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Abstract

Testing involves two major activities: generating test
inputs and determining whether they reveal faults. Auto-
mated test generation techniques include random gener-
ation and symbolic execution. Automated test classifica-
tion techniques include ones based on uncaught exceptions
and violations of operational models inferred from manu-
ally provided tests. Previous research on unit testing for
object-oriented programs developed three pairs of these
techniques: model-based random testing, exception-based
random testing, and exception-based symbolic testing. We
develop a novel pair, model-based symbolic testing. We also
empirically compare all four pairs of these generation and
classification techniques. The results show that the pairs
are complementary (i.e., reveal faults differently), with their
respective strengths and weaknesses.

1. Introduction

Unit testing checks the correctness of program units
(components) in isolation. It is an important part of soft-
ware development; if the units are incorrect, it is hard to
build a correct system from them. Unit testing is becoming
a common and substantial part of the software development
practice: at Microsoft, for example, 79% of developers use
unit tests [24], and the code for unit tests is often larger than
the project code under test [23].

Creation of a test suite requires test input generation,
which generates unit test inputs, and test classification,
which determines whether a test passed or failed. (This pa-
per often uses the term “test” for “test input”, and it uses
“classification” for determining the correctness of an exe-
cution, which is sometimes called the oracle problem.) Pro-
grammers can test manually, using their intuition or experi-
ence to make up test inputs and using either informal rea-

soning or experimentation to determine the proper output
for each input. One alternative is to use formal specifi-
cations, which can aid both test generation and classifica-
tion [4]. Such specifications are time-consuming and diffi-
cult to produce manually and often do not exist in practice.
This research focuses on testing techniques that do not re-
quire a priori specifications.

In object-oriented languages, each unit test is a sequence
of method calls. In this context, techniques for automated
test generation include random generation (RanGen) [6,18]
and symbolic execution (SymGen) [17,26–28,33]. RanGen
creates random sequences of method calls with random val-
ues for method arguments. SymGen executes method se-
quences with symbolic arguments, builds constraints on
these arguments, and solves these constraints to produce ac-
tual tests with concrete values for method arguments.

Techniques for automated test classification include
those based on uncaught exceptions (UCExp) [6,17,26,33]
and operational models (OpModel) [18, 34]. UCExp clas-
sifies a test as potentially faulty if it throws an uncaught
exception. OpModel first infers an operational model [15]
from the tests that programmers manually write. (Many
other techniques that automate test generation neglect the
manually written tests.) The operational model includes
properties such as object invariants and method pre- and
post-conditions. As in other model-based techniques, ex-
ecutions that violate the properties are classified as poten-
tially faulty. Since OpModel also catches uncaught excep-
tions, we can view UCExp as OpModel with a trivial model
where all properties are set to true.

Previous research proposed three pairs of the RanGen
or SymGen generation techniques and the UCExp or Op-
Model classification techniques for object-oriented pro-
grams: exception-based random testing [6], model-based
random testing [18], and exception-based symbolic test-
ing [17,26,33]. We propose a novel pair, model-based sym-
bolic testing, and compare these four pairs.



This paper makes the following contributions.
New test generation approach. We propose model-based
symbolic testing. Our approach uses symbolic execution
to automate both generation and classification of object-
oriented unit tests. As in OpModel [15,18,34], our approach
first infers an operational model for a set of classes under
test. It then symbolically executes both the methods from
these classes and the operational model to generate method
sequences with symbolic arguments and to classify the se-
quences that violate the model for some constraints on the
method arguments. It finally solves the constraints on these
symbolic arguments and outputs a small number of (con-
crete) test inputs that are likely to reveal faults.
Implementation. We have implemented our approach in
a tool called Symclat. Symclat provides automatic sym-
bolic execution for Java, whereas several previous stud-
ies [17,26,33,34] required manual instrumentation for sym-
bolic execution.
Empirical study. We present a study that empirically com-
pares the four pairs of RanGen/SymGen generation and
UCExp/OpModel classification techniques. Our study in-
vestigates the effectiveness of the four pairs in revealing
faults. The main question is whether some pair subsumes
another. More specifically, we compare two tools that im-
plement automated test generation—Eclat [18] based on
RanGen and our tool Symclat based on SymGen—and that
both provide test classification based on OpModel and UC-
Exp. The study uses 61 subjects that are a subset of those
used in a previous study on Eclat [18].

The results show that the pairs and techniques are com-
plementary. The two pairs based on RanGen can reveal all
(but one) faults that the two pairs based on SymGen reveal.
Also, RanGen can reveal faults that SymGen does not re-
veal. However, RanGen depends on the random seed and
does not reveal all faults for all seeds. SymGen does not re-
veal some faults that RanGen can reveal because SymGen
does not explore certain programming constructs (partly be-
cause Symclat is a prototype but more importantly because
of the underlying theoretical limits of theorem provers and
constraint solvers used in symbolic execution). UCExp and
OpModel are complementary in revealing faults. OpModel
finds some faults that violate a post-condition but do not
throw an exception, so UCExp does not find them. How-
ever, OpModel misses some faults than UCExp finds as Op-
Model labels actually fault-revealing tests as illegal because
some inferred pre-conditions are too strong.
Suggested improvements. Based on the above results, we
give several suggestions for improving the existing tech-
niques and tools for test generation and classification. We
also provide several guidelines for using the existing tools.
In summary, since the generation and classification tech-
niques are complementary in revealing faults, we propose
that all techniques be applied on the code under test.

