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ABSTRACT
When developers change a program, regression tests can fail
not only due to faults in the program but also due to out-
of-date test code that does not reflect the desired behavior
of the program. When this occurs, it is necessary to repair
test code such that the tests pass. Repairing tests manu-
ally is difficult and time consuming. We recently developed
ReAssert, a tool that can automatically repair broken unit
tests, but only if they lack complex control flow or opera-
tions on expected values.

This paper introduces symbolic test repair, a technique
based on symbolic execution, which can overcome some of
ReAssert’s limitations. We reproduce experiments from ear-
lier work and find that symbolic test repair improves upon
previously reported results both quantitatively and quali-
tatively. We also perform new experiments which confirm
the benefits of symbolic test repair and also show surprising
similarities in test failures for open-source Java and .NET
programs. Our experiments use Pex, a powerful symbolic
execution engine for .NET, and we find that Pex provides
over half of the repairs possible from the theoretically ideal
symbolic test repair.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; D.2.3 [Software Engineering]: Coding Tools
and Techniques—object-oriented programming

General Terms
Verification

1. INTRODUCTION
Automated regression testing is an integral aspect of soft-

ware development because it offers several potential bene-
fits: fewer bugs, greater reliability, and lower long-term de-
velopment cost. However, such testing can have high costs,
not only to develop tests but also to maintain them so that
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they retain their benefits as the system under test (SUT)
evolves [35]. Software evolution often causes tests to fail.
Ideally, failures reveal regression errors in the SUT. Unfortu-
nately, failures can also occur when changing requirements
invalidate existing tests. When this happens, we say the
tests are broken.

Broken tests cause many problems. Updating broken tests
takes time. The fear of broken tests can even create a disin-
centive to write thorough test suites because they are more
likely to have broken tests. Developers may not take the
time to inspect all failing tests to distinguish regression fail-
ures from broken tests. They may instead choose to ignore or
delete some failing tests from the test suite, thereby reduc-
ing its effectiveness. While these approaches are obviously
undesirable, anecdotal evidence suggests that they are very
common [3, 6, 32, 36, 38, 41, 44]. Similarly, if regression (also
called characterization [4]) tests are generated automatically
using a test generation tool [46], developers often find it eas-
ier to re-generate tests than address all the failures, reducing
the benefit of using the tool.

To avoid the problems that arise from removing or ignor-
ing tests, it is much more desirable to repair broken tests.
To do so, developers must update the test code (and per-
haps the SUT) such that the tests pass. Repairing tests is
tedious and time-consuming, especially when a large num-
ber of tests fail. Fortunately, our prior work has shown that
it is possible to automate repair of some broken tests [14],
reducing the effort required to maintain tests.

Our ReAssert tool [14] was, to the best of our knowledge,
the first general-purpose test repair tool. ReAssert automat-
ically suggests repairs for broken tests, allowing developers
to repair broken tests with the push of a button. In particu-
lar, ReAssert suggests simple yet reasonable changes to test
code that are sufficient to cause failing tests to pass. If the
user agrees with the suggested changes, ReAssert modifies
the test code automatically. Our implementation repaired
unit tests written in JUnit, but the technique generalizes to
other languages and test frameworks.

We evaluated ReAssert’s ability to repair broken tests in
several ways [14]. We described two case studies, performed
a controlled user study, and repaired some failures from real
open-source applications. Our results showed that ReAssert
could repair a large portion of test failures (nearly 100%
in the case studies and user study) and that its suggested
repairs were often useful to developers (75% in the case stud-
ies and 86% in the user study). However, ReAssert also has
two significant problems. First, ReAssert could repair only
about 45% of failures in open-source applications. Second,



in many cases, ReAssert suggested a suboptimal repair, and
a more useful repair was possible.

The main reason why ReAssert could not repair some fail-
ures was related to expected values. Unit tests commonly
prepare the expected results of a computation, then assert
that they match the actual values returned from the SUT.
ReAssert could repair many failing tests by changing the ex-
pected value appropriately. However, if a failing test mod-
ified expected values, created complex expected objects, or
had multiple control-flow paths, then ReAssert could not de-
termine what expected values needed to be changed and in
what way. Similarly, ReAssert would suggest a suboptimal
repair that would effectively remove some computation of
the expected value. A better repair would preserve as much
of the test’s computation as possible. Section 3 describes
three examples that illustrate the ReAssert’s deficiencies.

This paper introduces symbolic test repair, a new tech-
nique that uses symbolic execution [1, 5, 7, 8, 12, 18, 20, 31,
33, 37, 39, 42, 46, 49] to address some of the ReAssert’s defi-
ciencies. Symbolic execution treats values not as concrete
data but as symbolic expressions that record the state of
the computation. The state additionally includes the path
constraints required to direct the program down a partic-
ular execution path. Constraint solving [17] can produce
concrete values that direct the program down a path. Most
frequently, symbolic execution is used to search for values
that make the SUT fail. We cast test repair as a dual prob-
lem where symbolic execution is used to search for values
that make the tests pass.

If successful, symbolic execution would provide several
benefits for test repair. Most importantly, it would overcome
the problems that prevented ReAssert from repairing many
failures. It would also naturally complement ReAssert’s ex-
isting capabilities. Finally, it would provide more useful
repair for many broken tests.

This paper makes two contributions.

Propose Symbolic Test Repair: We define a proce-
dure in which symbolic execution can repair tests by chang-
ing literals in test code. In addition, we show how such a
procedure would fit in ReAssert’s general test repair process.
Unlike with ReAssert, we do not offer a complete, ready-to-
use symbolic test repair tool (primarily because ReAssert is
for Java [14] and Pex is for .NET [46], as described in Sec-
tion 2.2.1), but we do evaluate how well such a tool would
work in practice with the current state-of-the-art symbolic
execution engines.

Evaluate Symbolic Test Repair: We thoroughly eval-
uate the applicability of symbolic execution to test repair.
Our evaluation addresses three research questions:

Q1: How many failures can be repaired by replacing liter-
als in test code? That is, if we had an ideal way to discover
literals, how many broken tests could we repair?

