
Speculation Invariance (InvarSpec): Faster Safe
Execution Through Program Analysis

Zirui Neil Zhao∗, Houxiang Ji∗, Mengjia Yan†, Jiyong Yu∗, Christopher W. Fletcher∗,
Adam Morrison‡, Darko Marinov∗, Josep Torrellas∗

∗University of Illinois at Urbana-Champaign †Massachusetts Institute of Technology ‡Tel Aviv University
{ziruiz6, hj14}@illinois.edu, mengjiay@mit.edu, {jiyongy2, cwfletch}@illinois.edu,

mad@cs.tau.ac.il, {marinov, torrella}@illinois.edu

Abstract—Many hardware-based defense schemes against
speculative execution attacks use special mechanisms to protect
instructions while speculative, and lift the mechanisms when
the instructions turn non-speculative. In this paper, we observe
that speculative instructions can sometimes become Speculation
Invariant before turning non-speculative. Speculation invariance
means that (i) whether the instruction will execute and (ii) the
instruction’s operands are not a function of speculative state.
Hence, we propose to lift the protection mechanisms on these
instructions early, when they become speculation invariant, and
issue them without protection. As a result, we improve the
performance of the defense schemes without changing their
security properties.

To exploit speculation invariance, we present the InvarSpec
framework. InvarSpec includes a program analysis pass that
identifies, for each relevant instruction i, the set of older in-
structions that are Safe for i—i.e., those that do not prevent i
from becoming speculation invariant. At runtime, the InvarSpec
micro-architecture loads this information and uses it to determine
when speculative instructions can be issued without protection.
InvarSpec is one of the first defense schemes for speculative
execution that combines cooperative compiler and hardware
mechanisms. Our evaluation shows that InvarSpec effectively
reduces the execution overhead of hardware defense schemes. For
example, on SPEC17, it reduces the average execution overhead
of fence protections from 195.3% to 108.2%, of Delay-On-Miss
from 39.5% to 24.4%, and of InvisiSpec from 15.4% to 10.9%.

Index Terms—Speculative execution defense, Program analysis,
Speculation

I. INTRODUCTION

Speculative execution attacks [5], [9], [16], [23], [24], [25],
[28], [31], [40], [44], [49] exploit a fundamental vulnerability
of modern computer architectures. In these attacks, attack-
ers craft sequences of transient instructions—those that are
fetched and executed but do not commit—that leak informa-
tion by changing the state of structures such as caches.

Since the initial vulnerability disclosures, there has been a
flurry of work to block these attacks with a range of schemes
that vary in complexity and performance overhead (e.g., [1],
[2], [4], [8], [17], [20], [22], [26], [37], [38], [42], [43], [51],
[53]). On the one hand, there are software schemes such as
load hardening [8]. These schemes are simple to implement
but have high overhead and, typically, limited coverage. On
the other hand, there are many hardware proposals (e.g., [1],
[4], [20], [22], [26], [37], [38], [42], [51], [53]), which have

lower performance overhead. Within these schemes, there is
a range of solutions with different emphases on complexity
versus performance overhead. At this point, it is unclear which
schemes will be adopted commercially. However, it is likely
that whatever solutions are adopted, they will have to carefully
balance coverage, complexity, and performance overhead.

Several of these hardware schemes rely on special mecha-
nisms that protect instructions while they are speculative; when
the instructions turn non-speculative, the protections are lifted.
For example, speculative loads in InvisiSpec [51] are issued
invisibly and are followed-up later with a second memory
access. As another example, speculative loads in Delay-On-
Miss (DOM) [26], [38] are allowed to access only the L1
cache; when the loads become non-speculative, they can
access other cache levels. Finally, in a basic defense scheme
that places fences to prevent the execution of speculative
instructions, such fences can be removed as the instructions
become non-speculative.

In this class of schemes, lifting the hardware protection
earlier, while the instruction is still speculative, would increase
the scheme’s performance. For example, in InvisiSpec, the
second memory access would be issued sooner or sometimes
not at all; in DOM, loads would be stalled on L1 misses
for shorter periods or sometimes not at all; in fence-based
schemes, instructions would be stalled on fences for shorter
time or sometimes not at all.

In this paper, we make the observation that a speculative
instruction can become Speculation Invariant at some point be-
fore turning non-speculative. By this, we mean that speculative
instruction i reaches a point when (i) whether i will execute
is not a function of speculative state, and (ii) the operands of
i are not a function of speculative state. When a speculative
instruction is speculation invariant and its operands are ready,
we say it reaches its Execution-Safe Point (ESP).

Figure 1 shows two simple examples of speculation invari-
ant loads. Consider the Futuristic threat model [51], where all
instructions remain speculative—and therefore squashable —
until they reach the Reorder Buffer (ROB) head. Figure 1(a)
shows a speculative load following an unresolved branch
where the load address x is not dependent on any of the two
branch paths. We say that ld x is speculation invariant and,
as soon as x is ready, speculative ld x reaches its ESP. No

matter which direction the branch finally takes, ld x will always
execute and access the same address. Figure 1(b) shows the
same speculative load following an earlier load whose return
data y does not directly or indirectly affect the register that ld x
uses to generate the x address. Once again, ld x is speculation
invariant and, as soon as x is ready, ld x reaches its ESP.

ld x

y = ld

ld x

(b)(a)

Then
Path

Branch

Else
Path

Fig. 1: Examples of speculation invariance.

When a speculative instruction reaches its ESP, we propose
to lift any protection and execute the instruction. In the previ-
ous examples, we propose to send the load request to memory
without protection. With this strategy, the performance of
any of the previous protection schemes will improve. At
the same time, the protection schemes’ security properties
will not change: executing a speculation invariant instruction
without protection will not reveal any more secrets than the
underlying hardware protection scheme would reveal with the
non-speculative execution of the instruction.

Unfortunately, hardware structures alone cannot exploit
these insights because the hardware is only aware of the
current speculative path being executed and does not reason
about all possible paths. Instead, we need a program analysis
infrastructure to analyze the program and inform the hardware
of the speculation invariance of instructions.

In this paper, we introduce InvarSpec, a framework to
exploit speculation invariance for higher performance without
hurting security. InvarSpec includes a program analysis pass
that identifies, for each instruction i under protection, the set
of older instructions (e.g., the branch and the load y = ld in
Figure 1) that are Safe for i—i.e., those instructions that do not
prevent i from becoming speculation invariant. At runtime, the
InvarSpec micro-architecture loads this information and uses
it to identify when speculative instructions can execute early,
without protection.

InvarSpec is one of the first defense schemes against spec-
ulative execution attacks that combines cooperative compiler
and hardware mechanisms. It consists of an analysis pass for
binaries, currently implemented for x86 binaries, and pipeline
micro-architecture that uses this information at runtime.

To evaluate InvarSpec, we apply its analysis pass on
the SPEC17 and SPEC06 programs and model its micro-
architecture in a cycle-level simulator. Our results show that
InvarSpec is effective. On average, using InvarSpec reduces
the execution overhead of fence-based protection from 195.3%
to 108.2%, the execution overhead of DOM from 39.5% to
24.4%, and the execution overhead of InvisiSpec from 15.4%
to 10.9%.

In summary, the paper makes the following contributions:

• Presents Speculation Invariance to improve the perfor-
mance of hardware security schemes against speculative
execution attacks without hurting their security properties.

• Develops and evaluates the InvarSpec analysis pass.
• Develops the InvarSpec micro-architecture and uses it, to-

gether with the analysis pass, to improve the performance
of three existing hardware security schemes.

II. BACKGROUND & KEY CONCEPTS

A. Speculative Execution Attacks

Transient instructions. On an out-of-order processor, some
instructions may execute but not subsequently commit; they
get squashed and the processor state is rolled back to before
their execution. These bound-to-squash instructions are called
transient. For example, an instruction may be transient due to
being in the shadow of a branch misprediction.
Attack structure. In a speculative execution attack, an at-
tacker exploits the side-effects of transient instructions to learn
information it would not be able to learn from a non-transient
correct execution. A typical attack consists of a transient
load accessing some secret value, which is then forwarded to
transmitter instruction(s) (or transmitters) that leak the secret
over a covert channel [22], [53]. These steps are collectively
referred to as a disclosure gadget [19].

In general, a transmitter is any instruction whose execution
creates operand-dependent micro-architectural resource usage
that reveals the operand (even if only partially) [19], [22], [53].
The prototypical example is a load instruction, which causes
address-dependent changes to the state of the cache hierarchy
by filling and evicting cache lines. As a result, the cache line
accessed by the load can be inferred using techniques such as
FLUSH+RELOAD [52] or PRIME+PROBE [34].

