
© 2020 Peilun Zhang

AUTOMATED FIXING OF WRONG ASSUMPTIONS ON UNDERDETERMINED
SPECIFICATIONS

BY

PEILUN ZHANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Advisers:

Professor Darko Marinov
Associate Professor Victoria Stodden

ABSTRACT

Software specifications assist in the implementation of software by stating expected soft-
ware behavior. Many software specifications are deterministic, i.e., the software produces
the same output for the same input. However, some specifications are underdetermined,
meaning that the software may produce different outputs given the same input. Under-
determined specifications are not uncommon because they can offer some advantages over
deterministic ones. For instance, underdetermined specifications can allow for optimization
as developers can be more flexible when conducting speed optimization. We encounter poten-
tial problems when deterministic implementations produce different outputs. For example,
even though the Java standard library does not specify the order of elements returned by
method getDeclaredFields, prevailing implementations, like Oracle JDK 1.8, return fields in
the order as they are listed in the class file (which is itself the order in which they are in the
source file when using the standard javac compiler). There is no reason to expect the imple-
mentation will not change because the specifications allow flexibility, and popular vendors
have historically changed the implementations of several widely used library methods.
Unfortunately, software library users may write code that relies on a specific implemen-

tation rather than on the specification, e.g., assuming mistakenly that the order of elements
cannot change in the future. If users write software tests that involve methods with under-
determined specifications, those tests can therefore produce unexpectedly non-deterministic
outputs, meaning that tests can intermittently fail or pass without changing the production
and test code (but changing the library code). Prior work proposed the NonDex approach
to proactively detect such wrong assumptions in the production and test code.
The goal of this thesis is to propose automated code changes that help resolve these issues

by either making the output deterministic or making the test assertion order-agnostic. We
present a novel approach, called DexFix, to fix wrong assumptions on underdetermined soft-
ware specifications in an automated way. To demonstrate these efforts, we run the NonDex
tool on 200 open-source Java projects and detect 275 tests that fail due to wrong assump-
tions. We find that the majority of failures are based on HashMap/HashSet class iterations
and the getDeclaredFields method. We provide several new automated fix strategies that
can fix these violations in both the production and test code, which are implemented in the
DexFix tool. Our experiments show that DexFix proposes fixes for 101 tests from our 275
tests. We have reported fixes for 84 tests to the developers as GitHub pull requests: 57 have
been merged, with only 2 rejected, and the remaining are pending.

ii

To my mother, for her endless love and support.

iii

ACKNOWLEDGMENTS

I have received a lot of help and support from many people towards completing this thesis.
First, I would like to thank my adviser, Professor Darko Marinov. I am extremely grateful

that Darko keeps encouraging me to get involved in research activities. It is also Darko who
provides me with the opportunity to work with him and other awesome students on this
research topic. I appreciate the advice Darko has given me on both research and life.
I would like to thank my co-adviser, Associate Professor Victoria Stodden, for her advice

and hands-on guidance on this thesis. I am also grateful for Victoria’s encouragement to me
during the current special period that the whole society is going through.
I would like to thank August Shi, who has spent hours and hours discussing and working

together with me. Working with August is one of the most enjoyable experiences I have in
graduate school. I wish him all the best in his upcoming career in academia. I would like
to thank Yanjie Jiang and Anjiang Wei for their collaborations, and my research experience
would not have been as enjoyable as it was without them. I would like to thank Yizhi Huang
and Hao Wu for their friendship. It would be significantly more difficult for me to survive
multiple hard times in my graduate school life without them. I would like also to thank
Minho Song, who helped me get through the period when I hit my lowest point. He is
always a fount of inspiration to me.
Finally, and most significantly, I would like to thank my mother, Ruimei Zhang. She

supported me to study in a country that is thousands of miles away from my home. She
gave me the freedom to pursue my dream and constantly encouraged me when I hesitated
about my decision. Words cannot express my gratitude and love to her.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Software Testing . 1
1.2 Flaky Tests . 1
1.3 Underdetermined Specifications . 2
1.4 Automated Software Test Fixing . 3
1.5 Overview of this Thesis . 4