Q2: How do literal replacement and ReAssert compare?
How would an ideal literal replacement strategy affect Re-
Assert’s ability to repair broken tests?

Q3: How well can existing symbolic execution discover
appropriate literals? Can symbolic execution produce liter-
als that would cause a test to pass?

To answer the first two questions, we recreate prior ex-
periments from ReAssert’s evaluation [14] on Java applica-
tions and also add new experiments on .NET applications.
We determine which failures ReAssert and ideal literal re-

placement would be able to repair, and find that they could
together repair 66% (155 of 235) of failures, with literal re-
placement being able to repair 19% (44 of 235) that ReAssert
cannot. In several cases, the repairs that literal replacement
would suggest are more useful than the repairs that ReAssert
would suggest. Surprisingly, we find that the total fraction
of repairable tests is nearly identical between Java and .NET
test suites.

To answer the third question, we use Pex [46], a publicly
available, state-of-the-art symbolic execution engine from
Microsoft Research. We manually mark which values should
be symbolic in .NET applications, and use Pex to search for
concrete values that make the tests pass. We then perform a
similar process for passing tests to see if Pex can recreate lit-
erals that would cause the test to pass. Overall, we find that
Pex can solve between 53% and 92% of the cases that ideal
literal replacement could solve, which is quite impressive for
the challenging, complex code used in our experiments.

Our experimental setup and results are available from
http://mir.cs.illinois.edu/reassert/.

2. BACKGROUND
This work builds on prior research in automated test re-

pair and symbolic execution. It uses ReAssert [14], our unit
test repair tool, and Pex [46], a symbolic execution engine
developed at Microsoft Research.

2.1 Automated Test Repair
Tests can fail not only due to problems in the SUT but also

due to incorrect test code. When test code has problems,
developers should change it to repair the failures such that
the tests pass. Automated test repair attempts to make this
process easier.

Naturally, there is more to test repair than making the test
pass. One could trivially “repair” a failing test by deleting
the test’s code; the test would then pass, but it would not
reveal anything about the correct or incorrect behavior of
the SUT. Thus, we attempt to produce “good” repairs by
adhering to the following requirements:

Make All Tests Pass: Not only should test repair make
a given failing test pass, but it should also not cause other
passing tests to fail.

Minimal Changes to Test Code: It is important that
the repaired test exercises the same behavior of the SUT (to
a reasonable approximation) as the original test did before
the SUT evolved. Therefore, it is necessary to make simple
changes to test code and attempt to retain as much of the
test’s computation as possible.

Leave SUT Unchanged: Test repair assumes that tests
must change, not the SUT. A dual problem is to change SUT
to make the tests pass, which is an active area of research
known as automatic debugging [2, 24, 26, 51, 56] because it
automatically repairs bugs in the SUT.

Do not Introduce Bugs: A test should verify correct
behavior, so the repair process should not introduce a re-
paired test that is inconsistent with the intended code spec-
ification, even if it is consistent with the SUT implementa-
tion. However, it is difficult for a tool to know what“correct”
means when the SUT evolves and tests fail. Therefore, it is
usually necessary to delegate to the developer to approve
suggested repairs. Developer approval is not foolproof, but
it reinforces the need for simple, understandable changes to
test code.



Our proposed technique for symbolic test repair adheres
to the listed requirements: it makes tests pass with low
likelihood of causing additional failures, produces minimal
changes to test code by only changing literal values, requires
no modification to the SUT, and repairs tests in a way that
is in many cases easier to understand and inspect than with
ReAssert alone. In particular, symbolic test repair focuses
on literal replacement : it only replaces some literal value(s)
in the test code to attempt to repair it to pass.

The primary assumption underlying all these requirements
and the key insight leading to automated test repair can be
stated in the following manner:

For test repair, we use the SUT as the oracle for test
correctness, not the other way around as usually done.

Both ReAssert and symbolic test repair use this insight
as the basis for their repair processes. ReAssert records the
values returned from the SUT and serializes those values
into test code. Symbolic test repair finds values that satisfy
constraints introduced by the SUT.

2.1.1 Test Repair with ReAssert
ReAssert was, to our knowledge, the first automated unit

test repair tool. Given a failing test, it suggested simple
changes to the test code that would be sufficient to cause
the test to pass. The developer could inspect and modify
the suggested changes. If the changes appeared reasonable,
and the developer approved them, then ReAssert modified
the test code automatically.

We implemented ReAssert as both an Eclipse plugin and
standalone command-line utility. Both acted on unit tests
written using JUnit, a popular unit testing framework for
Java. While our ideas and the repair process easily gen-
eralize to other languages and test frameworks, there is a
substantial amount of engineering necessary to reimplement
ReAssert for another language.

To illustrate ReAssert’s repair process, we describe a very
simple failure derived from the user study performed to eval-
uate ReAssert [14]. In the study, participants tested a shop-
ping cart application. Each test initialized a shopping cart
object, added or removed products and coupons, then veri-
fied that the bill was calculated correctly. For example, the
following test code verifies that the printed bill matches the
expected string:

Cart cart = ...
cart.addProduct(...);
String expected = "Total: $9.00";
assertEquals(expected, cart.getPrintedBill());

The system evolved such that the total was calculated
differently—it became $6.00 instead of $9.00—causing this
and several other tests to fail. Instead of fixing every failure
manually, participants could invoke ReAssert from Eclipse,
which would then display suggested repairs. In this example,
ReAssert replaced the value of the expected variable with the
correct string:

String expected = "Total: $6.00";

This repair is deceptively simple, but producing it is non-
trivial. To produce it, ReAssert recorded the actual value
returned from the SUT, traced the expected variable from
its use in the failing assertion back to its declaration, and
then suggested to replace the value in code.

