previous step. To obtain our
datasets, we start with all versions of the suppresion files that
Flakes maintains for each of the six projects. These suppresion
files are version-controlled, and Flakes uses them to keep track of
known flaky tests. Having previous versions of these suppresion
files consequently allows us to find flaky tests that Flakes found in
the past regardless of whether these tests are fixed or not. In total,
Flakes identified 2089 flaky tests from the entire history of the six
projects shown in Table 1.

We use the suppresion files maintained by Flakes for each project
to create three datasets labeled as All-Fixed, Pull-Requests, and
Categorized. Dataset All-Fixed includes all flaky tests that Flakes
has observed to be fixed and contains 1040 flaky tests. Dataset
Pull-Requests includes all flaky tests that are fixed and the bug
report associated with the flaky test includes a pull request that the
developer manually linked to the bug report. This dataset contains
134 flaky tests. Lastly, dataset Categorized includes all flaky tests

that have pull requests and, upon our manual investigation of the
pull requests, bug reports, and source and test code, we categorize
these flaky tests with the categories defined in prior studies [20, 25].
This dataset also contains 134 flaky tests.

To obtain the All-Fixed dataset (the result of Step 1), we parse
the suppresion files of Flakes into a SQL-like database known as
Azure Data Explorer [1]. We parse the suppresion files from the
oldest to the newest version, and when we see a flaky test get added
to the file, we consider that test to be flaky. On the other hand,
when we see a flaky test get removed from the file, we consider
that test to be fixed.1 The number of times a flaky test is detected
and fixed depends on the number of times the test is added and
removed (respectively) from the suppresion file.

To obtain the Pull-Requests dataset (the result of Step 2), we join
the All-Fixed dataset with an existing Azure Data Explorer table that
keeps track of which pull requests, if any, are linked to a bug report.
Not all closed bug reports are linked to a pull request, because
developers have to manually link the pull requests themselves. We
join the All-Fixed dataset with an existing Azure Data Explorer
table because Flakes keeps track only of the bug report it creates for
a particular flaky test, and would not otherwise know if a particular
bug report has pull request(s) linked to it. Note that by design
ProjB’s bug reports are not accessible through Azure Data Explorer.
Therefore, all bug report and pull request information for the flaky
tests of ProjB is omitted from our study.

To obtain the Categorized dataset (the result of Step 3), we study
the pull request, source code, and test code of each flaky test in the
Pull-Requests dataset. Each flaky test that we categorize is verified
by two or more of the authors independently. Our categorization
considers four kinds of locations and 12 root-cause categories that
we obtain from two prior studies [20, 25] on flaky tests.

Table 2 summarizes for each project the flaky tests we find in
it. Overall, Flakes identified 2089 flaky tests from six projects. On
average, Flakes has been tracking flaky test information in these
six projects for 181 days. Of the 2089 flaky tests, 1040 tests are fixed.
Of the 1040 flaky tests that are fixed, we find that the developers
attached a pull request to the bug report for 134 of the tests.

3.3 Research questions
To better understand the lifecycle of flaky tests at Microsoft, we
study the prevalence, reproducibility, characteristics, categories,
and resolution of flaky tests. More specifically, we address the
following research questions:

1A flaky test can also be removed from the suppresion files because the test is removed
from the project. Our All-Fixed dataset does include such tests.
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Figure 1: Overview of how we obtain the datasets used in our study.

RQ1 [Prevalence]: How prevalent are flaky tests and to what
extent do they impact developers’ workflow?
RQ2 [Reproducibility]: How many runs are needed to reproduce
flaky-test failures?
RQ3 [Characteristics]: Does test flakiness reoccur after fixes? If
so, what are the reasons for it to reoccur?
RQ4 [Characteristics]: How does the runtime of a flaky test differ
between passing and failing runs?
RQ5 [Categories]: What are the categories (e.g., root cause, loca-
tion) of the flaky-test fixes?
RQ6 [Resolution]: How much time do developers take to fix flaky
tests?
RQ7 [Resolution]: How effective are developers at identifying
and fixing the timing-related Async Wait issues in flaky tests?

We first address RQ1 to understand how problematic flaky tests
are at Microsoft. We then address RQ2 to understand the difficulty
developers may have in debugging and fixing flaky tests. Knowing
the difficulty of reproducing flaky-test failures, we then address
RQ3 and RQ4 to understand the characteristics of these flaky tests.
We then address RQ5 to extend our characteristics study by cate-
gorizing the location and root cause of the flaky-test fixes in our
dataset. Lastly, we address RQ6 and RQ7 to understand how effec-
tive developers are at fixing flaky tests.

3.4 Methodology
All of our research questions use either the All-Fixed, Pull-Requests,
or Categorized datasets of flaky tests described in Section 3.2.

3.4.1 RQ1: Prevalence and impact of flaky tests. For RQ1, we use
the All-Fixed dataset, our entire dataset of fixed flaky tests. For
this RQ, we rely on the information collected by Microsoft’s Flakes
during July 2019. Specifically, we look at the number of failed builds
that would have occurred due to flaky-test failures if Flakes did not
suppress such failures from these builds.

3.4.2 RQ2 and RQ4: Reproducibility and runtime of flaky tests. For
RQ2 and RQ4, we again start by using the All-Fixed dataset. Specif-
ically, for each flaky test, we run the test 500 times in the actual
build and testing environment. We use only three projects (ProjC,
ProjD, ProjE), because we perform these experiments on real pro-
prietary projects, and we cannot interrupt or slow the actual testing
environments of the other projects.