CHAPTER 2 BACKGROUND . 7
2.1 NonDex . 7
2.2 ReAssert . 8

CHAPTER 3 EXAMPLES . 10
3.1 Simple Fix in Production Code . 10
3.2 Multiple Changes with the Same Strategy 12
3.3 Multiple Changes with Different Strategies 14
3.4 A Novel Strategy for JSON Strings . 15

CHAPTER 4 TECHNIQUE . 17
4.1 Overview . 17
4.2 Strategies . 18
4.3 Implementation . 20

CHAPTER 5 EXPERIMENTAL SETUP . 22
5.1 Selecting Projects and Detecting Tests with NonDex 22
5.2 Fixing Tests using DexFix . 23

CHAPTER 6 EXPERIMENTAL RESULTS . 25
6.1 RQ1: Root Causes of Detected Tests . 25
6.2 RQ2: Fixed Tests . 27
6.3 RQ3: Pull Requests . 28

CHAPTER 7 DISCUSSION . 31
7.1 Limitations . 31
7.2 Overhead . 32

CHAPTER 8 THREATS TO VALIDITY . 34

CHAPTER 9 RELATED WORK . 35
9.1 Reproducibility and Rerun/Replay . 35
9.2 Detecting Flaky Tests . 35
9.3 Automated Program Repair . 36

v

CHAPTER 10 FUTURE WORK . 37

CHAPTER 11 CONCLUSIONS . 39

REFERENCES . 40

vi

CHAPTER 1: INTRODUCTION

1.1 SOFTWARE TESTING

Modern society runs on software and the continuing rise in computing power will continue
to enable software to automate more tasks in our daily lives [1]. The increasing dependency
on software also contributes to the prevailing demand for increasing quality of software [2].
Software testing aims to increase the quality of software by evaluating whether the func-

tionality of software applications matches the specified requirements. This evaluation is
usually done by executing a piece of program, namely a test, which encodes developer ex-
pectations of software functionality [2]. Software testing plays an important role in modern
software development, especially for the typical case of large-scale software applications that
are collaboratively developed in multiple iterations. Software testing catches faults in earlier
stages, which makes fixing those faults easier with fewer costs. In addition, developers write
software tests as documentation to demonstrate to library users the correct usage of the
code’s underlying functionality [2].
Regression testing is one of the most widely used types of software testing [3]. When a

developer makes and commits changes, regression test systems run regression test suites and
report test results to the developer, i.e., the tests pass or fail. A test suite passes only if
all the tests from the test suite pass. If any test fails after the new changes, regression test
systems will block the changes from being merged so as to prevent changes from breaking
the existing functionalities in production [4]. The new changes become ready for review only
when regression test suites pass. The main assumption of regression testing is that a test
that fails after the new changes but passes before the changes indicates that the changes
introduce the fault and, thus, flags to developers to investigate the changes to debug [3].

1.2 FLAKY TESTS

Regression testing heavily relies on the assumption that a test failure indicates some
fault in the new changes, and uses the test failures as flags to draw developers’ atten-
tion for further investigation. In practice, however, this assumption may not always hold
because test outcomes can be unreliable [5]. There are many reasons tests can become
unreliable [6, 7, 8, 9, 10], and one cause is having wrong assumptions on underdetermined
specification (Section 1.3) [11]. Unreliable tests intermittently pass or fail, which hinders
developers from using test results as an indicator of the quality of changes. Developer cannot

1

be certain if a test failure indicates fault in their changes or in the test itself, which reduces
the test suite’s ability to detect regressions [12].
Tests that can pass or fail without the developer changing the code are often called flaky

tests [13]. Flaky tests can waste developers’ time to debug test failures that are not directly
related to their change, and debugging flaky tests that are written by other developers tends
to be more costly. Even worse, as tests can unpredictably pass or fail, it can become more
dangerous for developers to ignore the test failures wrongly considering that tests fail due to
flakiness instead of faults in the changes. Real faults can be buried in the production code
and cause greater loss [14].