More generally, ReAssert provided several repair strategies
tailored to common kinds of test failures [15]. Each strat-
egy encapsulated a particular code transformation depend-
ing on the static structure of the code, the exception thrown
by the failing test, and the runtime values that caused the
failure. Most strategies—including the trace declaration-use
path strategy used in the example above—transformed tests
by serializing into the code the values returned from the
SUT. Strategies used the exception’s stack trace to find lo-
cation in code to repair. ReAssert was also extensible, al-
lowing a user to create custom repair strategies.

ReAssert used a five-step repair process around its library
of repair strategies:

1. Instrument assertion methods such that they record
their arguments if the assertion fails.

2. Execute the failing test, capturing the exception it
throws and the values recorded by the instrumenta-
tion.

3. Apply the appropriate strategy to transform the source
code of the failing test.

4. Recompile the modified test code.

5. Repeat the process until the test passes or ReAssert
reaches a limit on the total number of repairs.

Symbolic test repair would complement ReAssert’s exist-
ing repair strategies and fit well into its repair process. We
envision that it would be implemented as an additional strat-
egy for use when ReAssert’s default strategies do not apply.
In this way it could take advantage of ReAssert’s existing
user interface and source code transformations. Section 4
describes our proposed extension in detail.

2.2 Symbolic Execution
Symbolic execution [10,31,46] is a program analysis tech-

nique that performs computation on symbolic rather than
concrete values. Each symbolic value records a symbolic
expression representing some operations performed during
computation. When the program encounters a conditional
dependent on symbolic variables, the symbolic execution en-
gine needs to decide which branch to take, and accumulates
a so called path constraint that represents the branches that
were taken. Symbolic execution can then explore different
feasible paths in the program.

A recent approach to symbolic execution is to combine
it with concrete execution [7, 8, 18, 20, 33, 42, 46]. The ap-
proach differs from the traditional symbolic execution in
that it executes a program on concrete inputs while simulta-
neously recording symbolic path constraints. Which branch
to take is then determined by concrete values. By adjusting
the path constraints—usually by negating one of its branch
conditions—standard constraint-solving techniques [17] can
produce new concrete values that force the program execu-
tion down a different program path.

2.2.1 Symbolic Execution with Pex
Pex is a state-of-the-art symbolic execution engine devel-

oped at Microsoft Research for analyzing .NET code. It
uses the Z3 constraint solver [17], which provides decision
procedures for most constraints encountered in the .NET in-
termediate language as well constraints involving low-level
pointers and memory references.



To instruct Pex that some values should be symbolic, one
can either use parametrized unit tests [47], where test pa-
rameters are symbolic, or provide explicit calls to nonde-
terministic choice generators. Conceptually, Pex re-runs a
program many times on different values, attempting to max-
imize the number of paths executed. For symbolic variables,
Pex initially chooses very simple concrete values (e.g., 0, an
empty string, null, etc.) and builds more complex values
based on the constraints encountered in the program. To
illustrate Pex, we consider a simple example that uses Pex’s
method called ChooseValue, which produces a symbolic value
of a given type. The call to ChooseValue in the following code
makes the input variable symbolic:

int input = ChooseValue<int>();
if (input > 5) {

throw new ArgumentOutOfRangeException();
}

Pex first executes the code with input equal to 0. The
program completes successfully, but the branch condition
introduces the constraint that the symbolic value was less
than or equal to 5. Pex negates this constraint on the next
execution, and (using Z3) finds that, for instance, 6 is a value
that satisfies the new constraint. It re-executes the code
and follows the opposite branch of the conditional, which
throws an ArgumentOutOfRangeException. After this point,
Pex has executed both feasible paths in the program, so the
exploration can stop.

In brief, we cast test repair into a symbolic execution prob-
lem as follows. First, we make certain literal values in the
test code symbolic by replacing the literals with the Pex’s
choice generators. (In our experiments, we currently per-
form this step manually with a number of ad-hoc Visual
Studio macros, but it is possible to automate this step as
discussed in Section 4.2.) Then, we run Pex on this code
and accept the values for which the test pass. Section 4
describes this process in greater detail.

We chose Pex for this work because it is a robust and
powerful symbolic execution engine. Unfortunately, Pex and
ReAssert act on different languages: .NET and Java, respec-
tively. This language mismatch makes it challenging to im-
plement a complete symbolic test repair tool: we either need
to reimplement ReAssert ideas in .NET and Visual Studio,
or we need to use a symbolic execution engine for Java. We
have experimented with several engines for Java but found
them to be much less powerful than Pex at this time.

3. MOTIVATING EXAMPLES
In our evaluation of ReAssert, we encountered several fail-

ures that ReAssert could not repair or that it could have
repaired in a better way. Here we describe three such exam-
ples that illustrate how replacing the appropriate literal(s)
in a failing test would cause it to pass. In Section 4, we
describe how these these and similar tests can be repaired
using symbolic execution.

3.1 Modifications to Expected Values
Many unit tests prepare expected values and then com-

pare them against the actual values returned from the SUT.
If a test computed expected values rather than declaring
them directly as literals, then ReAssert could not correctly
determine what values needed to change.

Several examples from our user study illustrate this prob-
lem. As shown in Section 2.1.1, participants’ tests verified
the printed bill returned from a simple shopping cart appli-
cation. Two of the 18 participants prepared the expected
bill by concatenating strings, as in the following example:

// original test code
double total = 9.00;
String expected = "Total: $" + total;
assertEquals(expected, cart.getPrintedBill());

The system evolved, causing this test to fail as the to-
tal value should be 6.00. A naive repair could change the
assertion, making the test to pass but cutting off some com-
putation and likely not producing a useful repair:

double total = 9.00;
String expected = "Total: $" + total;
// naive repair
assertEquals("Total: $6.00", cart.getPrintedBill());

ReAssert repaired the failure by removing the concatena-
tion and replacing the initial value of the expected variable:

double total = 9.00;
// ReAssert repair
String expected = "Total: $6.00";
assertEquals(expected, cart.getPrintedBill());

A more useful repair would instead replace the value of
the total variable:

// literal replacement
double total = 6.00;
String expected = "Total: $" + total;
assertEquals(expected, cart.getPrintedBill());

A similar pattern in which a developer performed opera-
tions on expected data also appeared in several of the open-
source applications we examined. ReAssert would simply
replace the result of the operation, rather than the appro-
priate operands.