2. Framework

We first describe a common framework for different
techniques for test generation and classification. We then
present two tools, Eclat and Symclat, that instantiate the
framework.

The input to the framework is a set of classes and a
model of their correct behavior (consisting of method pre-
and post-conditions and object invariants). The user does
not need to provide the model directly; instead, the user
can provide a (passing) test suite for the classes under test,
and the tools then infer the model [8]. The framework uses
the model to classify the generated test inputs. The output
of the framework is a set of test inputs that are potentially
fault-revealing for the code under test. The framework has
three components: generation, classification, and reduction.
Test generation. A test is a sequence of method calls (and
arguments to the calls) that exercise the classes under test.
This component generates tests by randomly or symboli-
cally exploring the state space:

• RanGen: Generates test inputs by constructing method
sequences and method arguments in a random fashion.

• SymGen: Generates test inputs by exhaustively ex-
ploring method sequences with symbolic variables as
method arguments; translates symbolic arguments into
concrete values by solving the constraints accumulated
during the symbolic execution.

Test classification. This component executes each test
(concretely or symbolically), and classifies the execution as
normal (satisfies all pre- and post-conditions), illegal (vi-
olates some pre-condition) or fault-revealing (satisfies all
pre-conditions but violates some post-condition or throws
an uncaught exception). This component uses a model in-
ferred from the input test suite or a trivial model oblivious
to the existing test suite:

• OpModel: Labels as illegal or fault-revealing a test
whose execution violates the inferred model; labels
as normal a test whose execution does not violate the
model. It is important to note that SymGen executes the
operational model symbolically while RanGen executes
it concretely.

• UCExp: Labels as fault-revealing a test whose execu-
tion throws an uncaught exception

Test reduction. This component selects a subset of the in-
puts labeled fault-revealing [18]; its goal is to select only
one of possibly many fault-revealing test inputs that uncover
the same fault. It considers two test inputs equivalent if they
lead to the same violation pattern, i.e., violate the same set
of model properties or throw the same exception from the
same program point. Reduction outputs one representative
from each equivalence set.



Generation+classification pairs. Three of the four pairs of
random/symbolic generation and model-based/exception-
based classification (RanGen+OpModel, RanGen+UCExp,
SymGen+UCExp) have been previously studied [6, 18, 32–
34]. This paper proposes a new pair, SymGen+OpModel.
Our comparison of these four pairs uses two tools,
Eclat [18] (which implements two pairs based on RanGen)
and Symclat (which implements two pairs based on Sym-
Gen). We compare the four generation+classification pairs
with and without reduction.

2.1. Eclat: Random Exploration

We next briefly describe Eclat [18], a tool for ran-
dom test generation that we use to evaluate the pairs
RanGen+OpModel and RanGen+UCExp. Eclat takes as in-
put a set of classes to test and an existing test suite (that
the code passes). Eclat outputs a set of tests likely to re-
veal faults. Eclat uses Daikon [8] to dynamically infer an
operational model consisting of a set of likely program in-
variants. Daikon obtains the model from the execution trace
of the existing test suite. Eclat instruments the classes with
the inferred model to detect invariant violations by running
the generated tests.

Eclat generates random test inputs, executes each of
them, and detects runtime violations of the model. If the
execution has no violations of invariants, Eclat classifies
the input as normal. If the execution has a pre-condition
violation, Eclat classifies the input as illegal and discards
it. Finally, if the execution has no pre-condition viola-
tions but a post-condition violation (or the execution throws
an uncaught exception), Eclat classifies the input as fault-
revealing. Eclat gives all fault-revealing inputs to the re-
ducer that selects a subset to report to the user.

2.2. Symclat: Symbolic Exploration

We next describe Symclat, a symbolic exploration en-
gine that we implemented to evaluate test generation based
on symbolic execution in SymGen+OpModel and Sym-
Gen+UCExp. Symclat takes as input a set of classes and
an existing test suite. Symclat outputs a set of tests likely
to reveal faults. Like Eclat, Symclat uses Daikon to infer
an operational model based on the existing test suite. Un-
like Eclat, which executes the model concretely, Symclat
executes the model symbolically.

Symclat builds on our previous work on symbolic ex-
ploration of Java programs [33]. The key extension that
Symclat provides is symbolic execution of model proper-
ties. Symclat also provides a significant advance in terms
of implementation: Symclat has a fully automatic symbolic
execution, whereas several previous projects [17,26,33,34]

required manual instrumentation. We next describe the im-
portant parts of Symclat.
Path exploration. A symbolic execution engine needs to
execute each code path symbolically, and it also needs to
explore (all) different paths. Execution of one path operates
on a symbolic state that consists of a symbolic heap and a
path condition [33]. The path condition accumulates con-
straints from the conditional branches encountered along
the path. At each conditional branch, symbolic execution
may need to explore both outcomes.