1.3 UNDERDETERMINED SPECIFICATIONS

Underdetermined specifications [15] admit multiple implementations. These different im-
plementations can return different output for the same input, even if each implementation
itself is deterministic. For example, consider the method getDeclaredFields from the Java
standard library class java.lang.Class. The Javadoc specification [16] for this method states
that it “Returns an array of Field objects reflecting all fields declared by the class or inter-
face represented by this Class object” and also “The elements in the returned array are not
sorted and are not in any particular order.” For example, consider the code snippet of a test
in Figure 1.1 that calls getDeclaredFields on a class C that has a set of fields with different
visibilities (private and public in this example) and different names (each declared field has
to have a unique name). When running CTest#test with different JDKs, the test outcome
may vary. One implementation of getDeclaredFields may return an array where the fields
are sorted by name, which means the output of Arrays.toString(fields) in CTest#test is
"[private int a, public int b]". Another implementation may return an array where
the fields are sorted by visibility, e.g., public methods first, then package methods, then
protected methods, and finally private methods. In this case the output becomes "[public

int b, private int a]". Implementations (as of this writing) from both Oracle JDK and
OpenJDK provide the fields in the order in which they are declared in the class. If library
users write code that relies on a specific (deterministic) implementation rather than on the
(underdetermined) specification of a method from the library (like in the code snippet of
CTest#test), the code can break when the library developers provide a new implementation
of the same specification. In some cases the code dependence on a specific implementation
may be intentional, but most cases are unintentional and stem from a wrong assumption
that the implementation will not change in the future. There is no reason to expect that the
future implementation will not change. For example, the Java standard library (from Sun

2

// Class C source

public class C {

private int a;

public int b;

}

...

// Test source

public class CTest {

@Test

public void test() throws Exception {

Field[] fields = C.class.getDeclaredFields();

assertEquals("[private int a, public int b]", Arrays.toString(fields));

}

}

Figure 1.1: Example test that produces unreliable outcome due to wrong assumptions on
underdetermined specifications

and then Oracle) has changed the implementation over time of several widely used methods
such as Object#hashCode, HashMap and HashSet iterators, and Class#getMethods [17], which on
several occasions broke substantial amounts of code [18, 19].
Shi et al. [13] developed an approach, called NonDex, to proactively find code that makes

such wrong assumptions. Specifically, they manually identified a set of methods with under-
determined specifications in the Java standard library, implemented a tool that can auto-
matically randomize the choices made by the implementation (e.g., permuting the order of
fields in the array returned from getDeclaredFields), and ran the tool on tests with various
random seeds to check if any test fails due to wrong assumptions. While Shi et al. [4] de-
tected 60 failing tests in (21 out of 195) open-source projects, they did not provide support
for debugging: “In the future, we plan to investigate how to automate debugging of failures
that NonDex reports” [13, p. 10].

1.4 AUTOMATED SOFTWARE TEST FIXING

When changes cause a regression test to fail, a developer should inspect the failure to
understand whether the failure is caused by regression or indicates a change of expected be-
havior. If the failure is caused by regression, developers need to revise the new code to meet
the expectations of the test suite and requirements. If the test failure indicates a change of
expected behaviors, tests are considered broken and the developer needs to fix or remove
those tests from test suites [12]. As fixing broken tests can be time-consuming, especially

3

when new changes can break many tests related to the same functionality, automated soft-
ware test fixing therefore aims to propose fixes for broken tests in an automated manner
while retaining the original logic as much as possible.
Generally, automated program fixing techniques generate patches by searching and mu-

tating existing code, learning from prior patches, or through symbolic execution [20, 21, 22,
23, 24, 25, 26]. These techniques rely on tests to guide them where test failures indicate
that the fault in the production code still exists, and the aim is then to make the test pass
by fixing the fault in the production code. Prior work focused on fixing test code includes
ReAssert [12], which fixes tests that become outdated when production code evolves. Re-
Assert aims to fix test code instead of production code to make the test pass assuming that
evolutions in production code reflect the correct behavior (Section 2.2 presents an example
of a ReAssert run).