3.2 Expected Object Comparison
Many assertions compare against primitive values (e.g.,

integers) or strings. The rest compare against more complex
objects. The latter assertions are more difficult to repair
because the value cannot be written directly as a literal into
the code as in the previous example. ReAssert overcame
this limitation by changing one failing assertion into many
that compared against the primitive values returned from
the actual object’s accessors.

For example, the JFreeChart application from our evalu-
ation asserted against the default font used in an object’s
label:

ValueMarker m = new ValueMarker(...);
Font expected = new Font("SansSerif", Font.PLAIN, 9);
assertEquals(expected, m.getLabelFont());

The application evolved such that the default font changed
from "SansSerif" to "Tahoma". This caused the test to fail.
ReAssert repaired the failure by expanding the failing asser-
tion into several new assertions that passed:

ValueMarker m = new ValueMarker(...);
Font expected = new Font("SansSerif", Font.PLAIN, 9);
// ReAssert repair
{



Font actual = m.getLabelFont();
assertEquals("Tahoma", actual.getName());
assertEquals(expected.getSize(), actual.getSize());
assertEquals(expected.isPlain(), actual.isPlain());
... // a dozen more assertions

}

This repaired test passed because the first new assertion
verified that the font had the correct name. The subsequent
two assertions showed that the expected and actual size and
style were the same. There were a dozen more assertions.
While these assertions made the program evolution explicit,
they could become very verbose with deeply-nested recur-
sive objects. A more useful repair would simply replace the
literal value in the Font constructor:

ValueMarker m = new ValueMarker(...);
// literal replacement
Font expected = new Font("Tahoma", Font.PLAIN, 9);
assertEquals(expected, m.getLabelFont());

This is one example of a common pattern in which Re-
Assert should have changed an expected object’s initializa-
tion rather than a failing assertion.

3.3 Conditional Expected Value
ReAssert could trace an expected value from its use in

a failing assertion back to its declaration (not definition).
However, this process required that there be only one possi-
ble declaration-use path with a single expected value. If an
expected value for a particular failure depended on a con-
dition or had multiple definitions, then ReAssert could not
determine which value(s) to repair.

Several failing tests in our subject applications declared
different expected values based on an external system prop-
erty. The following example shows a simplified test for an
XML serialization library that serialized collections differ-
ently based on the version of an external library:

String expected;
if (LIB.is15) {

expected = "<coll><string>value</string></coll>";
} else {

expected = "<list><string>value</string></list>";
}
List list = ...;
list.add("value");
assertEquals(expected, toXml(list));

The library evolved to use different XML tags, causing this
test and several others to fail. Since the expected variable
could take one of two values, ReAssert only suggested to
replace the expected side of the failing assertion with a literal
value that made the test pass:

// ReAssert repair
assertEquals(

"<c><string>value</string></c>",
toXml(list));

In the actual test suite, doing so would have actually
caused other tests to fail, since the assertion was located
in a helper method called from multiple places. A better
repair would replace the value in the appropriate branch of
the conditional:

if (LIB.is15) {
// literal replacement
expected = "<c><string>value</string></c>";
...

4. SYMBOLIC TEST REPAIR
The examples in the previous section illustrate failures

that ReAssert should have repaired in a better way. In each
case, ReAssert could not determine how literal values in test
code should change to make the test pass. Symbolic execu-
tion can overcome this deficiency. We propose a technique
that brings the benefits of symbolic execution to test repair
and a tool like ReAssert. We refer to the hybrid technique
as symbolic test repair.

Symbolic test repair could be implemented as a repair
strategy that would integrate into ReAssert’s normal repair
process (Section 2.1.1). Like other strategies, it would have
access to the parse tree of the failing test, the location of
the failure (derived from the stack trace), and the concrete
values that caused the failure. It would in the end output a
modified parse tree.

The strategy would have its own five-step repair process
distinct from ReAssert’s:

1. Use the stack trace to find the location of the failing
assertion.

2. Analyze the source code to determine the “expected
side” of the assertion. That is, determine the expres-
sion(s) that represent the expected result(s) of the be-
havior being tested.

3. Create symbolic values for all literals that contribute
only to the calculation of the expected side. Fail if
none can be found. Do not change any values that
contribute to the actual side, since doing so would alter
the behavior of the SUT, violating the requirements
listed in Section 2.1.

4. Execute the test symbolically and solve accumulated
constraints. Fail if no solution can be found within a
given time limit.

5. Replace appropriate literals in source code.

To illustrate this process, we revisit the example given in
Section 3.3. We emulated parts of this process manually
in the evaluation described in Section 5. We discuss here
several challenges that one must address when implementing
a symbolic test repair tool.

4.1 Example Revisited
Consider the example given in Section 3.3. The asser-

tion on the last line fails because the expected string does
not match the value returned from the SUT. The two XML
strings potentially contribute to the calculation of the ex-
pected value. Only these values could change when the
test is repaired; changing the list contents would change
the behavior of the SUT. The repair strategy makes the two
expected-side literals symbolic using Pex’s choice generators
(Section 2.2.1):

String expected;
if (LIB.is15) {

// replace literal with symbolic value
expected = ChooseValue<string>();

} else {
// replace literal with symbolic value
expected = ChooseValue<string>();

}
List list = ...;
list.add("value");
assertEquals(expected, toXml(list));



Then, the strategy executes the test under Pex. Pex exe-
cutes the condition concretely and encounters the first sym-
bolic literal. Pex sets its value to an empty string and con-
tinues execution. The assertEquals fails because the empty
string does not equal the value returned from toXml. The
failure introduces the constraint that the symbolic value is
not equal to the returned string. On the next execution,
Pex inverts the condition and sets the expected value to the
correct string, causing the test to pass. ReAssert would then
write the string into the original test code. The alternate
expected value would not change because Pex’s execution
never encountered it:

String expected;
if (LIB.is15) {

// symbolic test repair
expected = "<c><string>value</string></c>";

} else {
expected = "<list><string>value</string></list>";

}
List list = ...;
list.add("value");
assertEquals(expected, toXml(list));

4.2 Challenges
The high-level symbolic test repair process described above

ignores several important points that would impact tool im-
plementation. We encountered each of the following issues
in our evaluation.

