
Automated Test Input Generation for Android: Are We
Really There Yet in an Industrial Case?

Xia Zeng1 Dengfeng Li2 Wujie Zheng1 Fan Xia1 Yuetang Deng1 Wing Lam2 Wei Yang2 Tao Xie2

1Tencent, Inc., China
2University of Illinois at Urbana-Champaign, USA

1{xiazeng,wujiezheng,frankxia,yuetangdeng}@tencent.com, 2{dli46,winglam2,weiyang3,taoxie}@illinois.edu

ABSTRACT
Given the ever increasing number of research tools to auto-
matically generate inputs to test Android applications (or
simply apps), researchers recently asked the question “Are
we there yet?” (in terms of the practicality of the tools).
By conducting an empirical study of the various tools, the
researchers found that Monkey (the most widely used tool
of this category in industrial settings) outperformed all of
the research tools in the study. In this paper, we present
two significant extensions of that study. First, we conduct
the first industrial case study of applying Monkey against
WeChat, a popular messenger app with over 762 million
monthly active users, and report the empirical findings on
Monkey’s limitations in an industrial setting. Second, we de-
velop a new approach to address major limitations of Mon-
key and accomplish substantial code-coverage improvements
over Monkey. We conclude the paper with empirical insights
for future enhancements to both Monkey and our approach.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Android, GUI testing, test generation, code coverage

1. INTRODUCTION
Given the ever increasing abundance of tools [7, 3, 4, 5, 8,

10] to automatically generate inputs to test Android apps,
especially from the research community, recently Choudhary
et al. [6] asked the question “Are we there yet?” in terms
of having good-enough tools for the concept to be used in
practice. They conducted an empirical study on publicly
available tools that can automatically generate inputs to test
Android apps. The study was intended to assess these tools
(and their underlying techniques) to investigate which tools
may be better suited under which contexts (e.g., app types),
to understand how existing tools can be improved and what

new tools should be developed. In addition to six research
tools from the academia, the study also considered the open
source tool from Google, Monkey1, which is the most widely
used tool in industrial settings, due to its applicability to a
variety of application settings, e.g., ease of use and compat-
ibility with different Android platforms.

Despite forming valuable contributions as a starting point
for the community, the study conducted by Choudhary et
al. [6] can be further extended in two important ways. First,
their study considered relatively simplistic, open-source apps
as the apps under test (partly because some of the tools un-
der comparison require the source code of the apps under
test). No industrial-strength Android app was included in
the study. Second, although the study reported that Mon-
key (achieving less than 50% code coverage) outperformed
all five research tools, they did not empirically demonstrate
whether and how new (hypothesized) techniques can further
improve the code coverage achieved by Monkey.

Accomplishing these two extensions is challenging. For
the first extension, there are many difficulties to empirically
study tools such as Monkey on popular industrial-strength
Android apps (e.g., the Facebook app). For example, most
(if not all) popular Android apps are close-source apps, but
there is no robust code-coverage measurement tool on in-
strumenting Android apps without requiring access to the
apps’ source code. A natural solution to address this issue is
to collaborate with the vendors of these industrial-strength
Android apps (who have access to the source code) to ap-
ply a code-coverage measurement tool such as Emma [2].
However, based on our experiences, applying Emma on an
industrial-strength Android app can cause Emma to trigger
a 64K Reference Limit exception [1] during instrumentation.
As for the second extension, based on our empirical obser-
vations of the limitations of existing tools, one can hypoth-
esize various techniques to address these limitations. How-
ever, the high complexity of industrial-strength apps often
requires a careful design or configuration of these techniques
in order to empirically demonstrate their benefits.

To accomplish the first extension, we first study the ef-
fectiveness and limitations of Monkey to test WeChat2, a
highly popular messenger app (especially among users of
Chinese origins) released by Tencent, Inc. WeChat is one
of the most popular messenger apps in the world with over
762 million monthly active users3. In fact, WeChat has

1https://developer.android.com/studio/test/monkey.html
2https://www.wechat.com
3http://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps/

evolved to be well beyond a messenger app: it also supports
many functionalities such as banking, shopping, and serves
as a platform for third parties to develop their own apps4.