3.4.3 RQ3: Reoccurrence of flaky tests. For RQ3, we use the All-
Fixed dataset, but we filter for tests that have been fixed more than
once. We identify the flaky tests that are fixed more than once by
looking for tests that are removed from a project’s suppresion file
more than once. For the tests that are fixed more than once, we look
at the commits, bug reports, and source and test code to understand
why they reoccur. We use the commits instead of pull requests
because not all tests in the All-Fixed dataset have pull requests
linked to the tests’ bug reports. Indeed, we find that for the flaky
tests that we study for this RQ, all of their bug reports do not have
pull requests. We obtain the commits for these tests, by using the
dates of their bug reports and the version-control history of the
test code to find the likely commits for these tests. We then confirm
these commits with the developers of the flaky tests.

3.4.4 RQ5: Categories of flaky-test fixes. For RQ5, we use the Pull-
Requests dataset, which contains 134 flaky tests that are fixed and
have a pull request associated with the test. Specifically, we study
(1) where are the changes located in (i.e., source or test code), and
(2) what root causes of flaky-test fixes do these pull requests belong
to? Prior studies [20, 25] on flaky tests have found four kinds of
locations in which fixes were located in and also identified 12 root
causes of flaky-test fixes. For our study, we manually label each pull
request along with its corresponding bug report and source/test
code with the same four kinds of locations and 12 root causes as the
prior studies. We decide to use pull requests, which consists of one
or more commits, because pull requests represent a more complete
set of changes. These changes from pull requests generally build
without errors and have been tested on the developers’ machines
to ensure that they do not fail any tests.

3.4.5 RQ6: Time-before-fix of flaky tests. For RQ6, we use the All-
Fixed dataset. Specifically, for each fixed test, we study the bug
report linked to the test. Recall that Flakes’ Reporting feature, as
described in Section 2, will automatically create a bug report for
each test it finds to be flaky. To obtain the time-before-fix of flaky
tests, we study the time the bug reports of these tests took from
being created to them being closed.

3.4.6 RQ7: Developers’ effectiveness on identifying and fixing Async
Wait tests. For RQ7, we use the Categorized dataset, which contains
134 flaky tests that are fixed, have a pull request associated with
the test, and its pull request, bug report, and code is categorized.
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Since in RQ5 we find that Async Wait is the most common category
of flaky tests, we focus specifically on this category for RQ7. To
understand how effective developers are at identifying and fixing
Async Wait tests, we sample five Async Wait tests whose fix by
developers is to increase the wait/timeout. We then calculate the
flaky-test-failure rate with the developer-suggested fix and measure
how the rate changes when the time value increases or decreases.

4 ANALYSIS OF THE RESULTS
This section presents the results of our study for the research ques-
tions in Section 3.3 using the methodology we describe in Sec-
tion 3.4. The data we use for our study is available online [4].

4.1 RQ1: Prevalence and impact of flaky tests
We begin our study by first investigating how prevalent flaky tests
are at Microsoft. From Tables 1 and 2, we see that for all projects
except for ProjD, the number of flaky tests ever found is only a small
fraction of the total number of tests these projects’ have during the
month of July 2019. However, just because a project contains many
or few flaky tests it does not necessarily mean that the developers’
workflow are often or rarely impacted by these tests. To understand
whether these flaky tests do impact developers’ workflow or not,
we also show in Table 1 the percentage of developers’ builds in
which the build would have failed due to flaky-test failures if Flakes
did not suppress such failures. One interesting thing to note here
is that even though some projects have lots of flaky tests, these
projects’ chance for builds to fail due to flaky-test failures are not
particularly high. For example, ProjD has 1453 flaky tests with over
half still not fixed, but flaky-test failures only affects 0.4% of its
builds over a 30-day period, while ProjE has only 176 flaky tests but
its builds are affected by flaky-test failures 35.7% of the time during
the same period. Our results demonstrate that, although flaky tests
may not always be very prevalent, the percentage of builds that are
impacted by flaky-test failures can still be quite substantial.

4.2 RQ2: Reproducibility of flaky-test failures
One of the biggest challenges developers have when debugging or
fixing flaky tests is to reproduce the flaky-test failure. To understand
how much of an imposition the reproducibility of flaky-test failures
may have on developers, we study the number of flaky tests in
which we can reproduce the flaky-test failures, and for the tests
where we can reproduce the flaky-test failure, we also study these
tests’ flaky-test-failure rates. For each of the flaky tests that we use
for this RQ, we run the test 500 times using the same configuration
of the machines and the version of code that Flakes detected the
test to be flaky on.

Table 3 summarizes our results. We use only a subset of our
dataset for this RQ, because these experiments are performed on
real proprietary projects, and we could not slow down the actual
testing environment of the other projects. Furthermore, not all flaky
tests can be run again due to problems compiling the version of
code that the test was found to be flaky on. The actual number
of flaky tests that we are able to run 500 times for is shown in
Column 2. Column 3 shows the number of tests that pass and fail
at least once, and Columns 4 and 5 show the average and median

Table 3: Statistics on reproducibility of flaky-test failures.

# Flaky # Flaky tests Average Median
Proj. tests 1+ pass & fail % fail % fail
ProjC 7 3 (43%) 0.2 0.2
ProjD 545 95 (17%) 36.8 29.4
ProjE 85 21 (25%) 9.7 0.6

Figure 2: Percentage rate of flaky-test failures.

(respectively) percentage rate of flaky-test failures for the flaky
tests that pass and fail at least once.