Figure 2 shows Spectre V1 [24], an example of a transient
execution disclosure gadget. It exploits the misprediction of a
bounds-checking branch to perform an out-of-bounds array
load (Line 2), which can read a secret from any memory
location. A transmit load then leaks the secret (Line 3).

1 if (x < array1 size) { // mispredicted branch
2 uint8 s = array1 [x]; // access load
3 uint8 y = array2 [s ∗ 64]; // transmit load
4 }

Fig. 2: Spectre V1.

Security violations. Attacks are categorized by the relation-
ship between the hardware protection domains of the disclo-
sure gadget and the victim [19]. In a domain-bypass attack,
the gadget and victim are in different domains. An example
is Meltdown [28], where a userspace process reads OS kernel
memory. In a cross-domain attack, the gadget resides in the
victim’s domain (which differs from the attacker’s domain,
which is from where the attacker monitors the covert channel).
An example is a network server whose code inadvertently
contains a Spectre gadget that can be passed a malicious

input [24]. Finally, in an in-domain attack, the attacker cir-
cumvents software sandboxing. For example, an array access
in JavaScript (compiled by a browser) is subject to a bounds
check, producing code such as in Figure 2. Mispredicting the
bounds check allows the attacker to circumvent the bounds
check.

B. Hardware Defenses

To defend against speculative execution attacks, researchers
have proposed hardware-based schemes. Several of these
schemes (at least [1], [20], [26], [38], [51]) share a common
general approach. First, they deploy a hardware mechanism
that protects the relevant transmitter instructions. This protec-
tion prevents a transmitter from leaking its operands, blocking
the side channel. However, it imposes a performance cost.
Later, the protection is lifted when the transmitter’s operands
become safe to reveal. This execution point is called the
instruction’s Visibility Point (VP) [51]. When an instruction
reaches the VP depends on the scheme’s threat model, i.e.,
which types of transient instructions it considers.
Threat models. A popular but weak threat model is the
Spectre model. It only considers transient instructions caused
by incorrect control flow. An instruction reaches its VP when
all of its older control-flow instructions have resolved. Another
model is the Futuristic model [51], which we rename to the
more descriptive name Comprehensive model. This model
considers transient instructions caused by all types of squashes.
An instruction reaches its VP only when it cannot be squashed
anymore, which is most often when it reaches the ROB head.
In this paper, we use the Comprehensive model.
Protection mechanisms. Most defense schemes target cache
and TLB-based side channels. They typically apply a variety
of protection mechanisms to loads. For example, InvisiS-
pec [51] and SafeSpec [20] issue speculative loads invisibly.
CleanupSpec [37] records the state generated by speculative
loads, to be able to undo it on a squash. DOM [26], [38]
delays speculative loads that miss in the L1 cache, but allows
L1-hitting speculative loads to execute. CSF [42] prevents
speculative loads from changing visible cache state by in-
serting stalling fences. All of these mechanisms introduce
performance overhead.

III. SPECULATION INVARIANCE

A. Main Idea

As pointed out above, several defense schemes (at least [1],
[20], [26], [38], [51]) use hardware mechanisms to block
leakage while a transmitter is potentially transient and thus
unsafe. If one could disable such mechanisms before the
transmitter reaches its VP and, therefore, execute the trans-
mitter speculatively without protection, one would reduce the
overhead of these defense schemes.

In this paper, we propose a combined compiler and hard-
ware scheme called InvarSpec that allows the lifting of these
protection mechanisms for speculative instructions. The key
idea is to identify Speculation Invariant instructions and allow
them to execute while speculative without protection.

A speculative instruction i becomes Speculation Invariant
when (i) whether i will execute is not a function of specu-
lative state, and (ii) the operands of i are not a function of
speculative state. When an instruction is speculation invariant
and its operands are ready, we say that the instruction reaches
its Execution-Safe Point (ESP).

Intuitively, ESP is the earliest point when speculative in-
struction i can execute and is guaranteed to eventually commit
using the exact same operands—no matter how many times it
is squashed by older instructions due to incorrect speculation.
At an instruction’s ESP, InvarSpec permits its speculative
execution without protection.

Since the definition of speculative instruction depends on
the threat model (e.g., Spectre or Comprehensive as defined
in Section II-B), speculation invariance and ESP for an in-
struction depend on the threat model. For example, assume
that the branch in Figure 1(a) is unresolved and that there is
no unresolved branch between the two loads in Figure 1(b).
In Figure 1(a), ld x is speculation invariant under both Spectre
and Comprehensive; in Figure 1(b), ld x is only speculative
(and speculation invariant) under Comprehensive.

Figure 3(a) shows four points in the lifetime of a load
instruction—which we use as a representative transmitter.
Time increases to the right. The Ready point is when the
load operands become available and the load is ready to
be sent to memory speculatively. Current defense schemes
place restrictions on what the load can do at this point.
Sometime later, the load becomes speculation invariant and
reaches its ESP. At this point, with InvarSpec, the load can
be sent to memory without protection. Later, the load reaches
its VP, where it becomes non-speculative and can be safely
sent to memory without protection. Finally, the load retires.
Effectively, InvarSpec moves the safe point of sending the
load to memory from VP to ESP, reducing the overhead of
the defense mechanism.

Transmitter:

Execution Visibility

Load becomes non−speculative

Load retires

VP RetireESPReady

(a)

Safe Point Point

Possible squashes

Time

Timeline of a load instruction

based on the threat model

under InvarSpec
Load can be sent to memory

Load is ready to be sent to memory
(speculatively)

Reg = ld x

ld 0(Reg)

of x
Inval

(b)

Squashing
Instruction:

Fig. 3: Supporting speculation invariance.

According to the threat model that we use (Section IV),
it is safe to expose the side effects of a speculation invariant
instruction. Its execution does not reveal any more secrets than

the underlying hardware defense scheme would reveal with the
non-speculative execution of the instruction.

B. Definitions

The InvarSpec framework has two important types of
instructions: Transmitters and Squashing ones. Transmitters
(e.g., loads) are inherited from the defense scheme that In-
varSpec augments. Squashing instructions are those that can
cause squashes that may lead to security violations. Squashing
instructions are defined by the threat model. For the Spectre
model, they are branches; for the Comprehensive model, they
are branches, loads, and any instructions capable of causing
exceptions. For example, a load may be squashed on reception
of an invalidation for the address that it loaded, due to the
processor’s memory consistency mechanisms.

In this paper, we use loads as the transmitters and apply the
Comprehensive model. In addition, we focus our analysis on
the most challenging squashing instructions: branches (which
can be mispredicted) and loads (which may be involved in
exceptions or consistency violations and, on re-execution, can
read a new value). Instructions other than loads may also be
involved in squashes due to exceptions, but they are much
easier to handle. We discuss exceptions in Section III-E.

Any instruction i that follows a squashing one and that
has executed speculatively, may have to be squashed. Only
if i had reached its ESP when it executed, it is guaranteed
that, even after the squash, i will be re-executed and will use
the same operands. For this reason, in InvarSpec, it is key to
identify when a transmitter reaches its ESP. Only then can the
transmitter execute without protection.

If InvarSpec only uses hardware support to identify when
a transmitter reaches its ESP, it produces conservative results.
The hardware uses the following algorithm.

A transmit instruction i reaches its ESP when its operands
are ready and each of its older squashing instructions in the
ROB has: (i) executed and (ii) produced its final result. As
a shorthand for conditions (i) and (ii), we will say that the
older squashing instruction has reached its Outcome Safe
Point (OSP)—i.e., the point where its result will not change
irrespective of any future squashes.

When has an executed squashing instruction “produced its
final result”? If we do not consider loads, we can say that non-
load squashing instructions have produced their final result
when all older branches have resolved. However, loads work
differently. A load may reach its ESP (because it is also a
transmitter) and execute, then get squashed, and then, as it
re-executes with the same operand (i.e., the memory address),
it may read a different value from memory—if another thread
has written to the same location in between. An example is
shown in Figure 3(b), where ld x reads a value into Reg,
then gets squashed by an invalidation of x and then, as it re-
executes, reads a different value from location x. Consequently,
for a load to reach its OSP, it has to reach its ESP, execute,
and then reach a point where it cannot be squashed anymore—
typically, the ROB head.