1.5 OVERVIEW OF THIS THESIS

We present a novel technique, called DexFix, to automatically fix wrong assumptions on
underdetermined specifications. Inspired by the growing body of work on program repair [20,
21, 22, 23, 25, 26] (with a recent survey [24]) and test repair [12, 27, 28, 29, 30, 31], we provide
a set of simple and effective fix strategies that can fix wrong assumptions on underdetermined
specifications in both the test code and the production code. We derive our fix strategies from
the predominant causes we found for test failures that NonDex reports. Existing program
or test repair tools cannot handle these cases because these tools do not have the necessary
fix strategies to correct wrong assumptions on underdetermined specifications.
In this thesis, we seek to answer the following three research questions:

RQ1: What is the breakdown of the root causes for tests that fail due to wrong assumptions
on underdetermined specifications?

RQ2: How many tests can DexFix fix, and what fix strategies are the most effective?

RQ3: How effective is DexFix at proposing fixes that developers actually accept?

We first carry out a formative study. We run the NonDex tool on 200 open-source Java
projects, detecting 275 tests that fail due to wrong assumptions and where NonDex provides
a specific root cause. Our inspection of these root causes finds the majority are from the
HashMap/HashSet class iterations (152) and the getDeclaredFields method (93). We also
identify a number of tests that fail due to test assertions comparing JSON strings: the
serialization of Java objects into JSON strings can produce JSON strings with a different

4

order of fields; the JSON specification [32] does not specify the order of fields, so any order
is valid. To automate analysis and repair of failing assertions we use the ReAssert tool,
developed by Daniel et al. [12]. Our initial manual exploration of these cases shows that the
outputs of NonDex and ReAssert do not provide debugging support that can greatly help
in localizing and repairing the real causes of failures, so we extend both of these tools to
produce additional info for debugging.
We finally derive new, automated fix strategies that can fix the failing tests by changing

the code to properly work with underdetermined specifications. Intuitively, our strategies
aim to make each output deterministic or each test assertion order-agnostic. For
example, consider some code that calls getDeclaredFields and then a test exercising this
code fails because an assertion expects a particular order of elements in the array returned
by getDeclaredFields. One fix strategy is to sort the fields in the array, e.g., by field name.
The order then does not depend on the particular implementation of getDeclaredFields.
However, the new order may differ from the old order (for a specific implementation), so
some assertion may fail after sorting. We use ReAssert [12] to fix such failing assertions. We
implement our strategies in a prototype tool, named DexFix.
This thesis makes several contributions:

• Dataset: We provide a publicly available dataset [33] of 275 tests (from 37 projects)
that fail due to wrong assumptions made on underdetermined specifications. This
dataset is the largest for NonDex, and shows the continued prevalence of this problem
among open-source projects.

• Debugging Support: We extend the existing NonDex and ReAssert tools to provide
more info for debugging tests that fail with NonDex. Specifically, for HashMap/HashSet
iteration, we record where the object is allocated and, for failed string comparisons,
we identify the likely kind of strings.

• Strategies: We derive novel strategies that can help to automatically repair the code
exercised by the tests that fail with NonDex. Our new strategies are complemented
by the existing ReAssert strategies for repairing tests [12]. We implement a prototype
of our DexFix technique as an extension of NonDex and ReAssert.

• Evaluation: We apply our prototype to the 275 tests, and find thatDexFix can propose
fixes for 101 tests. After DexFix makes code changes, we check that the fix passes with
NonDex. We have reported 84 of these fixes as GitHub pull requests from anonymous
accounts, and 57 have been already merged, while only 2 have been rejected, and the
remaining are still pending.

5

The rest of this thesis is structured as follows: Chapter 2 describes the NonDex and
ReAssert techniques on which we build our work. Chapter 3 describes several examples
how DexFix fixes faults with different fixing strategies. Chapter 4 describes the design and
implementation of DexFix technique for automated fixing of tests that fail due to underde-
termined specifications. Chapter 5 describes our experimental setup including how projects
are selected, how we use NonDex to detect tests that have wrong assumptions for underde-
termined specifications, how we use DexFix to propose fixes, and how we send those fixes
as pull requests to developers. Chapter 6 describes the results of our experiment and how
our evaluation answers the research questions. Chapter 7 describes limitations of DexFix
and why DexFix cannot fix all the tests; it also discusses performance overhead of fixes pro-
posed by DexFix. Chapter 8 discusses threats to the validity of our evaluation. Chapter 9
presents some related work. Chapter 10 discusses our visions of the future work. Chapter 11
concludes this thesis.