Our results from applying Monkey on WeChat reveal ma-
jor limitations of Monkey’s random exploration strategy.
Due to Monkey’s random nature, we initially expected that
Monkey would not be able to achieve high coverage of code
lines (involving likely complex logic) deep within an activity.
Indeed, our study results confirm such expectation. Monkey
covers only 19.5% of the code lines in WeChat. At the same
time, we expected that Monkey would be able to achieve a
much higher activity coverage than line coverage (an activ-
ity corresponds to a UI screen and reflects a coarse-grained
app feature). The reason for such expectation is that we
can make a rough analogy between activity coverage and
class coverage, and class coverage is generally much higher
than line coverage (covering a class is typically much easier
than covering a particular line in a class). However, Monkey
actually achieves surprisingly low activity coverage (10.3%).
Furthermore, we observe that the majority of the events gen-
erated by Monkey are redundant events (e.g., events repeat-
edly exercising no code behavior or exercising previously-
exercised code behaviors). The main reasons for such ob-
servation are two-fold: (1) widget obliviousness: Monkey is
oblivious to the locations of widgets on a screen; and (2)
state obliviousness: Monkey is oblivious to the GUI states
before or after an event, and thus cannot distinguish a state-
changing event from a state-preserving event.

To accomplish the second extension, we develop a new ap-
proach that inherits the high applicability of Monkey while
addressing its empirically-observed limitations. Our empir-
ical results show that our new approach can achieve 30.6%
line coverage (vs. 19.5% line coverage by Monkey) and
28.7% activity coverage (vs. 10.3% activity coverage by
Monkey). Such improvements over Monkey are not only
statistically substantial but also practically substantial given
that the state-of-the-art research tools with advanced tech-
niques cannot even outperform Monkey, as shown by Choud-
hary et al. [6].

More specifically, our approach leverages the UIAutoma-
tor5 framework of Android to obtain all of the widgets that
are enabled on a particular activity. With such information,
our approach generates events exactly on the location of such
widgets. Furthermore, our approach allows users to specify
a weight for each event type on widgets. By allowing users
to specify weights, our approach is able to perform weighted
random selection to reduce redundant events. Additionally,
our approach focuses on generating state-changing events by
guiding the exploration to prefer widgets with higher likeli-
hood to cause GUI-state changes.

This paper makes the following main contributions:

• The first industrial case study of applying Monkey on
WeChat, a popular messenger app with over 762 mil-
lion monthly active users, and empirical findings on
Monkey’s limitations in an industrial setting.
• A new approach that addresses the major limitations

of Monkey and accomplishes substantial code-coverage
improvements over Monkey, along with empirical in-
sights for future enhancements of both Monkey and
our approach.

4http://a16z.com/2015/08/06/wechat-china-mobile-first/
5https://developer.android.com/topic/libraries/
testing-support-library/index.html

Table 1: WeChat codebase statistics.

of executable Java code lines: 610,629
of Java classes: 8,425
of Android activities: 607
of C or C++ code lines: ∼40,000

2. BACKGROUND - WECHAT
Besides serving as a messenger app and social network,

WeChat also contains additional functionalities found in apps
such as PayPal, Yelp, Facebook, Uber, Amazon, etc. WeChat
has even gradually evolved to be a platform for third par-
ties to develop their official accounts (e.g., light-weighted
apps) running inside WeChat. Since WeChat contains many
complicated features, it inevitably has a large code base as
presented in Table 1 based on WeChat version 6.3.15.

When testing the WeChat Android client, we focus on
Java code coverage, because the majority of the app’s logic is
implemented in Java, and its Java code is frequently changed
between different versions of WeChat. We develop our own
tool for measuring Java code coverage for two main rea-
sons. First, it is desirable for us to have a tool that we
can customize for various advanced testing features, such
as measuring and comparing coverage information on only
changed portions of the code between revisions. Second, ex-
isting coverage measurement tools such as Emma [2] are not
able to handle large code bases such as WeChat’s. In par-
ticular, the instrumentation performed by Emma (adding
two methods into each class of the app under measurement)
causes industrial-strength apps such as WeChat to reach the
64K-method limit after instrumentation.

Our coverage measurement tool collects (1) line coverage:
the number of executed Java lines over the total number of
executable Java lines; (2) activity coverage: the number of
Android activities visited over the total number of Android
activities.