Our Symclat implementation builds on Java PathFinder
(JPF) [25], an explicit-state model checker for Java. JPF
works by interpreting bytecode instructions. We modified
the interpretation of all bytecode instructions in JPF such
that they operate on the symbolic state. We use the exist-
ing JPF features for exploring Java bytecodes, storing and
restoring states, and backtracking. Combining the existing
features for exploration with our symbolic execution en-
ables symbolic exploration of method sequences.
State representation, infeasibility, subsumption. A sym-
bolic state consists of a symbolic heap and a path condi-
tion. Without loss of generality [33], Symclat assumes that
it should generate method sequences for only one object
under test. The symbolic heap is rooted in a reference to
such an object and may contain symbolic variables and ex-
pressions. A path condition consists of a conjunction of
constraints and denotes the branching decisions made from
the beginning of the execution to the current program point.
Symbolic execution may generate infeasible paths due to
unsatisfiable constraints. Symclat uses the CVC Lite [2]
theorem prover to determine feasibility of path conditions
and to avoid exploration of infeasible paths. Furthermore,
Symclat avoids exploration of equivalent states using state
subsumption introduced in our previous work [33].
Exploration of method sequences. Symclat uses drivers
to exhaustively explore sequences of methods up to a given
bound for the sequence length. Each driver specifies the
methods that Symclat should explore and their arguments.
In the current Symclat implementation, the user manually
writes all drivers. It would be possible to automatically
produce some drivers, e.g., drivers that include all public
methods in the classes under test (conceptually, Eclat al-
ready uses such drivers automatically [18]). But it is of-
ten necessary to manually constrain the drivers to reduce
the exploration space. The current Symclat implementa-
tion allows only primitive method arguments, but we de-
scribe below how the user can provide wrappers to handle
non-primitive arguments. The arguments are symbolic vari-
ables from which symbolic execution builds symbolic ex-
pressions and path conditions. For more details on explo-
ration, see our previous work [33].
Model execution. Symclat uses Daikon [8] to generate
models for the classes under test. Symclat instruments these



classes to check model properties at method entry and exit
points. (Symclat checks object invariants and method pre-
conditions at entry and object invariants and method post-
conditions at exit.) The tool discards the properties that it
cannot handle due to limitations of theorem provers, for
instance non-linear integer constraints. We point out that
Symclat does not translate Daikon properties into Java code
as Eclat does [18]. Such translation would enable Symclat
to directly apply symbolic execution of Java code on the
symbolic execution of properties. However, such transla-
tion would result in unnecessarily many execution paths for
properties. Instead, Symclat uses a special (declarative) rep-
resentation for Daikon properties and interprets every prop-
erty in its entirety as a single execution path.

At method entry, Symclat conjoins the pre-condition to
the current path condition and checks satisfiability. If it is
satisfied, Symclat proceeds with the execution. If not, Sym-
clat backtracks as generating tests along this execution path
would produce illegal tests. At method exit, Symclat checks
if it is possible to satisfy the negation of the post-condition
in the context of the current path condition. If so, Sym-
clat has found a potentially fault-revealing path, namely an
execution that satisfies all pre-conditions but results in a vi-
olated post-condition. Symclat uses the POOC [20] con-
straint solver to generate concrete values for the symbolic
variables in the path condition (conjoined with the nega-
tion of post-condition). Those symbolic variables represent
arguments of methods in the test sequence. When the vari-
ables get concrete values, Symclat outputs a test that con-
sists of method sequences with concrete arguments.
Non-primitive arguments and wrappers. Symclat can
directly explore only methods with primitive arguments.
When non-primitive arguments appear in the methods of
the classes under test, the user can provide wrapper classes
to Symclat. For example, consider testing the method
equals(Object) declared in a class C. This method takes
two arguments, so the wrapper defines two fields, one for
the receiver and the other for the actual argument. The
wrapper also declares operations to construct and mutate
the receiver, and to copy the receiver to the argument. If
the class C has a method m(int) for mutation, the wrapper
looks like the following:

class CequalsWrapper {
C receiver;
Object argument;
public void equals() { receiver.equals(argument) ; }
public void alias() { argument = receiver ; }
public void cons() { receiver = new C() ; }
public void m(int i) { receiver.m(i) ; }
... }

Symclat can then use drivers for the wrappers to generate
tests that operate on the wrappers instead of on the actual
classes under test. Sequences of method calls (without non-
primitive arguments) on the wrappers can then be translated

into sequences of method calls (with non-primitive argu-
ments) on the classes under test.
Limitations. In our implementation, symbolic variables
can only have integer types, symbolic expressions cannot
index arrays, and the operators % and / are not supported
due to limitations on the underlying theorem prover and
constraint solver, CVC Lite [2] and POOC [20], respec-
tively. When these operators appear in path conditions,
Symclat backtracks the execution. When symbolic expres-
sions appear in a loop conditional, Symclat unrolls the loop
a limited number of times. Thus, Symclat cannot catch in-
finite recursion that results in stack overflow exceptions.
In addition, Symclat uses arbitrary-precision integer arith-
metic provided by the theorem prover and constraint solver.
As a result, Symclat does not catch errors due to integer
arithmetic overflows.

Several of these limitations could be handled in im-
proved versions of the symbolic engine. For instance, tests
could be reported when the exploration reaches the bound
limits set for the branching tree, making it possible to report
infinite loops and stack overflows at the expense of decreas-
ing precision. Integers could be encoded in the finite do-
main with bitvectors to report on arithmetic overflows and
to decide on expressions with % and /, and arrays could
have symbolic representations in order to allow symbolic
dereferences.

3. Experimental Study

Our study compares four pairs of techniques discussed
in Section 2 with and without reduction of test suites. We
use Eclat and Symclat for test generation with RanGen and
SymGen, respectively. Both Eclat and Symclat can use ei-
ther UCExp or OpModel for classification. We first describe
the experimental setup, then compare the pairs, and finally
summarize the results of comparison.