Column 2 of the Table 3 shows that flaky-test failures are repro-
ducible between 25% to 43% depending on the project. This finding
suggests that there are many flaky tests (up to 75% depending on
the project) where even with 500 runs, we cannot reproduce the
flaky-test failures of these tests. We also see from Column 4 that
the median percentage rate of flaky-test failures can be quite low,
particularly for ProjC and ProjE. This finding suggests that even
when flaky-test failures can be reproduced in 500 runs, only a small
number of failures are reproduced.

Figure 2 shows a box plot for the percentage rate of flaky-test
failures for the flaky tests that pass and fail at least once in each
project. We can see in this figure that the averages of both ProjD
and ProjE (Column 3 in Table 3) is quite high due to the percentage
rates of 23 outlier tests. To understand these outliers better, we
analyze them and find that 9 of these tests are likely Async Wait—
their names contain “Async”. Of these 9 tests, we have the pull
request, bug report, and code for 3 of the tests, and while studying
the categorization of flaky tests in RQ5 (Section 4.5), we do indeed
categorize these 3 tests as Async Wait tests.

4.3 RQ3: Reoccurrence of test flakiness
As Section 4.2 demonstrates, flaky-test failures can be quite diffi-
cult for developers to reproduce. This difficulty makes it so that
when developers are fixing flaky tests, they may just assume that
their changes fixed the flaky-test failure and they may not actually
confirm their assumption. For our study on the reoccurrence of
flaky tests, we use the All-Fixed dataset, which contains 1040 fixed
flaky tests. Of these 1040 flaky tests, we find that four flaky tests
are fixed more than once.
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If a flaky test is found to be flaky more than once, then it is
either because (1) the developers’ initial fix for the flakiness was
inadequate, or (2) the cause of flakiness was reintroduced. In either
case, sufficient time must be given for the developers to notice the
reoccurrence and for the test to run many times for it to fail builds
again. On average, the fixed flaky tests in our study have been fixed
for more than 86 days.

To understand why four flaky tests had to be fixed more than
once, we manually investigate the the commits, bug reports, and
the source and test code for each flaky test. We use commits instead
of pull requests because not all tests in the All-Fixed dataset have
pull requests, and all four tests that are fixed more than once do not
have pull requests. We obtain the commits for these tests by using
the time their bug reports closed and the version-control history
of the test code to find the likely commits for these tests. We then
confirm the likely commits with the developers of the four tests.

Our investigation into the four flaky tests that reoccurs more
than once reveals that all four reoccurrences are due to case (1)
when the developers’ initial fix was inadequate. For these flaky
tests, we can clearly see this being the case since the developers
described their initial fix as being inadequate in their latest fix. For
example, one developer described his latest fix as “Increase the wait
time for idle timeout test case to ensure that the receive loop exits
first. Previously, the wait time was 1 second more than the idle
timeout, which was cutting it too fine”. Overall, our investigation
into the reoccurrence of these four tests finds that developers have
the following important sentiments about fixing flaky tests.

(1) Developers are rarely able to reproduce the flaky-test failures
locally on their own machines or on servers.

(2) Consequent of (1), developers often resort tomakingmultiple
changes to fix test flakiness. These changes are often either

(a) made by trial-and-error guessing and the developers rely
on the frequent runs of the test on the servers to determine
whether the fix was adequate, or

(b) made simply to log additional information so that the
developers can know more about the flaky-test failure
before attempting a real fix.

4.4 RQ4: Runtime of flaky tests
To begin understanding why a test may be flaky, we study the
runtime of flaky tests. We study the runtime of flaky tests because
one may think that when flaky tests fail they would run faster than
their passing runs, since the test may have encountered a fault and
stopped early. However, flaky tests may also take longer in their
failing runs if they are flaky because they time out. In such cases,
the flaky test may wait for a callback that simply never happens,
indicating that these tests likely make asynchronous calls. Similar
to RQ2 (Section 4.2), we can use only a subset of our dataset for this
RQ since we could not slowdown the testing environment of the
other projects, and the version of code in which some flaky tests
were detected on no longer compiles.

Table 4 and Figure 3 shows the runtime in seconds of the flaky
tests that pass and fail at least once in 500 runs. Overall, we see that
for ProjE, the average and median runtime of passing runs is more
than failing runs. As for ProjC, we see that the average and median
runtime of passing runs is about the same as the failing runs. This

Table 4: Statistics on runtime (in seconds) of flaky tests.

Test Average Median
Proj. result # Runs runtime runtime
ProjC Pass 1,497 2.39 1.34
ProjC Fail 3 2.47 1.48
ProjD Pass 30,023 9.41 4.31
ProjD Fail 17,477 22.25 25.00
ProjE Pass 9,477 2.14 1.61
ProjE Fail 1,023 1.72 0.80

Figure 3: Runtime (in seconds) of flaky tests.

result suggests that for these two projects, their flaky tests are likely
unrelated to asynchronous method calls. On the other hand, we can
see that for ProjD, the average and median runtime of failing runs
is substantially more than the runtime of passing runs. This result
suggests that ProjD’s flaky tests are likely related to asynchronous
method calls. When we categorize flaky tests in RQ5, we do indeed
find that the majority of ProjD’s flaky tests are Async Wait tests.