3. STUDYING MONKEY ON WECHAT
Although there are many research tools [7, 3, 4, 5, 8, 10]

to automatically generate inputs to test Android apps, none
of these tools (including the six research tools studied by
Choudhary et al. [6]) is usable on WeChat due to various
applicability issues. In our study on testing WeChat, we
focus on applying only Monkey. In particular, we set up
Monkey to fire random events every 500 milliseconds such
that it is long enough for WeChat to react and reach a stable
state. We test WeChat version 6.3.15 on a Nexus 5 with
Android OS version 5.1.1.

We run Monkey for 5 times independently. Each time we
run Monkey for 18 hours with newly registered accounts.
Most mobile apps require a correct user name and password
(to be supplied in the correct fields) for the user to access
the core functionalities of the apps. To enable Monkey to
explore the functionalities of WeChat before and after login,
we first configure Monkey to run for 2 hours without login.
We then manually log in with a newly registered account
for WeChat and then further run Monkey on WeChat for 16
hours.

In the default configuration, Monkey conducts system-
wide exploration (e.g., it can open and explore all apps
installed in the system). Such an exploration strategy re-
duces Monkey’s effectiveness on WeChat, because most ex-
plorations conducted on other apps will not improve WeChat’s
activity or line coverage. Therefore, we configure Monkey to
explore only apps whose package name is the same as the

0

0.5

1

1.5

2

2.5

3

3.5
Ex
pl
or
at
io
n	T

im
e	(
ho
ur
s)

Figure 1: Top 20 activities based on the amount of exploration time that Monkey spends.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Co
ve
ra
ge

Pe
rc
en

ta
ge

Exploration	Time	(hours)

Line	Coverage	- Our	approach
Activity	Coverage	- Our	approach
Line	Coverage	- Monkey
Activity	Coverage	- Monkey

Manually login

Figure 2: Line and activity coverage achieved by
Monkey and our new approach.

WeChat package name. To understand the effects of inter-
app communication, we conduct a manual study described
in Section 5. Furthermore, we pin WeChat as the front win-
dow, which is supported by Android version 5.0 or higher,
to prevent Monkey from exploring the system’s StatusBar,
which can be used to access system notification messages.

3.1 Coverage Results
The lower two curves in Figure 2 shows the average line

and activity coverage across all experiments achieved by
Monkey. By the end of 18 hours, Monkey achieves on aver-
age 19.5% line coverage and 10.3% activity coverage.

We expected activity coverage to be higher than line cov-
erage, because an activity can be thought of as a class, and
class coverage is generally higher than line coverage. How-
ever, the achieved activity coverage is less than the line cov-
erage.

Finding 1: Monkey achieves both low line coverage
and low activity coverage.

It is natural to expect that line coverage would keep in-
creasing when activity coverage reaches its saturation point,
because revisiting an explored activity could enhance the
chance of exploring additional code logic that was not ex-
plored in previous visits of the same activity. However, the
results in Figure 2 contradict such expectation because the
line coverage remains constant when the activity coverage
remains constant.

Finding 2: Line coverage achieved by Monkey does
not increase after activity coverage achieved by Monkey
reaches its saturation point.

(a) contactLabelEdit activity (b) selectContactUI activity

Figure 3: Top 2 activities based on the amount of
exploration time that Monkey spends.

3.2 Discussion
During Monkey’s exploration, we repeatedly observe Mon-

key exploring the same screens for a long time. To further
analyze this issue, we present the average time spent on each
activity across all experiments as shown in Figure 1. The
top 4 activities explored by Monkey constitutes 43.3% (7.8
out of 18.0 hours) of its exploration time.

Finding 3: Monkey allocates a lopsided distribution of
exploration time on each activity.

After closely examining top activities based on the amount
of exploration time that Monkey spends, we identify the
following two root causes that limit Monkey’s exploration
effectiveness.

Widget obliviousness. Since Monkey triggers events
on random coordinates of a screen and has no knowledge of
the location of widgets on a screen, Monkey generates many
effect-free events (e.g., events that do not trigger any func-
tionality of WeChat and do not contribute to new line or ac-
tivity coverage). For example, Figure 3b shows the activity
that consumes the most exploration time. Unless Monkey
generates events with coordinates at the three small-sized
buttons (as marked with red rectangles), Monkey will con-
tinue to stay within this activity.