Therefore, for the TSO-based x86 architecture and squash-
ing instructions that we consider, the condition for an executed
squashing instruction i to reach its OSP is as follows. First,
if i is not a load, i reaches its OSP when (i) all the older
branches in the ROB are resolved and (ii) there is at most one
older load in the ROB, which is at a point where it cannot be
squashed anymore. Second, if i is a load, i reaches its OSP
when is at a point in the ROB where it cannot be squashed
anymore. As indicated before, under the Comprehensive threat
model, loads cannot be squashed anymore only when they are
at the ROB head.

The appendix describes how to handle store-load aliasing.

C. Using Program Analysis Information

A program analysis pass can help the hardware algorithm
just described to be more aggressive. It can identify, for each
transmitter, the set of older squashing instructions that are Safe
for the transmitter.

Safe instructions for an instruction i are older squashing in-
structions that, even if they have not executed and generated
their final result (i.e., they have not reached their OSP), they
cannot prevent i from becoming speculation invariant.

Intuitively, the transmitter can become speculation invariant
despite the fact that these older squashing instructions have
not yet completed. Consequently, the hardware does not need
to consider them when determining whether the transmitter is
speculation invariant.

What are safe branches and safe loads for the x86 architec-
ture? For a given load i, safe branches are those whose out-
come cannot affect whether i will execute and what operands
i will use. An example was shown in Figure 1(a). For a
given load i, safe loads are those whose return data cannot
affect directly or indirectly the address that i loads from. An
example was shown in Figure 1(b). If, instead, load i is control
dependent on a branch or data dependent on a load, then the
branch or load is not safe for i.

The InvarSpec framework includes an analysis pass that
takes a source or executable program and determines, for each
transmitter, the set of safe squashing instructions. It then places
these instructions’ program counters (PCs) in a Safe Set (SS)
for the transmitter.

At runtime, when a transmitter is about to execute and the
InvarSpec hardware wants to determine whether the transmitter
has reached its ESP, the hardware computes the ESP condition
described in the box of Section III-B. However, the hardware
also reads the transmitter’s SS and prunes from the compu-
tation all of the squashing instructions in the ROB that are
in the SS of the transmitter. Specifically, older branches and
loads that are in the SS do not need to have reached their OSP
for the hardware to conclude that the transmitter has reached
its ESP. As a result, the transmitter reaches its ESP sooner and
can execute sooner.

Finally, from this discussion, it is clear that we want the
squashing instructions j that are not in the SS of the transmitter
to reach their OSP as soon as possible. Sadly, each of them

needs to fulfill the conditions listed on Section III-B, which
require that even older squashing instructions execute and
reach their OSP. Fortunately, we can speed-up this process
if we also generate the SS for each squashing instruction j.
Any instruction in j’s SS can be disregarded as we compute
the conditions for j to reach its OSP. With this insight, we
help j reach its OSP sooner. Hence, InvarSpec also builds the
SS for squashing instructions.

D. The Complete InvarSpec Framework

The InvarSpec framework has two parts: (i) an analysis pass
that generates the SS for transmit and squashing instructions,
and (ii) hardware that, at runtime, loads the SSs and computes
the ESP conditions. The analysis has two levels of support.
The first one, called Baseline, populates the SS of instruction
i with only those squashing instructions that are safe for i no
matter what execution path the program takes.

The second level, called Enhanced, is more aggressive. It
additionally places in the SS of i some squashing instructions
that are not safe for some execution paths—as long as the
hardware can detect when these paths are executed and prevent
i from being executed until i is indeed speculation invariant.
With this support, when the other paths are followed, i can be
executed earlier. Enhanced improves the analysis by exploiting
dynamic path execution behavior.

E. Handling Exceptions

Branches and loads are challenging instructions because,
when they cause or are involved in a squash, they may change
(i) what subsequent program instructions execute, and (ii) what
operand values such subsequent instructions take.

Consider now exceptions. We assume an environment with
no self-modifying code and no attacker-tampered executable.
Here, there are two cases to consider. One is when the OS
is able to service the exception and resume the program
execution. The second case is when the exception causes
program termination.

For the first case, InvarSpec’s analysis only considers ex-
ceptions that involve the re-execution of loads, since loads
may read a new value on re-execution. When only non-load
instructions are involved, the re-execution after the exception
is the same as the execution before. Hence, non-loads involved
in exceptions do not need to be considered by InvarSpec.

The second case is when the exception causes program
termination. In this case, we argue that no harm occurs from
executing any speculation invariant transmitters that appear
after the excepting instruction in program order. The reason is
that such instructions are, by definition, control- and data-flow
independent of the excepting instruction. As a result, unless
the programmer or compiler explicitly places a fence in the
code, the programmer can have no expectation about their
execution order with respect to the excepting instruction—
e.g., a different compiler could have hoisted these speculation
invariant transmitters above the excepting instruction. Over-
all, program-termination exceptions do not affect InvarSpec’s
analysis either.

In summary, InvarSpec’s analysis only needs to be con-
cerned with exceptions that involve the re-execution of loads
and are non terminating. Hence, the analysis of squashing
instructions is limited to branches (which mispredict) and
loads (which are involved in non-terminating exceptions and
consistency violations).

IV. THREAT MODEL

InvarSpec inherits the transmitters and the threat model from
the hardware defense scheme that it augments. In this paper,
we augment defense schemes that use loads as the transmitters
and Comprehensive as the threat model (Section II-B). As
indicated above, in this threat model, the analysis only needs to
focus on two types of squashing instructions: branches (which
can mispredict) and loads (which can re-load a new value
after a non-terminating exception or a memory consistency
violation—i.e., when certain speculatively loaded data receives
an invalidation or suffers a cache eviction). The other type
of instructions involved in exceptions are handled by existing
hardware and the OS. In our model, victim and attacker can
run on different cores or on different SMT contexts of a core.

InvarSpec allows speculative transmitters that are specu-
lation invariant to execute speculatively without protection.
InvarSpec is secure because it does not change the security
properties of the defense scheme that it augments. Indeed, the
execution of these speculative instructions does not reveal any
more information than the underlying defense scheme would
reveal with the non-speculative execution of the instructions.

We are expressly not considering attacks where the exact
timing of when these speculative instructions execute would
create a side channel. The defense schemes discussed [1], [20],
[26], [38], [51] use the same assumption.

We assume that the SS information generated by the anal-
ysis pass for a program and attached to its executable is
correct (e.g., signed and checked for trusted binaries). This
is the case in the cross- and in-domain settings (Section II).
In these settings, the victim is compiled by a benign compiler
that generates a correct SS. In contrast, in the domain-bypass
setting, the program itself is malicious. However, domain-
bypass attacks [28], [33], [39], [44], [45] exploit an imple-
mentation issue—deferred handling of exceptions—which is
fixed in upcoming processors [11], and so are not the focus
of forward-looking defenses. We consider them out of scope.

We further assume that a program’s SS information is not
tampered with. In the cross-domain setting, the victim has
no motivation to tamper with its own SS. In the in-domain
setting, the sandbox prevents any attacker-controlled code
from tampering with the SS (which would be computed or
verified by the sandbox’s trusted runtime system). Moreover,
the integrity of the SS in distributed software packages can
be verified together with the integrity of the entire package,
using well-established integrity verification techniques such as
digital signatures [10], [32]. In all of these cases, if an attacker
is able to tamper with the victim’s SS, then she is able to
modify the binary, which means that she can mount much
more harmful attacks than speculative execution attacks.

V. THE INVARSPEC ANALYSIS PASS

InvarSpec includes an intra-procedural program analysis
pass that accepts as input a program in source code or binary.
Source code is preferred, since it allows a better analysis
because it contains more information. InvarSpec is also told
what kind of instructions are transmitters and squashing ones,
and the threat model. InvarSpec can support multiple threat
models and augment multiple hardware defense schemes.

The analysis pass generates, for each transmit and squashing
instruction i, the set of squashing instructions that are safe
for i. The program counters (PCs) of these safe squashing
instructions form the Safe Set (SS) for i. The InvarSpec pass
has two levels: the Baseline analysis and the more aggressive
Enhanced analysis. We consider each in turn.

A. Baseline Analysis

1) Basic Algorithm: InvarSpec starts by generating the
Program Dependence Graph (PDG) [12] of each procedure in
the program. The PDG represents the dependence relationships
among the instructions in the procedure. Each instruction is a
node, and a directed edge from node i to node j means that i
is directly control or data dependent on j. The edge is labeled
“CD” if it is a control dependence, or “DD” if it is a data
dependence.

The algorithm to generate the PDG of a procedure takes
as inputs the procedure’s control-flow graph (CFG) and data-
dependence graph (DDG). The DDG includes dependencies
through both registers and memory. For each instruction i, the
algorithm adds an outgoing edge to all the instructions d that
i directly depends on.