Identify Expected Computation: In the example, the
left argument of the assertEquals represents the expected re-
sult, and the right represents the actual value. Thus, it was
easy to determine the “expected side” of the computation.
Other tests and assertions lack this well-known convention,
making it difficult to determine automatically what compu-
tation should be repaired.

In our evaluation, we manually determined the expected
side using the context of the test and simple heuristics. Gen-
erally, we found that arguments to methods used in an asser-
tion represented expected values. The methods themselves
represented the behavior being tested.

For example, the AdblockIE application from our evalua-
tion in Section 5 contains many assertions that verify that
certain strings match a given pattern:

Glob target = new Glob("*eggs");
Assert.IsTrue(target.IsMatch("hamandeggs"));
Assert.IsTrue(target.IsMatch("eggs"));
Assert.IsFalse(target.IsMatch("hamandeggsandbacon"));

In this example, the initialization of the target variable,
the Glob constructor, and the IsMatch methods represent the
actual computation. Their values should not change when
the test is repaired. Only the three strings used as argu-
ments to IsMatch represent the expected computation that
can change.

Find Expected Literals: After identifying the expected
computation, a tool must accurately find all literals that con-
tribute to only that side of the computation. Doing so can
be a challenge since some literals may contribute to both
the expected and actual sides. In our evaluation, we manu-
ally differentiated the values. A semi automated tool could
ask the user to point to the values to be changed. A fully
automatic tool, however, could solve this problem as an in-
stance of program slicing [48]. It would compute dynamic

backward slices from both the expected and actual side of
a failing assertion. Then, only those literals that appear in
the slice for the expected side but do not appear in the slice
for the actual side would be made symbolic.

Choosing the “Correct” Solution: There is rarely just
one solution that would cause a test to pass. Many literals
may satisfy the constraints encountered when executing a
test symbolically. Our evaluation is only concerned with
whether any one such solution exists. However, an actual
tool would need to choose which solution(s) to present to
the user. Pex produces simpler solutions earlier in its explo-
ration, and we found that the first set of satisfying values
was often the best.

Multiple Failures: Many broken tests fail for multiple
reasons. Therefore, it is important that a symbolic test re-
pair tool be able to handle multiple failures in a single test.
Multiple failures make it difficult for the symbolic execution
engine to know when the conditions for a particular failure
are satisfied. In our manual evaluation, we simply added
symbolic literals for each failure that the symbolic explo-
ration encountered. An actual tool would need to iteratively
explore failures, as ReAssert does [15].

5. EVALUATION
To evaluate our proposed symbolic test repair technique,

we measure how often literal replacement can repair tests
and how well symbolic execution can discover those literals.
Specifically, we ask the following research questions:

Q1: How many failures can be repaired by replacing liter-
als in test code? That is, if we had an ideal way to discover
literals, how many broken tests could we repair?

Q2: How do literal replacement and ReAssert compare?
How would an ideal literal replacement strategy affect Re-
Assert’s ability to repair broken tests?

Q3: How well can existing symbolic execution discover
appropriate literals? Can symbolic execution produce liter-
als that would cause a test to pass?

To answer these questions, we recreate experiments from
the evaluation of ReAssert [14] and perform several new ex-
periments. First, we consider repair of test failures in open-
source applications caused by real and potential program
evolution (Section 5.2). Then, we revisit results from the
user study done with ReAssert (Section 5.3). Along the way,
we evaluate Pex’s ability to discover literals that would make
failing tests to pass. Finally, we also evaluate Pex’s ability
to discover the correct literals in passing tests (Section 5.4).

5.1 Experimental Setup
Figure 1 lists the subject applications used in our exper-

iments. The Java applications are drawn from our original
evaluation of ReAssert. We chose them because several had
been used in other studies [13,40,57] and all evolved in ways
that would cause tests to fail. We found the .NET applica-
tions by searching public code repositories for applications
with unit tests. Of those listed, six evolved in ways that
would cause unit tests to fail. We use the remainder in our
potential evolution and literal recreation experiments.

All experiments dealt with standard unit tests, each of
which verified the behavior of a small component of the sub-
ject application. We did not consider larger system or in-
tegration tests. The unit tests for the Java applications all



Java

Application Version(s) Description Tests
Checkstyle checkstyle.sourceforge.net 3.0, 3.5 Code style checker 143
JDepend clarkware.com/software/JDepend.html 2.8, 2.9 Design quality metrics 53
JFreeChart jfree.org/jfreechart/ 1.0.7, 1.0.13 Chart creator 1696
Lucene lucene.apache.org 2.2.0, 2.4.1 Text search engine 663
PMD pmd.sourceforge.net 2.0, 2.3 Java program analysis 448
XStream xstream.codehaus.org 1.2, 1.3.1 XML serialization 726

.NET

Application Version(s) Description Tests
AdblockIE adblockie.codeplex.com 18785 Ad blocker for Internet Explorer 6
CSHgCmd bitbucket.org/kuy/cshgcmd/ 99 C# interface to Mercurial 16
Fudge-CSharp github.com/FudgeMsg/Fudge-CSharp/ 8e3654, 85952 Binary message encoding 73
GCalExchangeSync

6, 7
Google Calendars and

33
code.google.com/p/google-calendar-connectors/ Exchange Server interoperability

Json.NET json.codeplex.com 35127, 44845 JSON serialization 673
MarkdownSharp code.google.com/p/markdownsharp/ 116 Convert structured text to HTML 48
NerdDinner nerddinner.codeplex.com 1.0 Lunch planning website 68
NGChart code.google.com/p/ngchart/ 0.4.0.0, 0.6.0.0 Wrapper for Google Charts API 25
NHaml code.google.com/p/nhaml/ 300, 446 XHTML template system 53
ProjectPilot code.google.com/p/projectpilot/ 446, 517 Source code statistics and metrics 103
SharpMap sharpmap.codeplex.com 0.9 Geospatial mapping 49

Figure 1: Subject applications

used JUnit, while the .NET tests used one of several similar
frameworks. These we converted to instead run under Pex.