4.5 RQ5: Categories of flaky-test fixes
To understand the categories of flaky-test fixes, we use the Pull-
Requests dataset, which contains 134 fixed flaky tests that all have
an associated pull request. We categorize these tests by studying
their pull requests, bug reports, and source and test code. Our study
focuses on two main questions; (1) where were the majority of
the changes located in (i.e., source or test code), and (2) what root
causes of flaky-test fixes do these pull requests belong to? Prior
studies [20, 25] on flaky tests found four kinds of location in which
fixes were located and also identified 12 root causes of flaky-test
fixes. Table 5 summarizes our findings and those of prior studies.

4.5.1 Location of flaky-test fixes. A prior study [20] on flaky tests
identified four kinds of locations for flaky-test fixes; (1) Source
code only, (2) Test code only, (3) Source and Test code, and (4)
Configuration. We adopt similar kinds of locations for our study.
The only change we make is that “Configuration” is changed to
“Other” instead, and a fix is considered to be “Other” if it includes
changing anything besides source or test code (e.g., test input data,
configuration).
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Table 5: Comparison of flaky-test-fix categories with previ-
ous studies [20, 25]. “-” denotes that such data was not made
available in their paper or otherwise.

Categories Our study [20] [25]

Location of fixes
Source only 1% 12% -
Test only 71% 73% >=61%
Test and Source 11% 11% -
Other 17% 4% -

Root cause of fixes
Async Wait 78% 45% 27%
Network 14% 6% 10%
Concurrency 8% 20% 17%
Resource Leak 5% 7% 3%
Randomness 5% 2% 3%
IO 5% 2% 22%
Time 4% 3% 3%
Floating Point Operations 2% 2% 2%
Test Order Dependency 0% 12% 12%
Unordered Collections 0% 1% 1%
Difficult to categorize 26% 20% -

Another flaky test study [25] investigated the categories of flaky
tests and how it relates to code smells. They did not present their
findings on how many fixes for flaky tests are in source code or
other files. Nevertheless, they found that at least 61% of flaky tests
could be fixed by manually fixing three code smells in the tests.

Overall, our findings confirm what prior studies [20, 25] found:
the majority of fixes (71%) for flaky tests are in the test code. Inter-
estingly, we find that, in 5% of the fixes, developers simply removed
the test. Our investigation shows that developers sometimes tem-
porarily removed the failing test or claimed that the test is for
functionality that is no longer supported. We also find that about
12% (1% + 11%) of fixes involve changes to source code. Overall, our
results show that ignoring flaky tests can be dangerous since they
do indicate faults in both source and test code.

4.5.2 Root causes of flaky-test fixes. When performing our study
on the categories of flaky-test fixes, we use the same categories as
the prior studies. We find that the most common category of fixes
is Async Wait, with 78% of the fixes belonging to that category.
Async Wait flaky tests make an asynchronous call and they do
not properly wait for the call to return. The second most common
category is Network with 14% of the fixes. Note that unlike the
prior studies, one fix of ours may belong to multiple categories.
Also, similar to a prior study [20], we find a number of fixes (26%)
that we could not categorize due to the large number of changes.
Specifically, in our study, these fixes modify an average of 785 files.
When we examine such fixes in detail, we see that they were a part
of a version upgrade or major refactoring.

Overall, our study differs from prior studies [20, 25] in two main
ways. (1) Both prior studies used flaky tests from open-source
projects, while we used flaky tests from proprietary projects at
Microsoft, and (2) we study the pull requests, bug reports, and

Table 6: Time given in days for developers to close flaky-test
or non-flaky-test related bug reports (BRs). ProjB is omitted
because its BRs are inaccessible for our study.

Flaky-test Non-flaky-test
Proj. # BRs Median Avg. # BRs Median Avg.
ProjA 2 5 5 238 3 17
ProjC 55 90 95 96 11 30
ProjD 759 6 11 1575 8 12
ProjE 43 14 39 55 10 13
ProjF 1 8 8 3 8 12
Overall 861 7 18 1967 7 13

source and test code of flaky tests, while one prior study [20] stud-
ied only commits and another prior study [25] studied only the test
code in one version of many projects. We believe these differences
between our studies is responsible for the minor differences in our
findings. One example of how our results differ from prior studies
is the percentage of fixes that are categorized as Test Order De-
pendency. This difference is likely because the way we run tests at
Microsoft heavily reduces the chance of Test Order Dependency
causing test flakiness. As explained in Section 2, CloudBuild always
runs tests in the same order, but this requirement is not true for the
open-source projects in prior studies2. Indeed, as Table 5 shows,
none of the flaky tests within the six projects we study are flaky
due to Test Order Dependency, even though this category is the
third most common category of flaky tests in open-source projects.

Even though the composition of our study differs from prior
studies, our findings on the location and common root causes of
fixes remain largely the same. Specifically, we all find that the
majority of flaky-test fixes are located in test code, but a nontrivial
amount of them do also involve source code (12%). Also, the most
common category of flaky-test fixes is Async Wait. Our findings
here suggest that solutions, like the one we propose in Section 4.7,
that can help reduce flaky-test failures of Async Wait tests would
highly help alleviate the negative impact of flaky tests.

4.6 RQ6: Time-before-fix of flaky tests
Prior work [7, 14, 15, 18, 23, 26] has highlighted how flaky tests
negatively impact developers’ software development process and
how important it is for developers to fix these flaky tests. To under-
stand whether developers at Microsoft understand the importance
of fixing flaky tests, we study how long developers take on average
to fix flaky tests. More specifically, we study the time developers
take on average to close the bug report linked to a flaky test. At Mi-
crosoft closing a bug report typically means that the bug has been
fixed. For our study, we start with the flaky tests in our All-Fixed
dataset, which consists of 1040 fixed flaky tests. For the 1040 flaky
tests in our dataset, we find that these flaky tests are linked to 861
bug reports. As we explain in Section 2, multiple flaky tests may be
linked to the same bug report if these flaky tests share similar error
messages (e.g., two tests are flaky due to the same setup method).