InvarSpec then computes the SS for each transmit and
squashing instruction in the procedure. Algorithm 1 shows the
pseudo-code for getSS, which computes the SS for instruction
i. getSS takes as inputs i and the CFG, DDG, and PDG of
the procedure. It first computes ancSI, which is the set of all
the squashing instructions that are ancestors of i in the CFG.
These are potential candidates for the SS. Then, Line 3 calls
getIDG, which computes the Instruction Dependence Graph
(IDG) of i.

The IDG of i is a subgraph of the PDG that includes i plus
all the instructions that may affect whether i executes or the
values of i’s source operands. Intuitively, the instructions in the
IDG should not be placed in the SS for i. If i is a load, the IDG
does not contain stores that may update the memory location
that i loads. Such stores are in the DDG because the DDG
captures all the data dependencies, including those that affect
the load’s result; such stores are not in the IDG because they
cannot affect whether i executes or the values of i’s operands.

getIDG first creates an empty IDG graph (Line 9). It then
adds to the graph all the instructions that i has direct control
dependence on or that i’s source operands have direct data
dependence on. Finally, for each such instruction, getIDG calls
addDescGraph, which adds to the IDG all the descendants of
the instruction in the PDG.

Back to getSS, Line 4 collects all the squashing instructions
from the IDG into deps; i itself is not in deps unless it depends

Algorithm 1: Computing the SS for an instruction.

1 Function getSS(i, CFG, DDG, PDG) is
2 ancSI←{a∈ getAnces(CFG, i) | isSquashInsn(a)}
3 IDG← getIDG(i, CFG, DDG, PDG)
4 deps←{d ∈ getDesc(IDG, i) | isSquashInsn(d)}
5 SS← ancSI \deps
6 return SS
7 end
8 Function getIDG(i, CFG, DDG, PDG) is
9 IDG← DirectedGraph()

10 for d in getCtrlDeps(CFG, i) do
11 addNode(IDG, d)
12 addEdge(IDG, i, d, “CD”)
13 addDescGraph(d, IDG, PDG)
14 end
15 for d in getDataDeps(DDG, i) do
16 if ¬(isLoad(i)∧ isStore(d)) then
17 addNode(IDG, d)
18 addEdge(IDG, i, d, “DD”)
19 addDescGraph(d, IDG, PDG)
20 end
21 end
22 end

on itself (due to a program loop). Finally, Line 5 subtracts deps
from ancSI. The result is the SS of i.

2) Procedure Calls: The InvarSpec analysis pass is intra-
procedural and, therefore, only considers dependencies inside
a procedure. Interactions between procedures are handled as
follows. First, consider a caller procedure. InvarSpec conser-
vatively assumes that the callee may modify any memory
location. Hence, InvarSpec treats a procedure call instruction
as a store that may alias with any subsequent loads. For
registers, InvarSpec uses calling conventions, which preserve
some register values.

Second, consider a callee procedure. The SS of an instruc-
tion does not contain PCs of squashing instructions outside
of the procedure. This design conservatively assumes that all
squashing instructions outside of the procedure are unsafe.
While this design is conservative, it is sound.

In a recursive procedure, the caller is the same as the
callee. In this case, more dependencies may exist between
instructions in the procedure than captured by our intra-
procedural analysis. To see why, consider Figure 4. In the
example, instruction ld x is a transmitter, and br is a squashing
instruction that we would prefer to be in the SS of ld x.
However, because the call is recursive, and the branch decides
whether the call is executed, the ld x in the callee depends on
the br in the caller. More generally, if a recursive procedure
call (Line 3) has a control dependence or a data dependence
(e.g., due to call arguments) on a squashing instruction, that
squashing instruction should not be placed in the SS of any
other instruction in the procedure.

Unfortunately, we cannot simply solve the problem via

1 foo () {
2 if (...) { // br
3 foo () ; // call
4 }
5 ld x; // ld
6 }

Fig. 4: Code snippet with a recursive call.

program analysis: because of procedure pointers and indirect
recursive calls, it is typically hard to identify recursive func-
tions. Hence, we use hardware as follows. We still place the
above squashing instruction in the SS of ld x, but the hardware
places a fence at the beginning of each procedure. Such fence
only prevents the execution of subsequent transmitters until
the call instruction reaches the ROB head. With this support,
the callee is not affected by squashing instructions from the
caller. In practice, this support causes only a minor slowdown
to the code run with InvarSpec, since compilers typically inline
short functions in the caller. Our fence support handles not
only direct but also indirect recursion.

3) Soundness & Completeness of Analysis: Our analysis
labels squashing instructions as safe or unsafe. Soundness
considers whether an unsafe squashing instruction may be
labeled as safe, and completeness whether a safe squashing
instruction may not be labeled as such.

The InvarSpec analysis is sound because it closely follows
the definition of speculation invariance within procedures: no
execution path from a safe squashing instruction to a transmit-
ter can affect whether the transmitter executes or what source
operands it uses. When our analysis cannot determine all
execution paths, e.g., due to indirect jumps, it conservatively
does not place the squashing instruction in the SS.

The InvarSpec analysis is not complete, due to at least two
reasons. The first one is that it is not inter-procedural, which
would be expensive and potentially unsound. The second one
is the limitations of pointer-aliasing analysis. Incompleteness
hurts performance but not correctness.

B. Enhanced Analysis

1) Key Insight: The Baseline analysis considers all possible
dependencies when generating an SS. However, some of the
dependencies may not occur on all execution paths. If we could
neglect such dependencies, unless they really do occur, we
could make the SS bigger, which could lead to speed up.

To illustrate the problem, consider the code in Figure 5(a),
where ld3 is a transmitter. Assume that ld1 takes a long time to
execute (e.g., because z misses in the cache), while br resolves
quickly and, typically, is not taken. Figure 5(b) shows the IDG
of ld3. We see that ld3 has a data dependency on ld2; ld2 has
a control dependency on br and a data dependency on ld1.

Given this IDG, using InvarSpec’s Baseline analysis, ld3’s
SS will not contain ld2, br, or ld1 because they are in ld3’s
IDG. They can affect the execution of ld3. Hence, InvarSpec
will not send ld3 to memory until all three instructions have
reached their OSP.

br ld1

ld2

ld3

DDCD

DD

br ld1

ld2

ld3

CD

DD

y = ld z; // ld1

if (a) { // br

x = ld y; // ld2

}

ld x; // ld3

(a) (b) (c)

Fig. 5: Code pattern that can be sped-up: (a) source code, (b)
IDG of transmitter ld3, and (c) pruned IDG of ld3 computed
by the Enhanced analysis.

However, consider the case when br quickly resolves as not
taken, and ld1 takes a long time to complete. In this case, ld3
is stalled by ld1, although ld3 has no runtime dependency on
ld1.

The root of this stall is that InvarSpec’s Baseline analysis
does not consider the true runtime dependencies (i.e., the
Baseline analysis is not flow/path-sensitive [14]). If, instead,
we consider the path taken, we can show that, since ld3
depends on ld1 only if ld2 appears in ROB (i.e., br is taken),
putting ld1 in ld3’s SS is actually safe.

Specifically, if br resolves and ld2 appears in the ROB,
ld2 effectively shields ld3 from ld1: ld3 will not be sent
to memory until ld2 reaches its OSP. By that time, ld1 has
reached its OSP. Hence, the scheme does not need to directly
check for ld1. Placing ld1 in ld3’s SS still results in a correct
execution.

If, instead, br resolves and ld2 does not appear in the ROB,
ld3 can safely execute without waiting for ld1. Hence, putting
ld1 in ld3’s SS keeps correctness and makes the execution
faster than with the Baseline analysis. Overall, in ld3’s IDG,
we can effectively remove the edge to ld1 (Figure 5(c)).

2) Understanding the Enhanced Analysis: Based on the
previous discussion, InvarSpec’s Enhanced algorithm involves
taking the IDG of an instruction i and removing some of
the squashing instructions. The squashing instructions that are
removed can be placed in the SS of i; the ones that remain
cannot.

To understand when a squashing instruction can be removed,
we need to understand when a squashing instruction shields
another. Specifically, given an instruction i that depends on a
squashing instruction j, which in turn depends on a squashing
instruction k, when does j shield i from k?

We have seen in Figure 5(b) that if the edge from j to
k is a data dependence, j shields i, and we can remove the
edge from j to k (i.e., the edge from ld2 to ld1). Instruction
i cannot reach its ESP until j reaches its OSP, and in turn
j cannot reach its ESP (let alone its OSP) until k reaches its
OSP. By the time j reaches its OSP, k cannot affect i anymore.