3.1. Experimental Setup

We describe how we ran the tools, what subjects we
used in the experiments, and how we labeled the tests pro-
duced by the tools. We ran Eclat in its default configura-
tion: bottom-up sequence generation, four rounds of pool
iteration, and maximum of 100 inputs per round per sub-
ject [18]. As the results of Eclat depend on the initial ran-
dom seeds, we ran Eclat for ten different seeds. We con-
ducted all the experiments on a dual-processor Intel Xeon
2.8 GHz machine running Linux version 2.6.15 with 2 GB
memory. We set a time bound of two minutes for running
test generation in Symclat for each subject. In this setup,
Eclat (for each seed) and Symclat take roughly the same
time, approximately five hours to generate the tests for both
OpModel and UCExp, with and without reduction.



subject NCNB LOC #methods
UBStack 8 88 11
UBStack 12 88 11

UtilMDE 1832 69
BinarySearchTree 186 9

StackAr 90 8
StackLi 88 9

IntegerSetAsHashSet 28 4
Meter 21 3

DLList 286 12
E OneWayList 171 10

E SLList 175 11
OneWayList 88 12

OneWayNode 65 10
SLList 92 12

TwoWayList 175 9
RatPoly (46 versions) 582.51 17.20

Figure 1. Size of the subjects.

Subjects. Figure 1 lists the subject programs used in our
experiments. We show the number of non-comment-non-
blank (NCNB) lines of code and the total number of meth-
ods for each subject. UBStack is the implementation of
the unique bounded stack used in previous studies on test-
ing [6, 18, 22, 34]. This code comes with two test suites,
consisting of 8 and 12 test cases. UtilMDE is a support-
ing class from Daikon. BinarySearchTree, StackAr, and
StackLi are taken from a textbook [30] that provides a set of
example uses for the classes. The next nine subjects are ex-
ample classes from the distribution of Java Modeling Lan-
guage (JML) [16], together with formal specifications (writ-
ten in JML). RatPoly refers to 46 student solutions to an as-
signment in the MIT class 6.170. The assignment asked the
students to implement the core operations for rational poly-
nomials. The course staff provided some supporting classes
and a test suite to the students. The numbers in the table are
averages over 46 different implementations.

Our subjects are a subset of those used in a previous
study on Eclat [18]. We selected all subjects that Symclat
can currently explore; the study on Eclat used 631 imple-
mentations, but approximately 90% of them contain pro-
gramming constructs that Symclat cannot currently explore.
Moreover, RanGen can explore all methods from the sub-
jects, while SymGen may not be able to execute all meth-
ods even for the selected subjects. In UtilMDE, for exam-
ple, the current Symclat implementation can explore only
the two (overloaded) create combinations methods as
the other 67 methods heavily use String objects, float
numbers, or other constructs not currently supported.
Test labeling. We next describe how we label the tests gen-
erated by different techniques. The goal is to determine the
tests that reveal actual faults. We use formal JML specifi-
cations (used in the Eclat study) for each subject and detect

tests that violate the specifications. However, we separate
arithmetic (integer) overflows that several tests for RatPoly
implementations produce. This potential type of fault is in-
herent in all RatPoly subjects because the problem set asked
the students to use a staff-provided class for rational num-
bers based on the fixed-precision numbers (Java 32-bit int
numbers). Since the staff-provided class can overflow, the
student-written code can produce results that differ from
those based on an arbitrary-precision numbers, but these
results should not be considered faults. We instrumented
the staff-provided class to detect overflows during test ex-
ecution, and we discard from the generated tests those that
result in overflows.

We label each test as follows. A test that produces a
JML violation or throws an uncaught exception before an
overflow is labeled as a failing test. Such test reveals a mis-
match between the code and the specification, and in our
study, every such test indeed revealed an actual fault in ei-
ther the code or the specification.
Distinct faults. We also determine for each test suite the
number of distinct specification violations. The rationale is
that the number of distinct faults revealed by a test suite may
be more valuable than the number of fault-revealing tests.
For example, a test suite with ten fault-revealing tests that
all reveal the same fault may be less useful than a test suite
with ten tests of which only two reveal faults but distinct
faults. Each test that violates a specification either throws
an uncaught exception (violating the implicit specification
that the code should not throw uncaught exceptions) or vio-
lates some explicit part of the specification (object invariant,
internal method pre-condition, or method post-condition).

We label two tests as having the same violation if they
either violate the same part of the specification at the same
program point or throw the same exception at the same pro-
gram point. This is similar to the reduction described in
Section 2 but uses JML specifications instead of the inferred
operational models. We found this approach to be precise
for our experiments: two failing tests are labeled with dis-
tinct specification violations if and only if these tests reveal
distinct actual faults in the subjects.

3.2. Comparison of Techniques

Figure 2 shows the results of running the subjects in
all four pairs with reduction of generated test suites. The
columns show the number of non-arithmetic-overflow tests
generated (TG); the number of failing tests (FT) that ei-
ther violate JML specifications or raise uncaught excep-
tions; and the precision (Pr), which shows the ratio of fault-
revealing tests, FT/TG. The number of false positives is the
complement of the precision, TG-FT. The FT column also
shows the number of distinct faults in the parentheses. Since
Eclat uses random generation, its results depend on the ran-



subject RanGen+OpModel RanGen+UCExp SymGen+OpModel SymGen+UCExp
#TG #FT Pr. #TG #FT Pr. #TG #FT Pr. #TG #FT Pr.