2Note that it is still possible for a flaky test to fail due to Test Order Dependency at
Microsoft, because the flaky test could fail when a new test is added and the new test
runs before the flaky test. Dually, a flaky test could start failing as well when a test
that was needed to run before the flaky test is removed from the test suite.
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Table 7: Categorization of Async Wait flaky-test fixes.

Categories Tests

Timing-related fix
Increase wait/timeout 21 (31%)
Add/improve callback 19 (28%)
Add/improve polling 7 (10%)

Timing-unrelated fix
Removing code 17 (25%)
Mocking async calls 10 (15%)
Difficult to categorize 20 (23%)

Table 6 shows the average and median number of days each
project takes to close flaky-test and non-flaky-test related bug re-
ports. Note that ProjB’s results are omitted from Table 6, because
as we explain in Section 3.2, all bug report and pull request infor-
mation for the flaky tests of ProjB are inaccessible for our study.
As we show in Table 6, developers take, on average, 18 days, with
a median of 7 days to close flaky-test related bug reports, while
they take on average 13 days, with a median of 7 days to close all
non-flaky-test related bug reports. The median time developers
take to close flaky-test and non-flaky-test related bug reports are
the same, suggesting that developers consider these bug reports to
be of equal importance. However, when we compare the average
time developers take to close flaky-test related bug reports to the
non-flaky-test ones, we see that flaky-test related ones take sub-
stantially longer than non-flaky-test ones (18 days for flaky-test
related ones compared to 13 days for non-flaky-test related ones).
As Table 6 shows, part of the reason why the average for flaky-test
related ones are higher is because the flaky-test related bug reports
in ProjC take much longer to close than the non-flaky-test ones.
When we compare the flaky-test and non-flaky-test related bug
reports per project, we see that ProjA’s and ProjF’s average time to
close non-flaky-test related bug reports are actually more than the
time to close flaky-test related ones. On the contrary, we also see
that ProjC’s and ProjE’s average time to close flaky-test related bug
reports are substantially more than the time to close non-flaky-test
related ones. Our findings suggest that although there has been
a substantial amount of work from both industry and academia
on flaky tests, it can still be important to communicate to some
developers the importance of fixing flaky tests. Following our study,
we personally approached a number of teams (i.e., those from ProjC
and ProjE) to better communicate to them this importance.

4.7 RQ7: Developers’ effectiveness on
identifying and fixing Async Wait tests

Based on the prevalence of Async Wait tests as described in RQ5
(Section 4.5) and in prior studies on flaky tests [20, 25], we proceed
to study developers’ effectiveness in identifying and fixing Async
Wait tests at Microsoft. To study this RQ we first categorize the
Async Wait related flaky-test fixes in our dataset. In total from our
work in Section 4.5, we find that there are 87 flaky tests that have
fixes related to asynchronous method calls.

Figure 4: Overview of how the Flakiness and Time Balancer
(FaTB) works.

Prior work [10] on asynchronous tests proposed three main ways
one should test asynchronous code. (1) Create a “synchronous” in-
terface between tests and asynchronous code, (2) implement call-
backs on all asynchronous code, and (3) check, or poll, frequently
on whether an asynchronous service is complete. When we study
the Async Wait flaky-test fixes (or Async Wait fixes for short) in our
dataset, we find that there are no cases in which (1) was done by
developers. Our results are likely because (1) requires substantial
effort from developers to create and maintain such interfaces. On
the other hand, we do see developers using both callbacks (28% of
Async Wait fixes) and polling (10% of Async Wait fixes) to fix their
Async Wait tests. Beyond the three categories laid out in this prior
study, we also find three different categories for these Async Wait
fixes. Specifically, we find that the most common category of fix
(31% of Async Wait fixes) involves simply increasing the wait time
or timeout of asynchronous method calls. The other two categories
are to simply remove code related to the flaky-test failure (25% of
Async Wait fixes) or to mock the asynchronous calls (15% of Async
Wait fixes). Lastly, we find that 23% of the Async Wait fixes are
difficult to categorize, since they involve changes to asynchronous
method calls, but we cannot identify any particular categories for
these fixes. Table 7 summarizes the findings from our categoriza-
tion. Note that the fix for each test may be categorized into one or
more categories.

4.7.1 Evaluating and improving developers’ Async Wait fixes. With
the majority of the Async Wait fixes involve simply increasing the
wait time or timeout (time value for short) of an asynchronous call,
we proceed to study how well these time values set by developers
are at reducing flaky-test failures and how these time values affect
the runtime of these flaky tests. To evaluate and improve develop-
ers’ Async Wait fixes, we propose the Flakiness and Time Balancer
(FaTB). FaTB first finds the flaky-test-failure rate of the test using
the developers’ fix. Once FaTB obtains the rate associated with the
developers’ fix, it then increases or decreases the time value and
again measures the flaky-test-failure rate associated with the new
time value. Figure 4 shows an overview for what FaTB does.