We ran Pex version 0.91.50418.0 in Microsoft Visual Stu-
dio 2009 on a dual-processor 1.8Ghz laptop. We used the
default Pex configuration and limited Pex’s running time to
60 seconds. We believe that this limit is appropriate for an
interactive test repair tool. If Pex reached other limits, such
as execution depth or number of branch conditions, we in-
creased the appropriate configuration setting until Pex met
the time limit.

Links to subject applications, test code, software tools,
and all experimental data are publicly available from
http://mir.cs.illinois.edu/reassert/.

5.2 Program Evolution
We address all three of our research questions by mim-

icking the evolution of real open-source applications. In the
ReAssert paper [14], we obtained version difference failures
(VDFs) by executing the test suite from an older version of
an open-source Java application on a newer version of its
SUT. Here we do the same with .NET applications and ad-
ditionally introduce potential program evolutions that also
cause failures.

5.2.1 Version Difference Failures
Our goal with version difference failures is to reconstruct a

test failure as the developer would encounter it while evolv-
ing the SUT from the older version to the newer version. For
both Java and .NET subject applications, obtaining VDFs
requires several steps.

First, we choose two application versions, either nearby
minor releases or revisions that the version control log indi-
cates would contain changes that would cause tests to fail.
Second, we download and compile both versions, each of
which has a SUT and a test suite. Third, we apply the
test suite from the older version on the newer version of the
SUT. This step creates several challenges. The code could
have evolved such that the old tests fail to compile against
the new SUT. Often such changes are due to refactorings,

which change the SUT and tests without changing their se-
mantics (e.g., renaming a method or a class). Fourth, we
reverse-engineer the refactorings that occurred in the SUT
and apply them manually on the tests. Fifth, we remove
any remaining tests that fail to compile. Finally, we ensure
that we have actual test failures due to semantic changes in
the SUT, much like what the developer would observe. The
goal of test repair is to repair these failures.

We produce VDFs for all of the Java applications and the
top six .NET applications listed in Figure 2.

5.2.2 Potential Program Evolution
The .NET applications from Figure 1 have fewer unit

tests than the Java applications. Thus, the .NET applica-
tions have understandably fewer VDFs. To make up for this
difference, we produce more failures by considering reason-
able evolutions in two .NET applications that lacked VDFs:
MarkdownSharp and AdblockIE.

We did not define“reasonable”ourselves but instead asked
15 colleagues to provide “suggestions of reasonable software
changes” in these simple .NET applications. Respondents
did not need to download or run the applications, but they
could browse the source code online. We asked them to avoid
“refactorings and compilation-breaking changes”and instead
suggest “modifications that change the current behavior of
the system”. We implemented nine solutions that appeared
feasible, and four of them caused tests to fail. Figure 2 shows
that a total of 17 tests failed in these two applications.

5.2.3 Counting Repairs
Using our two sets of failing tests—one in Java from Re-

Assert’s evaluation and the other in .NET from this work—
we determine the number of tests that could be repaired
with literal replacement, ReAssert, and Pex. For literal re-
placement, we manually count how many failures could be
repaired by changing only the literal(s) in the test. We use
our judgment of the program evolution and our reasoning
about how a particular test behaves to deduce which lit-
eral(s) to replace and with what value(s) to make the test



Java

Application Failures ReAssert Lit. Repl.
Checkstyle 34 9 (26%) 12 (35%)
JDepend 6 6 (100%) 4 (66%)
JFreeChart 15* 15 (100%) 11 (61%)
Lucene 47 12 (25%) 7 (15%)
PMD 5 5 (100%) 2 (40%)
XStream 60 28 (47%) 51 (85%)
Total 167 75 (45%) 87 (52%)
*Originally reported as 18 in [14],

but recent inspection revealed 3 spurious failures

.NET

Application Failures ReAssert Lit. Repl. Pex
Fudge-C# 2 1 (50%) 1 (50%) 1 (50%)
GCalExSync 9 8 (89%) 4 (44%) 1 (11%)
Json.NET 14 7 (50%) 6 (43%) 4 (29%)
NGChart 1 1 (100%) 1 (100%) 1 (100%)
NHaml 9 6 (67%) 4 (44%) 4 (44%)
ProjectPilot 16 2 (13%) 10 (63%) 0
AdblockIE 3 3 (100%) 3 (100%) 1 (33%)
Markdown# 14 8 (57%) 7 (50%) 7 (50%)
Total 68 36 (53%) 36 (53%) 19 (28%)

Figure 2: Failures in open-source applications that

ReAssert, literal replacement, and Pex can repair

pass. For ReAssert, we use the actual results from our Re-
Assert tool on the Java programs, and we determine the
number of .NET failures that a ReAssert-like tool would be
able to repair. Since ReAssert does not act on .NET code,
we use our knowledge of the tool to determine whether it
could repair a particular .NET failure. For Pex, we use the
actual tool to produce literal(s) that make each test pass.

5.2.4 Analysis of Results
Figure 2 summarizes the results of these experiments. The

“Lit. Repl.” column shows how many failures literal replace-
ment can repair. This provides an answer to our first re-
search question:

A1: Replacing literals in test code can repair about half
of all failures (52% in Java and 53% in .NET).