However, if the edge from j to k is a control dependence,
the behavior is different. An example is the edge from ld2 to
br in Figure 5(b). Branch br controls the value of x that ld3
uses: either the value returned by ld2 or not. ld3 cannot be
sent to memory until br has reached its OSP. If we removed
the edge from ld2 to br, ld3 would not wait for br’s OSP,

which could cause an incorrect execution. Indeed, suppose we
remove it. Then, suppose that br mispredicts as not taken, and
hence ld2 is not in the ROB to shield ld3. In this case, ld3
would be incorrectly sent to memory before br reached its
OSP. Overall, the edge from ld2 to br cannot be removed and
br cannot be in ld3’s SS.

Consider now when the instruction i is control dependent
on a squashing instruction j, to find out what instructions
can j shield. Figure 6(a) shows an example code where ld2
is the transmitter. ld2 is control dependent on b2 which, in
turn, is control dependent on b1 and data dependent on ld1.
Figure 6(b) shows the corresponding IDG.

b1 ld1

b2

ld2

DDCD

CD

b1 ld1

b2

ld2

CD

CD

y = ld z; // ld1

if (a) { // b1

if (y) { // b2

return;

}

}

ld x; // ld2

(a) (b) (c)

Fig. 6: Code pattern to show when edges can be removed.

In this example, b2 shields ld2 from ld1: b2 will not reach
its OSP until ld1 reaches its OSP, by which time ld2 does not
need to consider ld1. Hence, InvarSpec can remove the edge
from b2 to ld1 and put ld1 in ld2’s SS. The code will now run
faster if ld1 takes long to execute, b1 reaches its OSP quickly
and is not taken.

On the other hand, b2 does not shield ld2 from b1. If
we removed the edge from b2 to b1, ld2 would not wait
for b1’s OSP, which could cause an incorrect execution.
Indeed, suppose we remove the edge. Then, suppose that b1
mispredicts as not taken, and hence b2 is not in the ROB
to shield ld2. In this case, ld2 would be incorrectly sent to
memory before b1 reached its OSP. Hence, the b2 to b1 edge
needs to remain in the IDG, and b1 cannot be in ld2’s SS.
Figure 6(c) shows the resulting IDG.

Overall, outgoing DD edges from squashing instructions can
be removed, while CD edges cannot. The fundamental reason
is that runtime data dependencies are path-sensitive—i.e., they
are a function of the execution path followed. Control depen-
dencies are path-insensitive, in that they exist irrespective of
which of the two paths is taken by the execution.

If a DD edge starts from a non-squashing instruction, the
edge cannot be removed. This is because a non-squashing
instruction does not prevent a younger instruction from ex-
ecuting and, therefore, cannot shield it.

3) Enhanced Algorithm: Based on the previous discussion,
we now outline InvarSpec’s Enhanced analysis. Algorithm 2
shows the pseudo-code of function pruneIDG, which takes the
IDG of an instruction i and generates a pruned IDG for i. The
function traverses all the nodes in the IDG except i (the IDG
root). If an instruction in the IDG is squashing, we check its
outgoing edges. All the edges that are DD are removed.

The pruned IDG is then passed to function getSS of Algo-
rithm 1 to compute the SS of the instruction. Because some

squashing instructions are now unreachable in the pruned IDG,
the Enhanced algorithm places more instructions in the SS of
the instruction than the Baseline one. The result is a faster
execution of the program.

Algorithm 2: Pruning an IDG.

1 Function pruneIDG(IDG) is
2 for i in getNodes(IDG)\{getRoot(IDG)} do
3 if isSquashInsn(i) then
4 for e in getOutEdge(IDG, i) do
5 if isDataDep(e) then
6 removeEdge(IDG, e)
7 end
8 end
9 end

10 end
11 return IDG
12 end

C. Truncating the Safe Set

The SS of an instruction can contain the PCs of many
instructions. To keep the hardware simpler, we propose to
truncate the SS to a fixed size. For performance, we would
like to keep only ”the most useful” SS PCs. These are the
PCs of the safe squashing instructions that are the most likely
to be in the ROB when the transmitter enters the ROB. The
PCs of safe instructions that are far in dynamic execution and
thus already likely out of the ROB are less important to keep.

To find the most useful SS PCs for instruction i, the analysis
pass statically finds the shortest distance, measured in the
number of instructions in the function’s CFG, between each
safe squashing instruction and i. Then, it keeps in the SS the
N safe squashing instructions with the smallest distances. It
further removes those instructions whose distance is larger
than the size of the ROB. We call the scheme TruncN .

In the SS of an instruction i, each safe instruction is encoded
as the signed difference between the PC of the instruction and
the PC of i. We call them Offsets.

VI. THE INVARSPEC HARDWARE

To use the SS information, InvarSpec adds two micro-
architecture modules. One compares the SS of an instruction
to the older squashing instructions in the ROB; the other holds
the SS and brings it to the pipeline on demand. For the second
module, we present two possible designs.

A. Comparing the SS in the ROB

InvarSpec adds a hardware buffer in the pipeline that
contains an entry for each dynamic instruction i in the ROB
that is a transmitter (i.e., a load) or a squashing one (i.e., a load
or a branch). We call it the Inflight Buffer (IFB) (Figure 7).
Each IFB entry contains the following information for i: (i)
its PC, (ii) a bit T that tells that i is not a transmitter, (iii)
a Ready bitmask used to periodically check if i has become
speculation invariant (SI), (iv) a bit set when i becomes SI,

and (v) a bit set when i reaches its OSP. The Ready bitmask
has as many bits as IFB entries.

Fig. 7: Hardware to use the SS in the ROB.

ROB entries have pointers to their corresponding IFB en-
tries. IFB entries are allocated and deallocated in program
order when the corresponding instruction is inserted in and
removed from the ROB, respectively. Both IFB and ROB are
circular buffers.

When a transmit or squashing instruction i is inserted in the
ROB, its SS is requested (1), as we will see in Section VI-B.
The offsets in the SS are summed-up to i’s PC, creating a set
of safe squashing instruction PCs (2). The resulting PCs are
compared to the PCs in the IFB entries that are both older
than i and belong to squashing instructions. Note that, in the
Comprehensive threat model that we use, transmit instructions
are also squashing ones. Hence, the PCs from the SS are
compared to the PCs in all the older IFB entries.

Based on these comparisons, the Ready bitmask in the IFB
entry for instruction i is set as follows. If IFB entry k has a
PC that matches one of the PCs obtained from the SS or has
the OSP bit set, we know that the entry cannot prevent i from
becoming speculation invariant (SI): either entry k belongs to a
safe squashing instruction or to an instruction that has already
reached its OSP. In either case, bit k in the Ready bitmask of
instruction i is set. Further, the bits for those IFB entries not
yet owned by any instructions, and for the entry owned by i,
are set. The only Ready bitmask bits of i that remain clear are
those for older squashing instructions that are not safe for i
and have not reached their OSP.

If i is not a transmitter (T =1), i can execute as soon as its
operands are ready. In our configuration, this is the case for
branches. Otherwise, i can only execute when it becomes SI
and its operands are ready. In either case, the hardware tries
to find when i becomes SI by checking, at every cycle, if the
IFB entries that caused Ready bitmask bits to remain clear do
set their OSP bit. As seen in Figure 7, this is done by simply
taking the OSP bits from all the IFB entries and bit-ORing
them with the Ready bitmask (3). When all the resulting
bits are set, it means that all the squashing instructions older
than i are either safe or have reached their OSP. At this point,
i has become SI and sets its SI bit. If i is a transmitter, it can
now execute as soon as its operands are ready.

After an instruction has satisfied the condition for its SI bit
to be set and has executed, the logic to set its OSP bit depends
on what type of instruction it is. Specifically, if it is a branch,
the hardware sets its OSP bit right away. If it is a load, setting
the OSP bit has to wait until the load reaches the point where
it cannot be squashed anymore based on the threat model. For
the Comprehensive model that we use, this is when the load
reaches the ROB head.

There are two corner cases that are easily solved. First,
if the IFB runs out of space, the ROB stops taking in new
instructions. Second, if the SS for instruction i is not yet in
the pipeline when i in inserted in the ROB, and there are
older entries in the IFB that have their OSP bit clear, the
hardware assumes that such entries are all unsafe. Hence, the
corresponding Ready bitmask bits remain clear.