Depending on whether the test is still flaky with the new time
value, FaTB will use that information to either increase or decrease
the next time value to try. On a high-level, to lower the time value,
FaTB will first use the time value between the developer’s fix time
and the time set before the fix. For an example, if the developer’s
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Figure 5: How FaTB chooses the next time value an Async
Wait test should try.

fix time was 1000 milliseconds (ms) and the time value before their
fix was 500 ms, then FaTB would first set the time value to be 750
ms. If lowering the time value does not cause flaky-test failures
in some number of runs (100 by default and for our experiments),
then FaTB will take the time between our current time value and
zero (e.g., 375 ms). If lowering the time value does cause flaky-test
failures, then the next time value will be between the current value
and the developer’s fix time (e.g., 875 ms).

FaTB outputs the observed flaky-test-failure rate and average
test runtime for each time value (e.g., [time value: 375ms, fails: 1%,
runtime: 875ms], [time value: 1000ms, fails 0%, runtime: 1500ms]).
As a post-processing step, FaTB will also remove time values that
have the same flaky-test-failure rate, choosing to output only the
minimum time value and runtime for all observed flaky-test-failure
rates. This output enables developers to finely balance the trade-off
of their tests’ runtime and flaky-test-failure rate. The logic FaTB
uses to generate different time values is shown in Figure 5. FaTB
generates time values specific to the machine on which FaTB is
run on. To ensure that these generated time values perform well on
different machines, developers can run small benchmarks on these
different machines (e.g., their own development machine) and the
machines on which they run FaTB (e.g., a development server). The
difference in the machines’ performance on the small benchmarks
can then be used to scale the generated time values as needed.

4.7.2 Results. To evaluate FaTB, we randomly sample five tests
from the 21 tests whose fix was to increase the wait/timeout. The
results from us applying FaTB on these five flaky tests are shown
in Table 8. Specifically, we use FaTB to generate four time values
for each test, and Version 0 represents the value the developers
proposed to fix the flaky tests with. We run the test 100 times for
each version to measure that version’s flaky-test-failure rate. Due
to confidentiality reasons, the names of the tests are anonymized.

We apply Step 2 of FaTB four times on five flaky tests and find
that for four of the flaky tests, even when the time value is set to
be substantially lower than the value set by the developers to fix
the test, the tests’ flaky-test-failure rates appear to be unaffected.
More specifically, for Test2, Test3, Test4, and Test5, we see 0% flaky-
test-failure rates even when we substantially decrease the time

Table 8: Statistics on the results produced by FaTB when we
apply it to five versions of five Async Wait tests. Units for
Time value depend on the test. Runtime is in seconds. Pre-
fix value is the value set before the developer’s fix. Version
0’s time value is the value set after the developer’s fix.

Flaky Time Average Median
test Version value % Fails runtime runtime
Test1 0 600 0 1.39 1.37
(Pre- 1 450 0 1.22 1.22
fix 2 225 73 1.07 1.08
value: 3 413 0 1.19 1.19
300) 4 206 82 1.10 1.07
Test2 0 1,000 0 1.75 1.75
(Pre- 1 800 0 1.61 1.54
fix 2 400 0 1.14 1.13
value: 3 200 0 0.96 0.94
600) 4 100 0 0.84 0.84
Test3 0 600 0 1.67 1.66
(Pre- 1 300 0 1.36 1.36
fix 2 150 0 1.21 1.21
value: 3 75 0 1.14 1.14
0) 4 37 0 1.09 1.08
Test4 0 100 0 8.08 8.03
(Pre- 1 50 0 7.57 7.49
fix 2 25 0 7.43 7.38
value: 3 12 0 7.39 7.30
0) 4 6 0 7.20 7.10
Test5 0 150 0 0.18 0.18
(Pre- 1 83 0 0.11 0.11
fix 2 41 0 0.07 0.07
value: 3 20 0 0.05 0.05
15) 4 10 0 0.04 0.04

value set by the developers. Our finding here further echos the
sentiments that we find about fixing flaky tests in Section 4.3. More
specifically, we see that the fix employed by the developers for
these flaky tests were likely educated guesses that turn out to be
unrelated to the flaky-test failures of the test. This finding here is
largely related to how truly understanding the root cause of a flaky
test is often very complicated. For these four flaky tests, neither we
nor the developers were able to actually determine the root cause
for the flaky test, and, consequently, neither we nor they are able
to fix the flaky test. Future studies on the root causes of flaky tests
should be more cautious when basing their results on the changes
by developers.

Besides the four flaky tests that do not encounter any flaky-test
failures, we see one example (Test1) that does exhibit flaky-test
failures once we lower the wait/timeout value of the test. For Test1,
we can see that once the value goes lower than the value before the
developer fixed the flaky test (300), we start observing a high flaky-
test-failure rate (e.g., when set to 225, we see a 73% flaky-test-failure
rate). However, once FaTB sets the value to be 413, we see a 0%
flaky-test-failure rate. When we compare the flaky-test-failure rate
with the developer’s fix (time value for Version 0) to the flaky-test-
failure rate with the time value for Version 3, we see that this flaky
test can obtain the same flaky-test-failure rate when the time value
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is set to 600 or 413. However, the lower time value (413) enables this
test’s average runtime to be about 14% faster than the higher value
(600). Similarly, Test2, Test3, Test4, and Test5 do not encounter any
flaky-test failures on all versions, and their average runtime can
also be faster by about 52%, 35%, 11%, and 78%, respectively.