For the second research question, we compare the number
of failures repairable by literal replacement and ReAssert.
Comparing the total numbers from Figure 2, we see that
the number is somewhat smaller for ReAssert in Java (45%
vs. 52%), and the numbers are same (53%) in .NET. We also
see that the totals are affected by a few applications whose
failures require literal replacement: Checkstyle and XStream
in Java and ProjectPilot in .NET. Indeed, XStream is the
application from which we drew the example used in sec-
tions 3.3 and 4.1. Recall from those sections that ReAssert
can repair some failures that require literal replacement, but
ReAssert cannot repair all such failures and sometimes pro-
vides less than desirable repairs.

Figure 3 further shows how literal replacement and Re-
Assert complement/overlap. We can see that the overall
number of failures that ReAssert, literal replacement, or
both could repair is 66% (51+24+36 of 167) in Java (an
improvement of 22% over ReAssert) and 65% (28+8+8 of
68) in .NET (an improvement of 12% over ReAssert). When
both ReAssert and literal replacement could repair a failure,
our examples in Section 3 show that literal replacement can
often produce more realistic repairs. Together, these results
provide an answer to our second question:

Java Literal Replacement
Repairable ¬Repairable

ReAssert
Repaired 51 (31%) 24 (14%)

¬Repaired 36 (22%) 56 (34%)

.NET Literal Replacement
Repairable ¬Repairable

ReAssert
Repairable 28 (41%) 8 (12%)

¬Repairable 8 (12%) 24 (35%)

Figure 3: How failures in Java and .NET applica-

tions would be repaired

A2: Literal replacement would provide benefit over Re-
Assert, both quantitatively (reducing the number of unre-
pairable failures from 92 to 56 in Java and from 32 to 24
in .NET) and qualitatively (providing better repairs when
both can repair).

Note the surprising similarity between the Java and .NET
results. Even though we found fewer failures in .NET ap-
plications, the fractions of failures repairable by ReAssert,
literal replacement, both, or neither were very similar. We
did not expect or notice this similarity prior to performing
all the experiments. While the similarity may be simply a
consequence of the particular artifacts we used in our study,
we speculate that the similarity may be actually more gen-
eral and due to common testing practices (e.g., JUnit vs.
NUnit) and object-oriented language design for code and
tests in Java and .NET.

For the third research question, we consider the number of
failures that Pex can repair. The last column of Figure 2 for
.NET shows that Pex repairs about half as many failures as
ideal literal replacement (19 of 36). In all 19 cases, ReAssert
could have repaired the failure without symbolic execution
but in a less desirable way. We inspected why Pex could
not repair the remaining 17. The reasons were many and
varied, but generally Pex had difficulty (1) creating long
strings for parsing, (2) solving constraints involving floating-
point values, and (3) finding valid keys for indexing into data
structures. Even so, these results are quite impressive for the
complex, real-world code used in our experiments. We have
passed our findings along to the Pex developers.

To estimate how well symbolic execution would work for
Java, we also convert 12 of the “hardest” Java VDFs to
.NET. We translated both the test code and parts of the
SUT from Java to C#. This is a semi automated trans-
lation; we used a source-to-source conversion tool called
Sharpen [16] and manually fixed the constructs that it did
not handle properly. ReAssert did not repair any of these
12 failures on its own, but Pex successfully repairs 75% of
them (9 of 12). In summary, these results provide an answer
to our third question:

A3: Powerful symbolic execution tools such as Pex can
repair over half of all the failures that can be repaired with
literal replacement. Symbolic test repair would thus improve
on ReAssert.

5.3 User Study
In the original ReAssert work, we performed a user study

to evaluate how ReAssert assists developers in writing and
maintaining unit tests [15]. We asked participants to per-



form several simple development tasks in a small but realistic
shopping cart application. Tasks required users to augment
an existing test suite, implement changes designed to break
the tests, and then repair the failures.

Our study had 18 participants (13 graduate students, 3
undergraduate students, and 2 industry professionals) with
varying amounts of expertise and experience with Java, JU-
nit, and Eclipse. We randomly divided the participants
into two groups: a control group repaired the broken tests
manually, and the experimental group used ReAssert. Af-
ter the study, we measured how many tests either group
could repair and how many of the repairs matched (mod-
ulo source code formatting) ReAssert’s suggestions. In the
control group, the number of matches showed the number
of times ReAssert’s suggestions were identical to develop-
ers’ actual repairs. In the experimental group, the num-
ber of matches showed the number of times participants ac-
cepted ReAssert’s suggestions without modification. Both
indicated how useful were ReAssert’s suggestions to the de-
velopers. We found that ReAssert could repair 97% (131 of
135) of failures and 87% (113 of 131) matched. Three of the
four unrepaired failures were repairable with a newer version
of ReAssert, and the remaining failure cannot be repaired
regardless of the tool used because it tests non-deterministic
behavior. The 18 non-matching repairs were split across four
participants.

Here we revisit these results in the context of symbolic
test repair, which also provides additional data to address
our second and third research questions. Since ReAssert can
already repair nearly all of the failures, we assess whether
symbolic test repair can increase the number of repairs that
match developers’ intentions.

We perform the following experiment:

1. Convert the non-matching tests from Java to C# using
Sharpen with manual patching of incorrect translation.

2. Apply the tests to our reference implementation of the
SUT.

3. Run the tests and repair any failures using a procedure
similar to that described in Section 4.

4. Compare Pex’s result to the participant’s actual repair
using the matching criteria from our earlier evaluation.

We find that Pex repairs all of the 18 failures that Re-
Assert also repaired but did not match. Moreover, three of
Pex’s repairs exactly match developers’ repairs, and we feel
three more match the developers’ intentions although the
source does not match exactly. Five of these six “better”
repairs involve string concatenation as in the example from
Section 3.1. The remaining one replaces literals in assertions
of the following form: assertTrue(cart.getTotal() == 6.0).
ReAssert could repair this form of assertion but only after
converting it to use assertEquals. In total, two of the four
participants would have benefited from symbolic test repair.
In terms of our research questions, we find that literal re-
placement would produce better repair than ReAssert for
these cases, and we also find that in these cases Pex can
repair all failures that require literal replacement.