B. Storing and Bringing the SS to the Pipeline

The InvarSpec pass generates the SSs for the Squashing
and Transmit Instructions (STIs) in the program. However,
a sizable fraction of the STIs have empty SSs. Hence, we
envision the InvarSpec pass to mark in the executable those
STIs that have a non-empty SS.

Logically, such a mark can be a set bit in the opcode of the
STI. In practice, in the x86 ISA, there is no such bit available.
Hence, we can use an approach that has been used by Intel
for lock elision: re-purpose a previously-ignored instruction
prefix to mark instructions [18]. Specifically, we can reuse
the XRELEASE prefix—which today is meaningful only for
stores—to mark that the prefixed STI (a load or a branch in
our case) does have an SS. This means that the encoding of
STIs with an SS grows by the 1-byte prefix.

This approach changes the executable, but maintains back-
ward compatibility. Because current processors ignore this
prefix for STIs, the new executable runs on any x86 machine.

With this support in place, we now focus on how to store
the SS and bring it to the pipeline on demand. We propose
two alternatives: a software-based solution that is simple but
makes the executable backward incompatible, and a hardware-
based solution that is more complex but keeps backward
compatibility. We outline each in turn, but we will only
evaluate the one that keeps backward compatibility.
Software-Based Solution. In this solution, the InvarSpec
analysis pass embeds the SS of an STI in the code of the
program, right after the STI. For example, the pass could
add an SS with 12 PC offsets of 10-bits each, for a total
of 15 bytes. As an STI with prefix is decoded, the decoding
hardware extracts the adjacent SS from the code stream. When
the STI is inserted in the ROB, its SS is readily available for
the operation 1 in Figure 7. This solution is simple but not
backward compatible.
Hardware-Based Solution. In this solution, the InvarSpec
analysis pass stores the SSs in data pages, and the core has
a small SS Cache that keeps the recently-used SSs close to
the pipeline for easy access in the future. Since the most
frequently-executed STIs are in loops, a small SS cache
typically captures the great majority of dynamic SSs needed.

We propose a simple design where, for each page of code,
there is a data page at a fixed Virtual Address (VA) offset that
holds the SSs of the STIs in that page of code. Further, the VA
offset between each STI and its SS is fixed. This design does
increase the memory consumed by a program by potentially
the size of its instruction page working set (Section VIII-B).
However, it enables fast SS access.

Figure 8(a) shows a page of code and its SS page at a
fixed VA offset (∆). When the former is brought into physical
memory, the latter is also brought in. The figure shows a
prefixed STI and its SS. If the distance between the VAs of
two consecutive prefixed STIs is less than the size of an SS,
one of the STIs loses the prefix.

the STI

+

1 2

Displacement
(∆)

page

Addresses
Virtual

(a)

MissHit

SS for
SS

SS for

with Prefix

∆

VA of the

To TLB

To pipeline

(b)

SS Cache

SS of

Prefix Code
page

STI

the STI

VA of STI

the STI

Fig. 8: Hardware solution to store and access the SS. In the
figure, STI means Squashing or Transmit Instruction.

Figure 8(b) shows the action taken when a prefixed STI is
decoded. The VA of the STI is sent to the SS cache (1).
The SS cache is a small, set-associative cache that contains
the most recently-used SSs. Due to the good locality of STIs
in loops, most of the time, the SS cache hits. In this case, it
provides the SS to the pipeline on time to be used when the
STI is inserted in the ROB.

On an SS miss, the STI’s VA is added to the ∆ offset (2)
to obtain the VA of the SS. This address is sent to the TLB
to obtain the Physical Address (PA). After that, but only when
the STI reaches its Visibility Point (VP), a request is sent to
the cache hierarchy to obtain the SS, and bring it to the SS
cache. As a result, this STI is unable to use its SS; it will
be used in a future invocation of the same STI when the SS
request hits in the SS cache.

The SS cache does not introduce any side channel because
no side effect occurs until the STI reaches its VP. Specifically,
on an SS cache miss, we saw that the SS request is not
sent to the cache hierarchy until the STI’s VP, providing no
information to the attacker. On an SS cache hit, the SS cache’s
LRU bits are not updated until the STI reaches its VP.

VII. EXPERIMENTAL METHODOLOGY

Architectures Modeled. We model the architecture shown in
Table I using cycle-level simulations with Gem5 [6]. All the
side effects of transient instructions are modeled. Our baseline
architecture is a conventional processor with no protection
against speculative-execution attacks. We call it UNSAFE.

Parameter Value
Architecture 2.0 GHz out-of-order x86 core
Core 8-issue, no SMT, 62 load queue entries, 32

store queue entries, 192 ROB entries, TAGE
branch predictor, 4096 BTB entries, 16 RAS
entries

L1-I Cache 32 KB, 64 B line, 4-way, 2 cycle Round Trip
(RT) latency, 1 port, 1 hardware prefetcher

L1-D Cache 64 KB, 64 B line, 8-way, 2 cycle RT latency, 3
Rd/Wr ports, 1 hardware prefetcher

L2 Cache 2 MB, 64 B line, 16-way, 8 cycles RT latency
DRAM 50 ns RT latency after L2
SS Cache 64 sets, 4-way, 2 cycle RT latency, each entry

has 12 10-bit PC offsets (Trunc12). For 22nm:
area is 0.0088mm2, dyn. rd. energy is 2.95pJ,
leakage power is 2.31mW

IFB 76 entries. For 22nm: area is 0.0022mm2, dyn.
rd. energy is 0.99pJ, leakage power is 0.58mW

TABLE I: Parameters of the simulated architecture.

We augment this architecture with several hardware de-
fense schemes that use loads as the transmitters. We use
the Comprehensive threat model, with both branches and
loads as squashing instructions. The defense schemes are: (i)
delaying with fences all speculative loads until they reach their
Visibility Point (VP) [51] (FENCE); (ii) Delay-On-Miss, which
delays speculative loads that miss in L1 until their VP [26],
[38] (DOM); and (iii) InvisiSpec, which executes speculative
loads invisibly before their VP [51] (INVISISPEC). We model
these defense schemes as they are (D), augmented with the
Baseline InvarSpec analysis (D+SS), and augmented with
the Enhanced InvarSpec analysis (D+SS++). The resulting
configurations are shown in Table II.

Configuration Description
UNSAFE Unmodified x86 architecture
FENCE Delay all speculative loads with fences [51]
FENCE+SS FENCE augmented with Baseline InvarSpec
FENCE+SS++ FENCE augmented with Enhanced InvarSpec
DOM Delay speculative loads on L1 miss [26], [38]
DOM+SS DOM augmented with Baseline InvarSpec
DOM+SS++ DOM augmented with Enhanced InvarSpec
INVISISPEC Execute speculative loads invisibly [51]
INVISISPEC+SS INVISISPEC augmented with Baseline InvarSpec
INVISISPEC+SS++ INVISISPEC augmented with Enhanced InvarSpec

TABLE II: Defense configurations modeled.

Applications and Analysis Pass. We run SPEC17 [7] and
SPEC06 [15] applications with the reference input size. Be-
cause of simulation issues and binary analysis tool malfunc-
tion, we do not report on 2 applications out of 23 from SPEC17
and 4 out of 29 from SPEC06. For each application, we use
SimPoint [13] to generate up to 10 representative intervals
that accurately characterize the end-to-end performance of the
application. Each interval contains 50 million instructions. We
run Gem5 on each interval with system-call emulation mode
with 1 million warm-up instructions.

Our InvarSpec analysis pass implementation is based on
Radare2 [36], a state-of-the-art open-source binary analysis

100%
200%
300%
400%
500%

100%
150%
200%
250%
300%

blender
bwaves

cam4

deepsjeng

exchange2
fotonik3d gcc lbm leela mcf nab

namd
omnetpp

parest

perlbench
povray

roms wrf
x264

xalancbmk xz

SPEC17 Avg.

SPEC06 Avg.

100%
115%
130%
145%
160%

100%
200%
300%
400%
500%

Fence Fence+SS Fence+SS++

100%
150%
200%
250%
300%

DOM DOM+SS DOM+SS++

100%
115%
130%
145%
160%InvisiSpec InvisiSpec+SS InvisiSpec+SS++

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Fig. 9: Execution time of the applications on different architecture configurations, all normalized to UNSAFE. The three plots
correspond, from top to bottom, to configurations related to the FENCE, DOM, and INVISISPEC defense schemes. Each plot
has a different Y-axis range.

tool. It is performed on x86 binaries. However, it can also be
implemented as a compiler pass and be performed on source
code during compilation.