UBStack (8) 3.0 2.0(2.0) 0.67 2.0 2.0(2.0) 1.00 3 2(2) 0.67 2 2(2) 1.00
UBStack (12) 1.0 1.0(1.0) 1.00 2.0 2.0(2.0) 1.00 1 1(1) 1.00 2 2(2) 1.00

UtilMDE 10.8 1.7(1.7) 0.15 11.3 1.6(1.6) 0.14 2 0(0) 0.00 10 0(0) 0.00
DLList 5.0 0.9(0.9) 0.18 5.0 1.0(1.0) 0.20 4 0(0) 0.00 4 0(0) 0.00

E OneWayList 0.0 0.0(0.0) - 15.0 0.4(0.4) 0.03 4 0(0) 0.00 4 0(0) 0.00
OneWayList 6.0 0.9(0.9) 0.15 14.8 1.0(1.0) 0.07 6 0(0) 0.00 6 0(0) 0.00

SLList 3.0 0.8(0.8) 0.26 7.0 0.9(0.9) 0.13 6 0(0) 0.00 6 0(0) 0.00
TwoWayList 0.0 0.0(0.0) - 22.3 3.0(1.0) 0.14 2 0(0) 0.00 2 0(0) 0.00

s5 0.1 0.0(0.0) 0.00 1.5 0.3(0.3) 0.15 1 0(0) 0.00 7 1(1) 0.14
s7 20.0 0.8(0.5) 0.04 17.1 0.2(0.2) 0.01 4 1(1) 0.25 9 1(1) 0.11
s13 0.9 0.4(0.4) 0.43 1.5 0.3(0.3) 0.15 2 0(0) 0.00 7 1(1) 0.14
s14 2.3 1.0(0.6) 0.38 3.1 1.3(1.0) 0.42 3 0(0) 0.00 7 0(0) 0.00
s21 0.0 0.0(0.0) - 14.0 5.4(1.1) 0.39 0 0(0) - 12 1(1) 0.08
s24 0.7 0.6(0.5) 0.92 1.4 0.3(0.3) 0.15 2 1(1) 0.50 7 1(1) 0.14
s33 2.0 2.0(1.0) 1.00 3.0 1.9(1.0) 0.64 3 1(1) 0.33 8 1(1) 0.12
s39 1.1 1.0(1.0) 0.95 1.9 0.9(0.9) 0.45 1 0(0) 0.00 6 0(0) 0.00
s46 0.3 0.3(0.3) 1.00 1.5 0.3(0.3) 0.15 2 1(1) 0.50 7 1(1) 0.14

Total (17 subjects) 56.2 13.4(11.6) 0.51 124.4 22.8(15.3) 0.31 46 7(7) 0.20 106 11(11) 0.17
4 other subjects 0 0(0) - 0 0(0) - 0 0(0) - 0 0(0) -

40 other subjects 57 0(0) 0 86 0(0) 0 53 0(0) 0 234 0(0) 0

Figure 2. Comparison of generation+classification pairs with reduction of test suites.

dom seed, and the columns for RanGen show the average
results for ten different seeds.

For 4 of the 61 subjects, no pair generated any test. For
40 subjects, the pairs generated some tests but no test re-
sulted in any failure. These 44 subjects appear at the bottom
of Figure 2; the fewer tests (false positives) a pair generates
for these subjects, the better it is. Figure 2 shows detailed
results for the 17 subjects for which at least one pair found
a fault.

We next discuss the fault-revealing effectiveness of
RanGen and SymGen generation techniques with OpModel
and UCExp classification techniques.
Complementary test generation techniques. RanGen and
SymGen are complementary techniques for test generation.
SymGen is deterministic and does not depend on random
seeds. However, SymGen often cannot explore code (which
contains certain programming constructs); we ran Symclat
on only 61 out of 631 subjects from the Eclat study [18],
and Symclat cannot even explore all the code from these
10% of subjects. A better implementation of SymGen could
explore more subjects, but SymGen cannot explore arbi-
trary code due to the theoretical limitations of the under-
lying technology (incompleteness of theorem provers and
constraint solvers due to undecidability). RanGen can, in
contrast, explore all code and thus reveal some faults that
SymGen misses. However, which faults RanGen reveals
depends on the random seed used to generate test inputs.
Sensitivity of RanGen. RanGen is sensitive to the choice
of random seed. For some subjects, RanGen generates a
fault-revealing test for every seed (e.g., s33); sometimes,
this is because RanGen generates (almost) the same re-
sults for all ten seeds (e.g., UBStack 8/12). In other
cases, RanGen generates a fault-revealing test only for some
of the ten seeds (3–9 in RanGen+OpModel and 2–9 in

RanGen+UCExp). Consider, for example, the subject code
s7. RanGen+OpModel generates on average 20 tests for this
subject, i.e., total of 200 tests for ten seeds. Only 8 of these
200 tests reveal a fault, and for only five of the ten seeds is
there at least one test that reveals the fault.
Missing faults. RanGen can miss faults for two reasons:
(i) it does not generate a fault-revealing method sequence,
or (ii) it does generate a potentially fault-revealing sequence
but does not generate the appropriate argument values. For
example, subjects s5, s13, s24, and s46 have a fault in the
method div of the rational polynomial class. RanGen does
not detect the fault for every seed as it does not select the
appropriate values for the method arguments in the tests. As
another example, subject s37 has a fault in the method add,
but revealing this fault requires that the NaN polynomial be
passed to add. RanGen does not often generate a method
sequence that builds the NaN polynomial.