6

CHAPTER 2: BACKGROUND

Our tool, DexFix, automates fixing of tests with wrong assumptions on underdetermined
specifications by extending the existing NonDex [13] and ReAssert [12] tools. In this chapter,
we describe the relevant background of NonDex and ReAssert techniques, as needed to
understand the rest of this thesis. Section 2.1 describes NonDex, and Section 2.2 describes
ReAssert.

2.1 NONDEX

NonDex is a technique and tool for detecting tests that fail due to wrong assumptions on
underdetermined specifications in the Java standard library [13, 34, 35]. NonDex detects
such tests by modifying the Java standard library during class loading to randomize the
output of several methods with underdetermined specifications [13]. NonDex utilizes an
instrumentation engine that selects corresponding APIs and modifies them to add helper
methods that explore different orders. NonDex is implemented as a Maven plugin [34, 35]
that can be integrated into any Maven-based project, and runs using Java 8.
For example, when running tests with NonDex (invoked via command mvn nondex:nondex

instead of the usual mvn test), the execution can invoke the getDeclaredFields method, which
has an underdetermined specification that the returned array of fields is not in any particular
order. At this point, NonDex performs a “random choice” and randomizes the order of the
returned array of fields. A test may later fail due to this random choice, indicating that
the the production code or test code made a wrong assumption on some underdetermined
specification. NonDex runs tests for multiple rounds, where each round uses a different
random seed, leading to different random choices and potentially detecting different tests.
NonDex reports any tests that pass when run normally (without any random choice) but
fail during one of these rounds.
NonDex also provides a debugging feature (invoked via the command mvn nondex:debug).

Given a detected test that fails for some random seed, NonDex attempts to find the one
random choice location that makes the test to fail [34]. NonDex uses binary search across
all the random choices executed during the round where the test fails, localizing to the one
point where a single random choice can make the test fail. NonDex then reports the stack
trace of the single problematic random choice location.

7

2.2 REASSERT

ReAssert is a technique and tool for fixing test assertions [12, 28, 36]. When changes
cause existing regression tests to fail, developers need to manually inspect and try to fix the
test when the existing test fails to reflect the intended behavior. The goal of ReAssert is
to propose fixes for tests that need to be updated after developers change the underlying
production code (with the assumption that the production code is correct) and also retain
as much of the original test logic as possible [36].
To illustrate how ReAssert works, consider the code adapted in Figure 2.1 from one of the

examples from Daniel et al. [12]:

public void testPenCoupon() {

ShoppingCart shoppingCart = Utils.initEmptyShoppingCart();

shoppingCart.addProduct(new Pen());

shoppingCart.addProduct(new Pen());

shoppingCart.addCoupon(new PenCoupon());

assertEquals(5.0, shoppingCart.getTotalPrice());

assertEquals(

"Discount: -$5.00, total: $5.00",

shoppingCart.getBill()

);

}

Figure 2.1: Example test code that fails after developer makes changes

This code snippet in Figure 2.1 is a simplified test for a shopping application, and the
developers aim to use this test to check if the coupon for pen is implemented correctly. The
test testPenCoupon initializes an empty ShoppingCart object and then adds two pens and the
coupon for pen. Initially, the store decides to provide a buy-one-get-one-free coupon for
pens with a unit price of 5 dollars. So after adding two pens and the coupon, the total
price of this cart is 5 dollars, as expected in this test. Later, the shop decides to replace
this buy-one-get-one-free coupon to be a discount of $3 if two pens are purchased. After
the developer makes changes according to the requirements, the total price should be 7
dollars, and the discount 3, which means this test will fail because it no longer reflects the
specification of the software application. At this point, developers need to fix the broken test
by changing the total price and the string for bill (including the discount value) accordingly.
This task may become particularly time-consuming when this new change breaks multiple
tests. In practice, changes in requirements can happen relatively often. ReAssert aims to

8

public void testPenCoupon() {

ShoppingCart shoppingCart = Utils.initEmptyShoppingCart();

shoppingCart.addProduct(new Pen());

shoppingCart.addProduct(new Pen());

shoppingCart.addCoupon(new PenCoupon());