It is surprising that the developers of Test2, Test3, Test4, and
Test5 would increase the time values of these tests when the values
do not appear to empirically affect the tests’ flaky-test-failure rate.
Our results suggest that there are perhaps some other changes in
these pull requests that actually fixes the flaky tests, and that the
changes in time values were not intended as the fix. To understand
why the developers may have made these time value changes, we
study the pull request messages of the fixes. We find that for all
four of the flaky tests besides Test4, the messages all say that they
are increasing the time values as a fix to the flakiness. For exam-
ple, Test3’s message says “Fix is to wait 2 * X time”. On the other
hand, Test4’s message says “Fix flaky test” and then explains how
some refactoring was done to some asynchronous code. From these
pull request messages, we see that at least for Test2, Test3, and
Test5, these developers are purposefully trying to fix their Async
Wait tests by increasing time values. Note that Microsoft does not
encourage developers to fix their Async Wait tests by increasing
the time value. However, since regulating how developers fix their
code would be very costly to do, we do plan to use FaTB to help
developers at Microsoft. With the prevalence of Async Wait tests
and how developers prefer to fix these tests by increasing the time
value, we suspect that there are many other tests whose collective
reduction in test runtime can substantially lessen the time develop-
ers spend waiting for test results, machine resources needed to run
these tests, and amount of flaky-test failures developers debug.

5 THREATS TO VALIDITY
Our work contains many of the common threats typically found
in empirical studies. In this section we focus on the issues that are
more specific to our study.
Subjects of our study. Our study consists of just six projects at
Microsoft, and our findings from studying these six projects may
not generalize to other projects or companies. To avoid any bias in
the selection of our projects, we include all projects using Flakes in
our study. As we describe in Section 2, there are a total of 11 projects
using Flakes, and of these 11 projects, the six projects we study are
the ones where Flakes found at least one flaky test. The projects
we study also greatly vary in activity (e.g., number of builds per
month) and in purpose (e.g., Database, Search).

Aside from the projects used in our study, our decision to study
pull requests, bug reports, and source and test code to understand
the fixes of flaky tests in Section 4.5 may also be a threat. Prior
studies [20, 25] on flaky tests have used either the commits or just
the test code to understand the characteristics of flaky tests. For our
study, we use pull requests, which consists of one or more commits,
because we believe that pull requests represent a more complete set
of changes made by the developers. Unlike commits, changes from
pull requests generally build without errors and have been tested
locally to ensure they do not fail any tests. Compared against prior
work, one prior study [20] did not run the tests and observed them
to be flaky like we do. Another prior study [25] did run the tests,

but they run the tests only 10 runs instead of 500 runs like we do,
and they did not study changes outside of the test code (i.e., bug
reports or source code).
Metrics used in our study. The metrics we use in our study poses
a potential threat to our findings and results. For example, we use
the time a bug report is opened till when it is closed to understand
developers’ sense of urgency in fixing flaky tests. In reality, a devel-
oper taking a short or long amount of time to fix flaky tests could
be an indicator of how easy or difficult the fix was and would be
irrelevant to the developer’s sense of urgency. The timing we report
may also be inaccurate, since different teams work differently and
some teams may close bugs as soon as they are fixed, while other
teams may only close them at their next team meeting.
Flaky tests used in our study. Flaky tests, by definition, may pass
or fail on the same code. To identify the flaky tests used in our study,
we rely on Flakes, which simply reruns failing tests once to see
whether it would pass on the rerun. Since there are no guarantees
that the rerun would pass if the test is indeed flaky, Flakes may
potentially contain many false negatives, in which a test that is
flaky is undetected. Nevertheless, Flakes contains no false positives,
meaning that all flaky tests detected by Flakes must indeed be flaky.
Due to this threat, the number of flaky tests we report in our study
is simply the minimal number of flaky tests in our projects.

Our findings in regards to the runtime and reproducibility of
flaky tests identifies that there are some patterns. However, more
runs of the flaky tests may change our findings. To mitigate this
threat, we choose to run each test a high number of runs, specifically
500 runs. Running the test 500 runs to identify flaky-test failures is
substantially more than a prior study on flaky tests [25], which ran
the tests for 10 runs.
Findings from manual inspection. Certain research questions
in our study requires us to manually inspect the information of
flaky tests. Specifically, for categorizing flaky tests and categorizing
Async Wait tests, we minimize the occurrence of miscategorization
by having more than one author inspect every pull request, every
bug report, and all source and test code, and we discussed our
categorizations until everyone agrees.

6 RELATEDWORK
Studying flaky tests. Luo et al. [20] performed the first exten-
sive study on flaky tests. They manually investigated 201 commits
from 51 open-source projects, finding that the primary causes for
flakiness are (1) Async Wait, (2) Concurrency, including atomicity
violation, data races and deadlocks, and (3) Test Order Dependency.
Palomba and Zaidman [25] conducted a similar study on flaky tests
in open-source projects. Using code smell detectors, they also find
that Async Wait is the most common category of flaky tests and
that 61% of flaky test fixes can be attributed to three code smells
specific to tests. In comparison to both of these studies, our study is
based on flaky tests at Microsoft, and we study flaky tests using pull
requests where each test is confirmed to be flaky by our infrastruc-
ture. Although, our setup and datasets differ, we confirm that all
three studies have similar findings in that Async Wait is the most
common category of flaky tests and that most flaky-test fixes are in
the test code. Zhang et al. [31] reported that test suites can suffer
from Test Order Dependency where test outcomes can be affected
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by the order in which the tests are run. Lam et al. [19] conducted
similar work as them and found 422 flaky tests in 82 projects. Of
their dataset, 50.5% of the flaky tests are due to Test Order Depen-
dency, while the remaining are not Test Order Dependency. In our
case, CloudBuild always runs tests of a test suite in the same order,
therefore we do not find any Test Order Dependency tests. Thorve
et al. [29] found additional root causes for flaky tests when studying
flaky-test commits in Android. Similar to Luo et al. [20], their study
used commits as opposed to the pull requests we use in our study.
Eck et al. [7] studied developers’ perception of flaky tests and had
developers categorize the patches that developers claim to have
fixed flaky tests. Similarly, we conduct a study on the pull requests
that developers claim to have fixed flaky tests and find that some of
these pull requests do not actually fix flaky tests. As more studies
are conducted on the fixes of flaky tests, future work should better
explore how changes by developers should be used and how one
can confirm whether these changes do indeed fix flaky tests.