SymGen misses faults (that RanGen finds) for two main
reasons: (i) it does not generate long enough method se-
quences, or (ii) it is given incomplete drivers and wrappers.
For example, RanGen detects a real fault in UtilMDE as
create combinations ends up in an infinite recursion
when two of its arguments are 0. RanGen detects this sce-
nario because the test execution results in a stack overflow.
SymGen misses the fault as the stack overflow requires a
long execution sequence. RanGen also reveals a fault in
UtilMDE in the method replaceString, which gets into
an infinite loop when one of the arguments is the empty
string. In this case, the execution exceeds the maximum
heap size due to the allocation of strings in the loop. (With-
out heap overflow, RanGen would instead report that the
infinite-loop execution timed out.) As discussed, SymGen
does not even explore methods with string arguments. For
s21 and s33 (without reduction, Figure 3), RanGen reveals



a fault that requires a short execution, but SymGen misses
this fault as its exploration time expires before reaching this
particular execution.

As another example, for 5 of the 12 subjects from
the textbook and JML samples (DLList, E OneWayList,
OneWayList, SLList, and TwoWayList), RanGen gener-
ates some tests that violate the formal JML specifications.
All these tests give as the input to the toString meth-
ods a list that contains itself, which leads to infinite recur-
sion. Since the pre-conditions for toString do not specify
that the list cannot contain itself, these tests violate (total)
JML specifications. But, the preferred way to correct these
“faults” seems to be changing the specification (e.g., to be
partial) rather than the implementation. SymGen misses
all these faults since the drivers and wrappers (discussed
in Section 2.2) do not allow a list to be added to itself.
False positives. All techniques generate some false posi-
tives, i.e., tests that do not actually reveal faults. For exam-
ple, for UBStack 8, both +OpModel pairs generate three
tests, two of which expose two different faults, but one of
which is a false positive due to an incorrectly inferred in-
variant. For UBStack 12, each +OpModel pair generates
only one test that detects an actual fault. This increases the
precision of the test suite but also misses the other fault.
UBStack 12 differs from UBStack 8 only in the tests from
which the operational model is inferred. (Thus, the results
for these two subjects differ only for the two pairs based on
OpModel.) The operational model for UBStack 12 includes
a too strong pre-condition. Namely, the pre-condition states
that the argument of equals should not be null, so the
tests that set it to null are classified as illegal, although
they are legal and fault-revealing.

As another example, the pairs based on RanGen gen-
erate some false positives for DLList, E OneWayList,
OneWayList, SLList, and TwoWayList. This is due to
the weak method pre-conditions (in the inferred operational
models for OpModel and true for UCExp). For instance,
an actual specification for OneWayList is that a read of the
next element of a list should throw an exception if the it-
erator is past the end of the list. This property is present
only in the formal specification, and thus some tests clas-
sified with uncaught exceptions lead to this exceptional but
correct behavior.
Complementary test classification techniques. UCExp
and OpModel are complementary techniques for test clas-
sification. In the experiments, UCExp revealed more faults
than OpModel (total of 15.3+11 to 11.6+7 distinct faults).
But each technique revealed some faults that the other
missed. The non-trivial models can make OpModel better
or worse than UCExp. In general, OpModel is worse when
it labels as illegal a test that violates an incorrectly inferred
pre-condition although the test is legal and throws an ex-
ception, and OpModel is better when it labels as potentially

fault-revealing a test that violates a post-condition although
the test does not throw an exception.

3.3. Reduction

Figure 3 shows the results of running the subjects in all
four pairs without reduction of generated test suites. We
highlight the cases where test suites without reduction re-
veal more faults than with reduction. But test suites with-
out reduction often have lower precision than with reduc-
tion (although the precision can be also higher, depending
on the quality of the inferred invariants). In other words,
reduction decreases the fault-revealing effectiveness, while
slightly increasing the (average) precision. More impor-
tantly from the user’s perspective, reduction decreases the
absolute number of tests that need to be manually inspected.

We next discuss the cases when reduction removes fault-
revealing tests. For four subjects (UtilMDE, s7, s14, and
s33) and various generation+classification pairs, reduction
removes all tests that reveal one of the faults but still keeps
some tests that reveal other faults. For two subjects (s37
and s42), reduction removes all fault-revealing tests. (Thus,
these subjects have no separate rows in Figure 2.) Note also
that reduction removes all tests for some random seeds in
pairs based on RanGen. For example, for E OneWayList
and RanGen+UCExp, the fault is revealed for all ten seeds
without reduction but for only four seeds with reduction.
Reduction removes fault-revealing tests because the in-
ferred operational model for OpModel or true for UCExp
differ from the actual specification for the code; two tests
that do (not) violate the model in an equivalent way can vi-
olate the actual specification in different ways.

We finally discuss the effect of reduction on the preci-
sion and the size of generated test suites. For all four pairs,
reduction improves the average precision for subjects with
faults. For example, for RanGen+UCExp, the precision
goes from 0.20 to 0.31; to find a fault-revealing test the user
needs to inspect, on average, about 3 tests (with reduction)
instead of 5 tests (without reduction). This improvement is
important, but an even bigger improvement is for subjects
without faults. For them, the precision is 0, and the user
needs to inspect all generated tests to determine that none
reveals a fault. Reduction decreases the number of tests an
order of magnitude, from 723–4,805 (for various pairs with-
out reduction) to 53–234 (for various pairs with reduction).