State obliviousness. We observe that Monkey explores
the same two activities repeatedly without contributing to
new code coverage. More specifically, the cycle begins with
the activity in Figure 3a. Monkey clicks on the “+” button

Algorithm 1: Our exploration strategy.

Require: α← assigned weight for event type on each widget
1: procedure exploreActivity
2: widgets← all widgets on current activity
3: time← time spent on current activity
4: selectedWidget← ∅
5: if time > totalT ime ∗ 0.4 then
6: Click RETURN button
7: else
8: unVisitedSet← getUnVistedSet(widgets)
9: newActSet← getNewActSet(widgets)

10: refreshSet← getFreshSet(widgets)
11: if unVisitedSet 6= ∅ then
12: selectedWidget← random from unVisitedSet
13: else if newActSet 6= ∅ then
14: selectedWidget← random from newActSet
15: else if refreshSet 6= ∅ then
16: selectedWidget← random from refreshSet

17: if selectedWidget 6= ∅ then
18: chosenEvent← random(α, selectedWidget)
19: Fire chosenEvent
20: Update time, totalTime, widgets
21: else
22: Click RETURN button

in this figure (marked with the blue rectangle) and navi-
gates to the selectContactUI activity (Figure 3b). From the
selectContactUI activity, Monkey eventually clicks the back
arrow button to return to the contactLabelEditUI activity
and the cycle restarts. Such repeated actions result in re-
dundant explorations and occupy much of the exploration
time.

4. ENHANCING MONKEY
To inherit the advantages of Monkey while addressing its

two major limitations discussed in the preceding section, we
develop a new approach incorporating two main strategies.

4.1 New Approach
Algorithm 1 shows the key algorithm of our approach. In

particular, our approach incorporates two main strategies:
widget awareness and state awareness with guided explo-
ration.

Widget awareness. To alleviate Monkey’s limitation of
widget obliviousness, we leverage the UIAutomator frame-
work of Android to obtain all the events (e.g., short or long
clicks) supported by each widget and perform only those
events on the widgets. Our approach also allow users to
specify a weight for each event type on each widget type.
This mechanism allows our approach to use such prede-
fined weights to perform weighted random selection to re-
duce many redundant events, as shown in Line 18 of Algo-
rithm 1. For example, for the widget type of TextView, a
user can assign 0.8 to a short click event and 0.2 to a long
click event. With such predefined weights, when a TextView
is selected, there is an 80% chance that our approach will
perform a short click on it.

State awareness with guided exploration. To avoid
repeatedly performing events without contributing to new
line coverage, our approach focuses on generating events
that may change the state. Our approach considers two
states to be equivalent if the two states represent the same

activity with the same number and type of widgets (the at-
tribute values of the widgets can be different, e.g., the text
in a TextView can be different). In particular, our approach
represents a state as the mapping of an activity to the num-
ber and type of widgets that belong to this activity. Fur-
thermore, our approach guides the exploration by selecting
widgets with a higher likelihood to change the state. Our
approach works by categorizing widgets on an activity into
four categories:

• UnVisitedSet: Widgets that have not been visited be-
fore (typically events on these widgets have a higher
chance of producing a new GUI state).
• NewActSet: Widgets that have been visited and at

least one event enabled on these widgets caused our
approach to go to another activity.
• RefreshSet: Widgets that have been visited before and

none of the events on these widgets caused our ap-
proach to go to another activity but events on these
widgets have created new states.
• DeadSet: Widgets that have been visited before and do

not fall into the categories of NewActSet or RefreshSet.

After categorizing widgets, our approach selects widgets
to explore based on the following priority: UnV isitedSet >
NewActSet > RefreshSet > DeadSet. For each of the cat-
egories, our approach randomly picks a widget and performs
weighted event selection as described earlier. If all widgets
on the current activity are in the DeadSet, our approach will
stop exploring the current activity, as shown in Line 22.

To further even the exploration time among activities, our
approach records the time already spent on the current ac-
tivity. If the total time performed on the current activity
exceeds 40% of the total exploration time, our approach will
trigger the “RETURN” button and go back to the previous
activity, as shown in Line 6.