- assertEquals(5.0, shoppingCart.getTotalPrice());

+ assertEquals(7.0, shoppingCart.getTotalPrice());

assertEquals(

- "Discount: -$5.00, total: $5.00";

+ "Discount: -$3.00, total: $7.00";

shoppingCart.getBill()

);

}

Figure 2.2: Changes proposed by ReAssert to fix the test

help developers in this scenario by assuming the production code is correct and tries to fix
the test code. In this example, ReAssert proposes the code changes as in Figure 2.2 to fix
the test.
Given a (failing) test, ReAssert first instruments assertion methods to dynamically record

the expected and actual values of tests. For example, ReAssert instruments JUnit’s asser-
tion methods like assertEquals in class Assert to record values by replacing the exception
with ReAssert’s own exception with runtime values wrapped [12]. After instrumentation,
ReAssert executes the test via standard JUnit by default, and uses the instrumented excep-
tion to get the expected and actual values for comparisons. ReAssert then applies several
fix strategies to attempt to fix the assertion so the test no longer fails. For example, one
strategy, ReplaceLiteralInAssertion (which is also used to fix the example test) works on
assertions where the expected value is a literal (e.g., a string or an integer), and replaces
that literal with the actual value it observes during the test execution [12].

9

CHAPTER 3: EXAMPLES

We next discuss several example tests for which (1) NonDex finds wrong assumptions on
underdetermined specifications and (2) DexFix proposes fixes for those wrong assumptions.
The examples show a variety of different root causes of underdetermined specifications and
a variety of fix strategies used to change the code. Our GitHub pull requests, based on
fixes proposed by DexFix, for all these examples have been accepted by the developers of the
respective projects.

3.1 SIMPLE FIX IN PRODUCTION CODE

In this example test from Apache Hadoop [37], DexFix proposes a simple fix in the produc-
tion code. Apache Hadoop is a widely used and popular open-source project with over 10K
stars and 6K forks on GitHub. We first ran the NonDex tool on the commit 14cd969 of this
project. Using mvn nondex:nondex, we detected several tests that contain wrong assumptions
on some underdetermined specifications, which shows that even well-tested projects can have
problems with underdetermined specifications.
One of the tests from Hadoop was TestMetricsSystemImpl#testInitFirstVerifyCallBacks.

This test passes without the randomizations from NonDex (as discussed in Section 2.1), but
after we turn on the randomizations, the test fails (for a number of random seeds) with an
error message (as shown in Figure 3.1) that would be rather difficult to debug by itself.

java.lang.AssertionError:

Element 0 for metrics expected:<MetricCounterLong{info=MetricsInfoImpl

{name=C1, description=C1 desc}, value=1}>

but was:<MetricGaugeLong{info=MetricsInfoImpl

{name=G1, description=G1 desc}, value=2}>

Figure 3.1: Error message after running test testInitFirstVerifyCallBacks with NonDex

Fortunately, NonDex (via mvn nondex:debug) can provide debugging info [34] for each failing
test, specifically the “root cause” random choice that affects the failure. From the debugging
info provided by NonDex (as shown in Figure 3.2), we can observe that getDeclaredFields is
used in line 353 in the file ReflectionUtils.java. Figure 3.3 shows the relevant code snippet
from the ReflectionUtils.java file.
Since the specifications for getDeclaredFields states “the elements in the returned array

are not sorted and are not in any particular order” (as discussed in Section 1.3), the list
of Field objects returned by the method getDeclaredFieldsIncludingInherited can contain

10

java.lang.Class.getDeclaredFields(Class.java:1916)

org.apache.hadoop.util.ReflectionUtils.getDeclaredFieldsIncludingInherited(ReflectionUtils.

java:353)

org.apache.hadoop.metrics2.lib.MetricsSourceBuilder.<init>(MetricsSourceBuilder.java:68)

org.apache.hadoop.metrics2.lib.MetricsAnnotations.newSourceBuilder(MetricsAnnotations.java

:43)

[...]