3.4. Improving Test Generation

We give several suggestions for improving the existing
techniques and tools for test generation and classification.
We also give suggestions for using such tools.

RanGen may be improved by running it multiple times;
it finds nearly all faults that SymGen does, for at least one



subject RanGen+OpModel RanGen+UCExp SymGen+OpModel SymGen+UCExp
#TG #FT Pr. #TG #FT Pr. #TG #FT Pr. #TG #FT Pr.

UBStack (8) 29.7 19.6(2.0) 0.66 17.0 17.0(2.0) 1.00 118 75(2) 0.64 91 90(2) 0.99
UBStack (12) 10.9 10.9(1.0) 1.00 17.0 17.0(2.0) 1.00 26 25(1) 0.96 91 90(2) 0.99
*UtilMDE* 166.4 14.5(1.8) 0.09 174.9 22.7(*2.2*) 0.13 2 0(0) 0.00 10 0(0) 0.00

DLList 332.8 18.0(1.0) 0.06 299.8 18.3(1.0) 0.08 75 0(0) 0.00 75 0(0) 0.00
E OneWayList 0.0 0.0(0.0) - 803.6 10.6(1.0) 0.02 235 0(0) 0.00 235 0(0) 0.00
OneWayList 247.5 18.9(1.0) 0.08 715.7 14.3(0.9) 0.02 1,973 0(0) 0.00 1,973 0(0) 0.00

SLList 244.7 34.8(1.0) 0.14 560.6 29.6(1.0) 0.06 1,983 0(0) 0.00 1,983 0(0) 0.00
TwoWayList 0.0 0.0(0.0) - 889.2 29.8(1.0) 0.04 61 0(0) 0.00 61 0(0) 0.00

s5 0.1 0.0(0.0) 0.00 26.3 0.4(0.3) 0.02 28 0(0) 0.00 135 2(1) 0.01
*s7* 349.2 22.4(1.0) 0.06 326.9 20.0(1.0) 0.06 134 44(1) 0.33 698 218(*2*) 0.31
s13 1.6 0.7(0.4) 0.50 26.3 0.4(0.3) 0.02 16 0(0) 0.00 73 1(1) 0.01

*s14* 8.6 3.0(0.7) 0.34 33.0 4.0(1.0) 0.12 34 8(*2*) 0.24 112 25(*1*) 0.22
s21 0.0 0.0(0.0) - 64.9 27.9(1.1) 0.42 0 0(0) - 317 70(1) 0.22
s24 0.8 0.7(0.6) 0.92 26.2 0.4(0.3) 0.02 11 1(1) 0.09 53 1(1) 0.02

*s33* 26.0 25.5(*1.2*) 0.97 57.0 30.8(*1.4*) 0.53 32 7(1) 0.22 126 15(1) 0.12
*s37* 0.3 0.0(0.0) 0.00 25.8 0.0(0.0) 0.00 24 0(0) 0.00 111 1(*1*) 0.01
s39 12.1 11.7(1.0) 0.97 38.3 12.4(0.9) 0.31 20 0(0) 0.00 54 0(0) 0.00

*s42* 235.5 0.1(*0.1*) 0.00 238.7 0.0(0.0) 0.00 25 0(0) 0.00 177 0(0) 0.00
s46 0.4 0.4(0.3) 1.00 26.3 0.4(0.3) 0.02 31 4(1) 0.13 301 2(1) 0.01

Total (19 subjects) 1,666.6 181.2(13.1) 0.42 4,367.5 256.0(17.7) 0.20 4,828 164(9) 0.14 6,676 515(14) 0.15
4 other subjects 0 0(0) - 0 0(0) - 0 0(0) - 0 0(0) -
38 other subjects 723 0(0) 0 1,546 0(0) 0 1,417 0(0) 0 4,805 0(0) 0

Figure 3. Comparison of generation+classification pairs without reduction of test suites.

of the ten seeds. (It does not find the fault in s33.) Running
RanGen multiple times increases generation time; in our ex-
perimental setup, each run of RanGen takes about as much
time as the run of SymGen. But a more important ques-
tion for the future work is how to combine the test suites
generated by multiple runs in order to reduce the user time
necessary to inspect the combined test suite.

RanGen may be improved by biasing its selection to
boundary and special values that are more likely to reveal
faults. For instance, in RatPoly subjects, RanGen should
bias selection to 0 for integers and to NaN for polynomials
and not select the values uniformly from a large pool. The
tools should allow the users to specify such values. The
tools may also try to determine such values by static or dy-
namic analysis of code.

RanGen may be improved by selecting values that satisfy
certain relationships. For example, to generate an argument
value in a method sequence, RanGen can bias its selection
to the values already selected in that sequence. This leads
to selecting equal values in a sequence. The tools should
allow the users to provide heuristics for selection [5].

In addition to biasing selection of inputs to method calls,
RanGen may benefit from biasing the selection of method
calls. For example, an error that RanGen was unable to find
for several seeds requires using two equivalent polynomi-
als as arguments to a method call. Equivalent polynomials
can be obtained by repeating a sequence of method calls
that creates one polynomial, but purely random generation
is unlikely to produce such repetition.

SymGen may be improved by combining it with
RanGen. A recent proposal is to do that by executing code
with both symbolic values and random values [3, 11, 21].

But there are many other ways, such as randomly choosing
method sequences and then symbolically exploring the ar-
gument values or exhaustively choosing the sequences but
randomly choosing the argument values, as suggested else-
where [33]. It would be also important to empirically com-
pare these technique with (biased) random generation for a
large number of subjects.