Reproducibility of flaky tests. Luo et al. [20]’s study was the
first to report that reproducing flaky-test failures is difficult. Since
then, there has been numerous reports from others on the likelihood
to reproduce flaky-test failures. Lam et al. [18] and Labuschagne
et al. [17] found that on average, 27.4% and 12.8%, respectively, of
builds would fail because of flaky tests. Gao et al. [12] also observed
that it is difficult to reliably reproduce results from tests where
a user interacts with a system. Palomba and Zaidman [25] found
that 45% of all tests they analyzed were flaky. Compared to our
work, they found these tests to be flaky using only 10 runs, while
our experiments use 500 runs. Our study on the reproducibility of
flaky tests finds that the likelihood to reproduce flaky-test failures
can range between 17% to 43% depending on the project. Although
studies [26] have shown that ignoring flaky-test failures can lead to
more crashes in production code, developers do ignore flaky tests.
Thorve et al. [29] examined 77 commits pertaining to flaky tests
from 29 Android projects, and they found that 13% of the commits
simply skipped or removed flaky tests. When we examine the pull
requests in our study, we find that developers removed the test to
fix 5% of the flaky tests.

Reducing and removing flaky-test failures.Muşlu et al. [24]
proposed a technique to run tests in separate processes, and Bell
and Kaiser [5] proposed a technique to run tests in the same process
as two different means to remove flaky-test failures from Test Order
Dependency flaky tests. Shi et al. [28] proposed iFixFlakies, a tool to
automatically fix Test Order Dependency flaky tests. At Microsoft,
we rarely have Test Order Dependency flaky tests; instead they are
mainly Async Wait tests. Our proposed solution, FaTB helps reduce
the flaky-test-failure rate of AsyncWait tests. Bell et al. [6] proposed
DEFLAKER, a technique that monitors the code coverage of tests
in a previous version of code and uses the coverage information to
inform developers whether a test failure is due to recent changes
in future versions of code. Unlike DEFLAKER, FaTB directly helps
developers prevent flaky-test failures altogether. Fowler [10] pro-
posed three main ways in testing asynchronous code; (1) creating
a synchronous interface between tests and asynchronous code, (2)
implementing callbacks on all asynchronous code, and (3) checking
frequently on whether an asynchronous service is complete. The
implementation of (1) and (2) requires substantial effort from de-
velopers to setup and maintain. The implementation of (2) and (3)

both still require the developers to provide some timeout value for
the asynchronous call which may never complete. Our proposed so-
lution in RQ7, FaTB, can help the developers systematically derive
a timeout value that minimizes the runtime and flaky-test-failure
rate. Jagannath et al. [16] proposed IMUnit, a new language that
allows developers to specify the execution flow of tests that make
asynchronous method calls. Similarly, Elmas et al. [8] proposed
CONCURRIT, a scripting language that allows developers to con-
trol the scheduling of threads to find or reproduce concurrency bugs.
Other work [21, 22, 30] proposed tools that help enforce policies
specified by the developers. These policies dictate the scheduling
in which threads run, and developers have to manually write these
policies. Unlike these prior work, FaTB does not require the de-
velopers to provide additional information (e.g., policies in which
threads should execute), or write their code differently. Instead,
FaTB assists the developers by systematically deriving the time a
test should wait for asynchronous calls.

7 CONCLUSION
Flaky tests are a major problem in both industry and research.
Although flaky tests are the focus of several existing studies, none
of them study (1) the reoccurrence, runtimes, and time-before-fix
of flaky tests, and (2) flaky tests in-depth on proprietary projects.
To fill this knowledge gap, we study the lifecycle of flaky tests on
six large-scale, diverse proprietary projects at Microsoft. Our study
of prevalence and reproducibility reveals the substantial negative
impact that flaky tests have on developers at Microsoft, while our
study on the characteristics, categories, and resolution of flaky tests
confirms that some of the findings from studies on open-source
projects also hold for proprietary projects. For example, similar to
two prior studies on flaky tests in open-source projects, we also find
that the most common category of flaky tests in proprietary projects
is the Async Wait category. To help alleviate the problem of Async
Wait flaky tests, we propose the Flakiness and Time Balancer (FaTB).
FaTB identifies the method calls in the test code that are related to
timeouts or thread waits, and then it calculates the flaky-test-failure
rate of the flaky test. Based on the current flaky-test-failure rate,
FaTB then tries various time values and outputs the minimum time
values that developers should use depending on their tolerance for
flaky-test failures. Our evaluation of FaTB on five versions each of
five flaky tests shows that tests can run up to 78% faster and still
achieve the same flaky-test-failure rate as before. We also find that
the developers thought they “fixed” the flaky tests by increasing
some time values in them, but our empirical experiments show that
these time values actually have no effect on the flaky-test-failure
rates. Our finding suggests that what developers claim as “fixes” for
flaky tests in bug reports, commit messages, etc. can be unreliable,
and future work should be more cautious when basing their results
on changes that developers claim to be “fixes”.
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