Figure 3.2: Root cause location reported by NonDex debugging module

import java.util.ArrayList;

import java.util.List;

...

public static List<Field> getDeclaredFieldsIncludingInherited (Class<?> clazz) {

List<Field> fields = new ArrayList<Field>();

while (clazz != null) {

for (Field field : clazz.getDeclaredFields()) {

fields.add(field);

}

clazz = clazz.getSuperclass();

}

return fields;

}

Figure 3.3: Problematic code snippet used by testInitFirstVerifyCallBacks

elements in arbitrary order, and tests that depend on this method can produce unreliable
results. DexFix has a general, automated fix strategy for sorting arrays of fields such as
those returned by getDeclaredFields (as discussed in Section 4.2.2). Based on the NonDex
debugging output pertaining to the ReflectionUtils class, DexFix proposes the fix as shown
in Figure 3.4. Rather than introducing its own sorting, DexFix uses the Java standard library
classes java.util.Arrays and java.util.Comparator for sorting the fields. As a minor point,
DexFix imports these classes when needed and adds them to the import block sorted by the
fully qualified class names. Because the Arrays#sort method from the standard library sorts
the input array in place and does not return the sorted array, DexFix cannot simply replace
clazz.getDeclaredFields() with some inline code like sort(clazz.getDeclaredFields()) in
the for loop. Instead, DexFix introduces a fresh variable sortedFields, sorts the array
(comparing fields by name) in place, and uses sortedFields in the for loop. After DexFix

makes a change, we automatically compile and rerun the test with NonDex to check if it
still fails; in this case, the test passed after the above fix.
We submitted this fix as a GitHub pull request [38]. In gory detail, the Hadoop change

process requires first opening an issue ticket on Jira, which we did [39], before submitting
a pull request on GitHub that references the Jira ticket. Having a particular process for

11

import java.util.ArrayList;

+ import java.util.Arrays;

+ import java.util.Comparator;

import java.util.List;

...

while (clazz != null) {

- for (Field field : clazz.getDeclaredFields()) {

+ Field[] sortedFields = clazz.getDeclaredFields();

+ Arrays.sort(sortedFields, new Comparator<Field>() {

+ public int compare(Field a, Field b) {

+ return a.getName().compareTo(b.getName());

+ }

+ });

+ for (Field field : sortedFields) {

fields.add(field);

...

Figure 3.4: Fix for test testInitFirstVerifyCallBacks proposed by DexFix

submitting contributions was not specific to Hadoop, but we found many other projects
having their specific requirements; in fact, it often took us more time to understand how to
submit a fix to a project than it took for DexFix to propose the fix and for us to inspect
that fix. The developer promptly accepted our fix with the message: “+1, committing. we
all hate flaky tests. thanks for this” [38].

3.2 MULTIPLE CHANGES WITH THE SAME STRATEGY

In this example, DexFix proposes a fix with multiple changes in both production and test
code, but all these changes follow the same strategy. In the Quarkus project [40], commit
84128ce, NonDex detected several tests that depend on some underdetermined specifications.
One of the tests was CompilerFlagsTest#defaulting. When the test failed with randomiza-
tions from NonDex, it produced an error message that was not easy to debug, as shown in
Figure 3.5. While NonDex’s prior debugging output [34] provides some info for this failing

org.opentest4j.MultipleFailuresError:

org.opentest4j.AssertionFailedError: expected: <CompilerFlags

@{-b, -a}> but was: <CompilerFlags@{-a, -b}>

org.opentest4j.AssertionFailedError: expected: <CompilerFlags

@{-b, -a, -c, -d}> but was: <CompilerFlags@{-a, -b, -c, -d}>

[...]

at io.quarkus.dev.CompilerFlagsTest.defaulting(CompilerFlagsTest.java:25)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

Figure 3.5: Error message after running test defaulting with NonDex

12

test, unfortunately it does not provide enough info. Specifically, the prior NonDex debug-
ging output provides that the “root cause” random choice (as shown in Figure 3.6) affects
the failure. We can see that the failure stems from an iteration over a HashMap object, whose
order is underdetermined, but the NonDex output did not provide (1) the code location that
allocated this object and (2) whether it indeed allocated an object of the class HashMap or
potentially of the class HashSet (whose internal implementation uses HashMap).