Users should use both UCExp and OpModel classifica-
tions with the tools. These two classifications complement
each other and can be easily used in any tool that provides
OpModel. (Recall that UCExp is just a special case with
all model properties being true.) Additionally, it is helpful
when users can provide some actual specifications as they
enable more precise classification. In general, tools may
combine any number of classifiers in addition to UCExp and
OpModel and classify a test as potentially fault-revealing as
long as any of the classifiers finds it fault-revealing; such
combination increases the number of revealed faults, but it
would be necessary to evaluate the size of the generated test
suites and their precision.

Users should initially apply reduction as it increases the
precision of the generated test suites and decreases their
size. But reduction can miss faults, so when more resources
are available for testing, users should also inspect the entire
generated test suites, without reduction. We leave it as the
future work to evaluate what results users would achieve in
different inspection scenarios.

3.5. Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject programs, faults, manually written



test cases, and testing tools are representative of true prac-
tice. The subject programs except for UtilMDE are rela-
tively small. These threats could be reduced by more ex-
periments on a larger set of subjects and tools. The threats
to internal validity are implementation effects that can bias
our results. Faults in our two tools might cause such effects.
To reduce these threats, we manually inspected the results
for all subject programs for SymGen and for one of the ran-
dom seeds for RanGen. One threat to construct validity is
that our experiments use the violations of manually written
JML specifications as symptoms of fault exposure. These
JML specifications may be weak and thus miss some faults
that are in fact exposed by the generated tests.

4. Related Work

There are numerous comparisons of techniques for test
generation (or selection), and many comparisons take ran-
dom testing as the baseline. For example, Duran and
Ntafos [7] and Hamlet and Taylor [13] empirically com-
pared random testing and partition testing such as path test-
ing. They observed that random testing could be a cost-
effective alternative to path testing. Frankl and Weiss [10]
experimentally compared branch testing, dataflow testing,
and random testing. They observed that branch or dataflow
testing performed somewhat better than random testing on
most subjects. Weyuker and Jeng [31] analytically showed
that partition testing is more effective than random testing
when at least one subdomain of the partition has a high con-
centration of fault-revealing inputs. Our empirical compar-
ison considers test generation and test classification tech-
niques (with and without reduction).

There are several comparative studies of static fault-
finding tools. Rutar et al. [19] compared five such tools
against five open source projects. Their results show that
none of the five tools strictly subsumes another in terms of
the fault-finding capability. They proposed a meta-tool for
combining and correlating the outputs of these five tools.
Wagner et al. [29] did a case study that applied three static
fault-finding tools as well as code review and manual test-
ing to several industrial projects. Their study showed that
the static tools predominantly find different faults than man-
ual testing but a subset of faults found by reviews. They
proposed a combination of these three types of techniques.
Zitser at al. [35] applied five static fault-finding tools on
three open source projects and found the average rates of
false positives produced by these tools to be high. Our
comparative study focuses on different (dynamic) test gen-
eration and classification techniques, not static fault-finding
tools.

Symclat developed in this research extends the work
on using inferred operational models to guide test-input
generation and execution classification. Harder et al. [15]

developed the operational difference technique that auto-
matically generates or augments an existing test suite by
adding test cases until the inferred operational model stops
changing. Hangal and Lam [14] developed the DIDUCE
tool that continuously checks a program’s behavior against
the incrementally inferred operational models. Jov [34]
and Eclat [18] tools automatically use models inferred by
Daikon [8]. Agitar Agitator [1], a commercial tool, also in-
fers operational models from test executions but suggests
these models to developers to manually and selectively pro-
mote them to assertions. In contrast to these previous tools,
Symclat uses symbolic execution to systematically explore
the code under test and the operational models.

Various test-generation tools have also been developed
for object-oriented programs that are not equipped with
specifications. For example, JCrasher [6] generates ran-
dom method sequences for producing non-primitive method
arguments and some default values for primitive argu-
ments. Visser et al. [26] used the Java PathFinder model
checker [25] to systematically explore the object-state space
of the class under test, concretely or symbolically. Ros-
tra [32] concretely explores the object-state space in a
similar way, while Symstra [33] uses symbolic execution
and prunes state exploration based on the symbolic-state
comparisons. More recently, several testing tools for C
programs—DART [11], EGT [3], and CUTE [21]—have
been developed to combine random generation and sym-
bolic execution. There are also many approaches to auto-
mated test generation not based on random or symbolic exe-
cution. As just two examples, Ferguson and Korel proposed
the chaining approach [9], and Gupta et al. [12] proposed
the use of iterative relaxation method. Our study considers
only random and symbolic execution, but it also considers
classification. Our tool Symclat improves on the existing
tools (based on symbolic execution) by using the inferred
operational models for classification.

5. Conclusions

We have presented an empirical comparison of auto-
mated generation and classification techniques for object-
oriented unit testing. Specifically, we have compared pairs
of test-generation techniques based on random generation
or symbolic execution and test-classification techniques
based on uncaught exceptions or operational models. Our
study shows that the techniques are complementary in re-
vealing faults. Therefore, the tools and users should apply
several techniques on the same code under test. In the fu-
ture, the comparison should be extended to more generation
and classification techniques. Also, it would be useful to
investigate how to combine various techniques to increase
the effectiveness of revealing faults while not decreasing the
precision of generated test suites.
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