VIII. EVALUATION

A. Overall Performance Results
Figure 9 shows the execution time of SPEC17 and SPEC06

applications on all the configurations of Table II. The three
plots correspond, from top to bottom, to configurations related
to the FENCE, DOM, and INVISISPEC defense schemes. Each
plot has a different Y-axis range. All bars are normalized
to UNSAFE. Each plot shows each SPEC17 application, the
average of SPEC17 applications, and the average of SPEC06
applications.

Going from top to bottom, we see that FENCE is the slowest
scheme among all schemes evaluated. On average, it has an
overhead of 195.3% on SPEC17 and 199.3% on SPEC06.
FENCE+SS++ reduces the average overhead significantly,
from 195.3% to 108.2% on SPEC17, and from 199.3% to
101.9% on SPEC06.

DOM exhibits a bimodal behavior on SPEC17 applications.
While it has low overhead on about half of the applications, its
overhead is very high on the rest. For example, the overhead is
169.6% on parest and 107.3% on bwaves. On average across
all applications, DOM’s overhead is 39.5% on SPEC17 and
46.1% on SPEC06. Adding support for Enhanced SS on top
of DOM (DOM+SS++) substantially reduces this overhead.
Enhanced SS is typically effective in the cases when DOM has
high overhead. Specifically, it brings down parest’s overhead
to 99.7% and bwaves’s to 21.8%. It does so by allowing
cache-missing loads that are speculation invariant to proceed—
rather than stalling them. On average, DOM+SS++ reduces

the execution overhead from 39.5% to 24.4% on SPEC17, and
from 46.1% to 22.3% on SPEC06.

INVISISPEC’s average overhead is 15.4% on SPEC17 and
18.0% on SPEC06. This overhead is lower than the corre-
sponding DOM overhead. INVISISPEC+SS++ speeds-up the
execution over INVISISPEC. On average, the overhead of
INVISISPEC+SS++ is only 10.9% on SPEC17 and 9.6% on
SPEC06. In INVISISPEC+SS++, when a speculative load is
ready to issue to memory, if it is speculation invariant, it is
issued to memory normally; in INVISISPEC, the load is issued
as an invisible load and hence requires two loads.

B. SS Analysis

We evaluate the performance impact of InvarSpec’s design
choices by conducting sensitivity studies for FENCE+SS++,
DOM+SS++, and INVISISPEC+SS++ on SPEC17.
SS coverage. One design decision is how many bits to use
to encode an SS offset, i.e., the distance between the PCs of
a safe instruction and a transmitter. This number affects how
many offsets an SS entry can encode.

Figure 10 shows the average normalized execution time of
the schemes on SPEC17 when varying the number of bits
per SS offset. The size of SS is fixed to 12 offsets. All data
are normalized to the corresponding base hardware scheme
(FENCE, DOM, and INVISISPEC). We see that, as the number
of bits decreases, the execution time increases with different
degrees. When the number of bits is smaller than 10, the
performance degradation becomes non-negligible. Thus, our
design uses 10 bits to encode an SS offset, which provides a
performance similar to the unlimited number of bits.
Truncation. Another design decision is the SS size, namely
the maximum number of SS offsets to keep in an SS entry.

Unlimited 12 11 10 9 8 7 6
Number of Bits Per SS Offset

60%

70%

80%

90%

100%
Av

er
ag

e
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Fence+SS++ DOM+SS++ InvisiSpec+SS++

Fig. 10: Normalized execution time when varying the number
of bits per SS offset. All execution times are normalized to
their corresponding base hardware schemes without InvarSpec.

Figure 11 shows the average normalized execution time of
the schemes with various SS sizes. Each SS offset is 10 bits.
All data are normalized as in Figure 10. We see that, as the
SS size increases, the execution time decreases. Compared
to an unlimited SS size, all truncation configurations have a
performance degradation. An SS size equal to 12 offsets is a
good design point and, therefore, is our default design.

Unlimited 20 16 12 8 4
SS Size

60%

70%

80%

90%

100%

Av
er

ag
e

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Fence+SS++ DOM+SS++ InvisiSpec+SS++

Fig. 11: Normalized execution time when varying the SS size.
All execution times are normalized to their corresponding base
hardware schemes without InvarSpec.

SS Cache. Figure 12 characterizes the SS cache. It shows
the SS cache hit rate (right Y axis) and average normalized
execution time of the applications (left Y axis) for different
SS cache geometries. We compare our default configuration
(4-way set-associative with 64 sets) to geometries with the
same associativity but fewer or more sets. We also compare
to a fully-associative cache of the same size (256 lines). All
execution times are normalized as in Figure 10.

Increasing the SS cache size from our default configuration
only slightly decreases the execution time of DOM+SS++
and INVISISPEC+SS++, but FENCE+SS++’s execution time
keeps decreasing as the SS cache size grows. Decreasing the
SS cache size from our default configuration increases the
execution time of every scheme.

The average hit rate shows that the cache size is more
important than the associativity. Reducing the cache size for
the same associativity decreases the hit rate. However, for the
same size, increasing the associativity from 4 to full causes
a minimal change. Overall, our default design strikes a good
trade-off between performance and hardware complexity.

4X128 256X1 4X64 4X32 4X16
SS Cache Geometry (Ways X Sets)

60%

70%

80%

90%

100%

Av
er

ag
e

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Fence+SS++ exec. time
DOM+SS++ exec. time
InvisiSpec+SS++ exec. time

40%
50%
60%
70%
80%
90%
100%

SS
 C

ac
he

 H
it

Ra
te

 %

Fence+SS++ hit rate
DOM+SS++ hit rate
InvisiSpec+SS++ hit rate

Fig. 12: Normalized execution time and SS cache hit rate when
changing the SS cache. Execution times are normalized to the
corresponding base hardware schemes without InvarSpec.

Memory Footprint. We measure that, on average, about half
of the code pages in an application have at least one non-empty
SS. To estimate an upper bound on the amount of memory
required to store this SS state at run time, we add-up all the
code pages in an application that have at least one non-empty
SS. In reality, not all of the SS pages may be in memory at
the same time. We call the resulting size the Conservative SS
Footprint. We also measure the peak memory usage of each
application with the reference input at any point in the program
execution. We call the resulting size the Peak Memory during
Execution.

Table III shows the two metrics for the 5 applications with
the largest conservative SS footprint, and the average metrics
across all SPEC17 applications. We can see that the memory
overhead of storing the SS state is negligible compared to the
peak memory that an application uses. The SS only causes a
0.55% memory overhead on average. For blender, which has
the largest SS footprint, the overhead is only 1.32%.

SPEC17 App. Conservative SS Peak Memory during
Footprint (MB) Execution (MB)

blender 8.24 626.31
perlbench 8.00 413.09

wrf 7.70 172.15
gcc 5.87 1277.55

cam4 5.27 853.91
SPEC17 Avg. 2.55 462.05

TABLE III: Assessing the memory footprint of the SS state.

C. Hardware Overhead

The main InvarSpec hardware is the SS cache and the IFB.
The SS cache is relatively simple because it stores only read-
only data. We used CACTI 7.0 [3] to estimate the area and
power of the storage component of these structures for 22nm
technology. As shown in Table I, the area, dynamic read
energy, and leakage power of the storage structures is small.

D. Discussion

Interaction with a JIT Compiler. Our scheme is compatible
with a JIT compilation environment. In this case, the dynamic

generation of a binary is augmented with a step that runs the
InvarSpec analysis pass and generates the SSs. In practice,
this step does not take long because it substantially reuses
information that the compiler has just generated. We cannot
provide an accurate estimate of this extra execution time
because our implementation of the InvarSpec analysis pass
is not optimized.
Reducing Execution Overhead Further. There are several
approaches that could further reduce the execution overhead
with InvarSpec. Three that come to mind are to increase the
SS size, increase the SS cache size, and improve the Enhanced
compiler analysis. The first approach can only decrease the ex-
ecution overhead by a few percentage points. Indeed, Figure 11
showed the overhead with unlimited-sized SS entries, which is
an upper bound. The second approach also gives modest gains.
We have evaluated a configuration with an infinite SS cache
with unlimited-sized SS entries. The result is that FENCE+
SS++, DOM+SS++, and INVISISPEC+SS++ further reduce
the average execution overhead from 108.2% to 90.4%, from
24.4% to 21.8%, and from 10.9% to 10.2%, respectively.
The third approach, namely improving the Enhanced compiler
analysis, may deliver more significant gains, especially if
it involves adding inter-procedural analysis. Such approach
likely involves non-trivial effort, and is our future work.