4.2 Coverage Results and Comparison
The tool that we develop for our approach supports auto-

matic login with account information provided by the user
of the tool. Thus, after our tool is started, it is no longer
necessary for us to manually intervene. We run our tool five
times and each time for 18.0 hours with the same basic setup
as described in Section 3.

Figure 2 presents the average coverage results of our tool
across all experiments and compares our approach with Mon-
key. As shown in Figure 2, our approach outperforms Mon-
key in both line coverage and activity coverage, covering
30.6% of the lines and 28.7% of the activities in WeChat.
Said differently, our approach covers an additional 11.1%
more lines and 18.4% more activities than Monkey does.
These results reinforce our Findings 1 and 2 described in
Section 3.

4.3 Discussion
Since our approach aims to balance the exploration time

between activities, we expect exploration time to be evenly
distributed among activities. As shown in Figure 4, the
exploration time still has lopsided distribution among activ-
ities. Our approach spends 42.2% (7.6 out of 18.0 hours on
average) of the exploration time in the top 4 activities on av-
erage. However, the activities that our approach spends the
most time in are different than those that Monkey spends
the most time in as shown in Figure 1.

0

0.5

1

1.5

2

2.5

3

3.5

4

Ex
plo

rat
ion

	Ti
me

	(h
ou
rs)

Figure 4: Top 20 activities based on the amount of exploration time that our approach spends.

Table 2: Events derived based on app domain knowl-
edge.

Events Condition

Scan valid QR
code

Require a valid QR picture to be
captured by the phone’s camera.

Order taxi Require valid address information.

Shake Find friends through shaking the
phone, which a tool cannot generate
such shaking event.

Sign up Require valid account information
(e.g., phone number or email address).

Inter-app
communica-
tion

Require invoking other app to send an
intent to WeChat.

Below are some top activities based on the amount of
exploration time that our approach spends:

• LauncherUI is the root activity, namely the home screen,
which allows users to access the majority of WeChat’s
features. Since this activity is the root entry point
for the majority of WeChat’s features, our approach
constantly visits this activity during its exploration.

• ContactInfoUI and ChattingUI are easily accessible
from other activities. One such activity is the LauncherUI.
Since our approach constantly visits the LauncherUI,
our approach also often visits the ContactInfoUI and
ChattingUI activities.

• WebViewUI is the activity that displays web content
to the user and is utilized by many activities since
a significant number of tasks in WeChat display web
content.

These popular activities generate many new states when
our approach performs different events in them. However,
these newly generated states do not significantly increase the
line or activity coverage, since these states lead to many re-
dundant exploration actions. For instance, Figure 5 presents
a screenshot of WeChat under testing where our approach
first tries to click the top “Call failed” TextField. The screen
then adds another “Call failed” TextField. By introducing
another“Call failed”TextField each time when a click is per-
formed on these TextFields, our approach generates a new
state but does not achieve additional coverage. This result
indicates that such heuristic based state abstraction could
sometimes be ineffective.

Figure 5: A chatting screen where our approach
repeatedly fires click events on different TextView
widgets without gaining coverage improvement.

5. HUMAN INTERVENTION
As described in Section 3, many features (such as inter-

app communication) cannot be explored due to the limita-
tions of our approach or the testing setting. In this section,
with basic domain knowledge of WeChat (from the perspec-
tive of a typical user), we manually construct and perform
events that our approach was incapable of in order to com-
plement its capabilities. In addition, we intend to investigate
whether it is feasible to provide human intervention based on
basic knowledge of the app to further increase code coverage
non-trivially.

Provide client-to-client interaction. We observe that
WeChat sent messages to other friends’ accounts and no
other accounts responded to these messages. Because WeChat
is a messaging-based app, and user interaction is its core
functionality, after conducting automatic testing described
in Section 4, we manually construct such client-to-client in-
teraction by sending different message types (as shown in
Figure 6) from other accounts to the account under test to
trigger additional interactions. The line coverage increases
slightly from 30.6% to 32.5% and the activity coverage in-
creases from 28.7% to 29.3%. The main reason for such mi-
nor coverage increase is that the logic of processing client-to-
client interaction is mainly implemented on the server side,
instead of the client side. In summary, such human inter-
vention may effectively help improve code coverage of the
overall system (especially the server code) but not signifi-
cantly to the client code.