5.4 Recreate Literals
Our third question asks whether symbolic execution—in

particular Pex—can discover literals that cause a test to

Application Literals Matching Passing Unsolved
AdblockIE 52 19 (37%) 31 (60%) 2 (3%)
CSHgCmd 69 48 (70%) 5 (7%) 16 (23%)
Json.NET 262 242 (92%) 0 20 (8%)
NerdDinner 84 68 (81%) 15 (18%) 1 (1%)
SharpMap 267 187 (70%) 59 (22%) 21 (8%)
Total 734 564 (77%) 110 (15%) 60 (8%)

Figure 4: Recreated Literals

pass. The previous experiments evaluate this question using
failing tests (from real/potential evolutions of open-source
code and the ReAssert’s user study). Here we assess Pex’s
ability to rediscover appropriate values in passing tests. We
turn certain literals into symbolic values in passing tests
and ask Pex to provide concrete values. Had these literals
contributed to a failure for this code version, then Pex’s
success would determine whether the test could have been
repaired.

We again use several .NET applications that lack VDFs.
In every passing test, we make each expected-side literal
symbolic. We then run Pex to solve one literal at a time.
There are three possible outcomes: Pex produces the same
value as in the original test; Pex produces a different value
that nevertheless causes the test to pass; or Pex fails to
produce a value that makes the test pass.

Figure 4 shows the results of these experiments. We found
that Pex successfully discovered a matching or passing value
for 92% (674 of 734) of literals. These results show that Pex
can frequently discover a correct value when one is guaran-
teed to exist. The results in Section 5.2 show that the per-
centage is lower in actual failing tests, since they lack such
a guarantee; Pex finds 53% (19 of 36) of literal replacement
repairs, but those are just 53% (36 of 68) of all failures. In
summary, these results support the previous conclusion that
symbolic execution, as embodied in Pex, can find appropri-
ate literal values for over half literal replacement cases.

6. RELATED WORK
It is well known that software evolution can cause prob-

lems: tests can break, software artifacts can become incon-
sistent, and bugs can appear. ReAssert and symbolic test
repair address breaking tests. Researchers have proposed
many other techniques to address similar problems and re-
duce the burden on developers. Most techniques act on the
system itself to repair faults, which is a problem dual to test
repair. Those techniques that act on tests either maintain
the test suite or repair tests within a particular domain such
as testing user interfaces or web applications.

6.1 Program Repair
Software evolution can introduce faults. Automatically

repairing these faults is an important and active area of re-
search. There are two stages to program repair: finding
faults and repairing the system to remove the faults.

The first step is referred to as fault localization [11]. Most
closely related to our work is that by Jeffrey et al. [27], which
alters literal values in the SUT code to narrow down the
possible location of a fault. Other techniques generally use
test coverage in various ways [55], though Wang et al. [50]
and Jiang and Su [28] include program context as a way to
improve localization accuracy.



The second step of program repair is referred to as au-
tomated debugging [56]. Proposed techniques include those
based on genetic algorithms [2,26,51], path conditions [24],
and backward data flow analysis [43,48].

Sometimes failures appear not due to faults in the pro-
gram but by incorrect component integration or environ-
ment. In these cases, more extensive repairs are necessary.
Chang et al. [9] address the problem of integration faults in
the context of component-based software. They provide sev-
eral “healing connectors” conceptually similar to ReAssert’s
repair strategies. When failures appear due to incorrect ex-
ecution environment, Tallam et al. [45] propose a method
for patching future executions based on the event log of the
failing execution.

6.2 Domain-Specific Test Repair
As far as we are aware, ReAssert was the first general

purpose test repair tool for unit tests. However, evolving
software often causes test failures in specific application do-
mains, prompting the need for domain-specific test mainte-
nance tools. In particular, several researchers have proposed
repair techniques tailored to graphical user interfaces (GUIs)
and web applications.

When testing GUIs, it is common for developers to create
test scripts using record-and-replay testing tools [25]. Such
scripts are exceptionally fragile. To address this problem,
Memon et al. [34] and Grechanik et al. [21] have both pro-
posed techniques to bring GUI test scripts back in sync with
the tested application.

In the context of web applications, Harman and Alshah-
wan [22] test an underlying application with user session
data. When the application evolves, it can invalidate the
data. They propose an automatic technique that detects
the changes to the underlying system and suggests repairs
to the session data.

Other researchers address test evolution not by repair-
ing individual tests but by maintaining the larger test suite.
Wloka et al. [52], for example, create new unit tests that
specifically exercise changes to the SUT. When software evo-
lution invalidates existing tests such that they no longer ex-
ercise any useful part of the SUT, Zheng and Chen [58] and
Harrold et al. [23] use change impact analysis to remove the
obsolete tests.

6.3 Symbolic Execution
Our work applies symbolic execution to the domain of test

repair and attempts to find tests that pass. Most other ap-
plications of symbolic execution take the opposite approach:
they attempt to find test failures [5, 37, 39, 49]. Other re-
searchers have applied symbolic execution to invariant de-
tection [12, 29], security testing [19, 30, 53], string verifica-
tion [54], and a host of other domains.

7. CONCLUSION
Test maintenance is an important but time-consuming

task in software evolution. As code under test changes, tests
may fail such that they also need to be changed. Test re-
pair aims to automate these test changes. Our previous
work proposed ReAssert, a tool for test repair. This paper
showed that symbolic test repair, based on symbolic execu-
tion, can improve on ReAssert to repair more test failures
and provide better repairs. Our experiments showed that
the current state-of-the-art symbolic tools such as Pex for

.NET can work very well in this domain. We hope that such
a powerful tool for Java will be also available soon such that
we can integrate it with ReAssert. In the future, we hope
to study and improve how developers manually write, auto-
matically generate, and evolve their automated unit tests.
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