IX. RELATED WORK

As indicated in Sections I and II-B, there are many de-
fense schemes against speculation attacks. Some are software
schemes, based on stopping speculation either with fences [2],
[17], [43] or by injecting data-dependencies into the code [8],
[43]. There are many hardware schemes (e.g., [1], [4], [20],
[22], [26], [37], [38], [42], [51], [53]). Of these hardware
schemes, many of those that do not consider timing attacks can
be extended to support InvarSpec (e.g., [1], [20], [26], [38],
[51]). InvarSpec enhances hardware techniques with software
information.

The STT [53], SpecShield [4], and NDA [48] hardware
schemes have a different threat model than those that Invar-
Spec extends in this paper. Indeed, the schemes in this paper
protect all data from being leaked by speculative execution;
STT, SpecShield, and NDA protect only data that is read by
mis-speculated execution, and consider data in retired register
file state not to be a secret.

To see the difference, consider the example in Figure 13.
In the example code, although secret would not be leaked
in a non-speculative execution, STT, SpecShield, and NDA
do not apply protection to the mis-speculated load(secret)

instruction, because secret was read into a register by a
bound-to-commit instruction. In contrast, the schemes that
InvarSpec extends in this paper do not allow performing the
load(secret) without protection before the branch resolves.

Despite this difference in protection scope, the main princi-
ple of InvarSpec to statically analyze code and dynamically
disable defense protection earlier could also be adapted to
extend schemes such as STT, SpecShield, and NDA.

1 secret = load(secret ptr) ; // soon to commit
2 if (...) { // mispredicted branch
3 load(secret) ;
4 }

Fig. 13: Example that exposes the difference between protect-
ing all data versus only speculatively-read data.

Finally, there are many designs that aim to block cache-
based covert channels, using randomization [30], [47], encryp-
tion [35], [50], cache partitioning [27], [41], [46], [47], or
other mechanisms [21], [29]. They do not address speculative
execution attacks.

X. CONCLUSION

This paper introduced Speculation Invariance, and showed
that it can be used to reduce the overhead of speculative
execution defenses without changing security properties. It
also presented the InvarSpec framework, which includes a
program analysis pass to identify Safe instructions, and micro-
architecture that uses this information to find and issue spec-
ulation invariant instructions earlier. InvarSpec is one of the
first defense schemes for speculative execution that combines
cooperative compiler and hardware mechanisms. It effectively
enhances hardware defense schemes: it reduces the average ex-
ecution overhead of fence protection from 195.3% to 108.2%,
of DOM from 39.5% to 24.4%, and of InvisiSpec from 15.4%
to 10.9%.

ACKNOWLEDGMENTS

This work was funded in part by Intel under an Intel
Strategic Research Alliance (ISRA) grant, NSF under grants
CNS 1956007, CNS 1763658, and CCF 1725734, Blavatnik
ICRC at TAU, and ISF under grant 2005/17. We thank Christos
Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander for kindly sharing their code. We also
thank Dimitrios Skarlatos for his help in estimating hardware
overhead.

APPENDIX: STORE-TO-LOAD FORWARDING

When a load reaches its ESP and there is an older store,
we need to ensure that whether the store and the load alias is
invisible to an attacker. Otherwise, the attacker could deduce
the address of the load. Specifically, if store and load alias
and the load gets the data from the store, the attacker can
deduce the alias by not observing a load access to the cache
hierarchy. To solve this problem, we change the microarchi-
tecture slightly as follows. The load is always issued to the
cache hierarchy and if, at this point or later, the store address
is found to alias, the load gets the data from the store and
ignores the data returned from the cache hierarchy.

Relevant to InvarSpec is to understand when is the point
where a load reaches its OSP. Such point requires not only
that the load not be squashable anymore. In also requires that
all of its older stores have been resolved—and hence that the
load has been able to read the correct data, either from memory
or from a store. InvarSpec implements this algorithm.

REFERENCES

[1] S. Ainsworth and T. Jones, “MuonTrap: Preventing Cross-Domain
Spectre-Like Attacks by Capturing Speculative State,” in International
Symposium on Computer Architecture (ISCA), May 2020.

[2] ARM, “Cache Speculation Side-channels,” https://developer.arm.com/
support/arm-security-updates/speculative-processor-vulnerability/
download-the-whitepaper, Oct. 2018.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Transactions on Architecture
and Code Optimization, vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3085572

[4] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding Speculative Data from Microarchitectural Covert
Channels,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), September 2019.

[5] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 785–800.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, 2011.

[7] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[8] C. Carruth, “Speculative Load Hardening,” https://llvm.org/docs/
SpeculativeLoadHardening.html, 2018.

[9] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre
Attacks: Leaking Enclave Secrets via Speculative Execution,” arXiv e-
prints, p. arXiv:1802.09085, Feb 2018.

[10] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, “Oblivious hashing: A stealthy software integrity verifi-
cation primitive,” in International Workshop on Information Hiding.
Springer, 2002, pp. 400–414.

[11] I. Cutress, “The Intel Second Generation Xeon Scalable: Cascade
Lake, Now with Up To 56-Cores and Optane!” AnandTech, Apr.
2019. [Online]. Available: https://www.anandtech.com/show/14146/
intel-xeon-scalable-cascade-lake-deep-dive-now-with-optane

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[14] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in International Symposium on Code Generation and
Optimization (CGO 2011). IEEE, 2011, pp. 289–298.

[15] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, 2006.

[16] J. Horn, “Speculative Store Bypass,” https://bugs.chromium.org/p/
project-zero/issues/detail?id=15282018.

[17] Intel, “Speculative Execution Side Channel Mitigations,”
https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf, 2018.

[18] ——, “Intel R© 64 and IA-32 Architectures Software Developer’s
Manual,” https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-developer-
instruction-set-reference-manual-325383.pdf, Feb. 2019.

[19] ——, “Refined Speculative Execution Terminology,” https://
software.intel.com/security-software-guidance/insights/refined-
speculative-execution-terminology, 2020.

[20] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[21] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
Level Protection Against Cache-Based Side Channel Attacks in the
Cloud,” in USENIX Security, 2012.

[22] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[23] V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: At-
tacks and Defenses,” arXiv e-prints, p. arXiv:1807.03757, Jul 2018.

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[25] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

[26] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019, pp. 264–
276.

[27] J. Liedtke, N. Islam, and T. Jaeger, “Preventing denial-of-service attacks
on a /spl mu/-kernel for WebOSes,” in Proceedings. The Sixth Workshop
on Hot Topics in Operating Systems (Cat. No. 97TB100133). IEEE,
1997, pp. 73–79.

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 973–990.

[29] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel attacks
in cloud computing,” in 2016 IEEE international symposium on high
performance computer architecture (HPCA). IEEE, 2016, pp. 406–
418.

[30] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure
cache architecture thwarting cache side-channel attacks,” IEEE
Micro, vol. 36, no. 5, p. 8–16, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/MM.2016.85

[31] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[32] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and R. Kohno, “A
framework for secure download for software-defined radio,” IEEE
Communications Magazine, vol. 40, no. 7, pp. 88–96, 2002.

[33] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin,
D. Gruss, F. Piessens, B. Sunar, and Y. Yarom, “Fallout: Reading kernel
writes from user space,” arXiv preprint arXiv:1905.12701, 2019.

[34] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: The Case of AES,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–20.

[35] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2019, pp. 360–371.

[36] Radare2, “UNIX-like reverse engineering framework and command-line
toolset,” https://github.com/radareorg/radare2.

[37] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An Undo Approach
to Safe Speculation,” in International Symposium on Microarchitecture
(MICRO), October 2019.

[38] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander, “Effi-
cient invisible speculative execution through selective delay and value
prediction,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2019, pp. 723–735.

[39] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[40] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security. Springer, 2019, pp. 279–299.

[41] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2011, pp. 194–199.

[42] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing: Secur-
ing speculative execution via microcode customization,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, 2019, pp. 395–
410.

[43] P. Turner, “Retpoline: a Software Construct for Preventing Branch-
target-injection,” https://support.google.com/faqs/answer/7625886,
2018.

[44] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 991–1008.

[45] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[46] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: secure dynamic cache partitioning for efficient timing channel
protection,” in Proceedings of the 53rd Annual Design Automation
Conference, 2016, pp. 1–6.

[47] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th annual
international symposium on computer architecture, 2007, pp. 494–505.

[48] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing Speculative Execution Attacks at Their Source,” in
International Symposium on Microarchitecture (MICRO), 2019.

[49] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018.

[50] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security, 2019.

[51] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[52] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security, 2014.

[53] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