0

5

10

15

20

25

30

35
C
o
ve
ra
g
e
	P
e
rc
e
n
ta
g
e

Figure 6: Line coverage statistic for client-to-client
communication events performed in time sequence.

Provide additional app events. Based on our knowl-
edge of WeChat’s features, we construct a set of events that
we believe would increase code coverage non-trivially, as
listed in Table 2. Those events are also difficult for a tool to
trigger because these events either require special external
environment conditions or require valid inputs, as described
in Table 2.

However, after performing those events, the line coverage
increases unsubstantially from 32.5% to 33.3% and the ac-
tivity coverage from 29.3% to 30.1% on average. We find
that most of the triggered actions execute code that had al-
ready been covered previously, such as the WebViewUI as
described in Section 4.3.

To cover more activities would require substantial effort
from testers to understand the code base and its logic, and
then construct appropriate event sequences to explore those
not-covered code portions. Although WeChat’s app logic is
properly documented, it is still labor-intensive to derive tests
from the documentation, especially since WeChat updates
its app logic frequently to incorporate additional features.

Finding 4: It is challenging for human with basic
knowledge of the app domain to derive event sequences
to further improve code coverage of WeChat’s client
code.

6. FUTURE WORK
In this section, we discuss the limitations and planned

features of our new approach as our future work.
Incorporating fine-grained code analysis. As moti-

vated by Finding 2, exploring different features or activities
during testing could effectively help increase line coverage.
Conducting code analysis can help existing tools achieve
higher code coverage; for example, such analysis (e.g., con-
structing the activity transition graph [9]) can guide the
tools to explore not-covered activities as exploration targets.
Related previous work [4] has proposed techniques of using
taint analysis to find widgets that can trigger the target
activity transition. However, triggering such activity tran-
sition is based on approximated information. For example,
clicking those widgets does not necessarily trigger the target
activity transition unless a certain condition (e.g., specific
events are earlier performed) is satisfied. Fine-grained code
analysis could offer additional help here.

Reusing exploration paths. In practice, existing tools
test the app under test with multiple settings (e.g., different
Android OS, smartphone, and app version) and each run
may produce exploration paths that cover different app fea-
tures. Extracting relevant paths from past explored paths
and reusing them for future exploration could help boost
existing tools’ effectiveness.

Incorporating new evaluation metrics. It is neces-
sary to evaluate existing tools beyond only on code cover-
age. For example, a tool may excel in detecting certain types
of program failures caused by Application Not Responding
(ANR) or improper inter-app communication.

7. CONCLUSION
In this paper, we have presented the first industrial case

study of applying Monkey on WeChat, a highly popular
messenger app with over 762 million monthly active users,
and reported empirical findings on Monkey’s limitations in
such industrial setting. We have also presented our new ap-
proach to address the major limitations of Monkey and ac-
complish substantial code-coverage improvements over Mon-
key, along with empirical insights for future enhancements
to both Monkey and our approach.

8. ACKNOWLEDGMENTS
We thank Zhenyu Lei and Haibing Zheng for helping set

up testing accounts and configurations. The work is sup-
ported in part by NSF under grants no. CCF-1409423, CNS-
1434582, CCF-1434596, CNS-1513939, CNS-1564274.

9. REFERENCES
[1] Android 64k method limit. https:

//developer.android.com/studio/build/multidex.html.

[2] Emma: a free Java code-coverage tool.
http://emma.sourceforge.net/.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
FSE’12, pages 599–609.

[4] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of Android apps. In
OOPSLA’13, pages 641–660.

[5] W. Choi, G. Necula, and K. Sen. Guided GUI testing
of Android apps with minimal restart and
approximate learning. In OOPSLA’13, pages 623–640.

[6] S. R. Choudhary, A. Gorla, and A. Orso. Automated
test input generation for Android: Are we there yet?
In ASE’15, pages 429–440.

[7] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:
An input generation system for Android apps. In
FSE’13, pages 224–234.

[8] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid:
Segmented evolutionary testing of Android apps. In
FSE’14, pages 599–609.

[9] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and
A. Rountev. Static window transition graphs for
Android. In FSE’12, pages 658–668.

[10] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated GUI-model generation of
mobile applications. In FASE’13, pages 250–265.