java.util.HashMap$HashIterator$HashIteratorShuffler.<init>(Unknown Source)

java.util.HashMap$HashIterator.<init>(HashMap.java:1435)

java.util.HashMap$KeyIterator.<init>(HashMap.java:1467)

java.util.HashMap$KeySet.iterator(HashMap.java:917)

java.util.HashSet.iterator(HashSet.java:173)

java.util.AbstractCollection.toArray(AbstractCollection.java:137)

java.util.ArrayList.addAll(ArrayList.java:581)

[...]

io.quarkus.dev.CompilerFlags.toList(CompilerFlags.java:44)

io.quarkus.dev.CompilerFlags.equals(CompilerFlags.java:68)

org.junit.jupiter.api.AssertionUtils.objectsAreEqual(AssertionUtils.java:189)

Figure 3.6: Root cause reported by NonDex for test defaulting

We have extended NonDex debug output to include the code location (as explained in
Section 4.3). Our extension reported that the object was allocated on line 30 of the class
CompilerFlags. This class comes from the file CompilerFlags.java. Figure 3.7 shows the rel-
evant line of the allocation place for the HashSet. DexFix has a general automated strategy
for replacing allocations of HashMap/HashSet with allocations of LinkedHashMap/LinkedHashSet.
The LinkedHash* 1 classes have a precisely defined iteration order, e.g., the Javadoc specifi-
cation [41] for LinkedHashMap states: “Hash table and linked list implementation of the Map

interface, with predictable iteration order. This linked list defines the iteration ordering,
which is normally the order in which keys were inserted into the map (insertion-order)” and
also “This implementation spares its clients from the unspecified, generally chaotic ordering
provided by HashMap.” Based on the debugging output from our NonDex extension, DexFix
proposed the change as shown in Figure 3.8 (together with appropriate changes in import).
Each LinkedHash* class is a subclass of its respective Hash* class, so after this change, the
changed code can compile without further changes to the declared types (in this case of the
field this.defaultFlags).
After DexFix makes a change and reruns the test with randomization from NonDex, unlike

in the first example where the test passed after the first change, this test again failed (for
a number of seeds). The new failure was again due to iteration over a HashMap, and our

1We will use LinkedHash* to refer to either LinkedHashMap or LinkedHashSet.

13

this.defaultFlags = defaultFlags == null ? new HashSet<>() :

new HashSet<>()(defaultFlags);

Figure 3.7: The allocation place of the HashSet that causes the test failure reported by DexFix

- this.defaultFlags = defaultFlags == null ? new HashSet<>() :

new HashSet<>(defaultFlags);

+ this.defaultFlags = defaultFlags == null ? new LinkedHashSet<> :

new LinkedHashSet<>()(defaultFlags);

Figure 3.8: The first fix proposed by DexFix for test defaulting

extension reported that the object was allocated on line 41 of the same class CompilerFlags.
DexFix then proposed the change as shown in Figure 3.9.
After this change, the test failed with NonDex yet again. The new failure was yet again

due to iteration over a HashMap, and our extension reported that the object was allocated on
line 88 of the class CompilerFlagsTest. DexFix yet again proposed the change as shown in
Figure 3.10. After DexFix changed all these three lines (along with adding import statements),
the test finally passed with NonDex. We submitted this fix as a GitHub pull request, “Make
tests more stable by using LinkedHashSet for deterministic iterations” [42], and the developer
accepted it with the message, “Merged, thanks!”

3.3 MULTIPLE CHANGES WITH DIFFERENT STRATEGIES

This example illustrates a case where DexFix proposes a fix that changes both production
and test code, specifically updating a test assertion. In the Alibaba Fastjson project [43],
commit d4a6271, NonDex detected several tests that depend on some underdetermined spec-
ifications, including WriteDuplicateType#test_dupType2. Similar to the previous example, the
problem was with a HashMap iteration, specifically line 38 of the class WriteDuplicateType ,
and DexFix proposes the change as shown in Figure 3.11.

- Set<String> effectiveDefaultFlags = new HashSet<>(this.defaultFlags);

+ Set<String> effectiveDefaultFlags = new LinkedHashSe<>(this.defaultFlags);

Figure 3.9: Fix proposed by DexFix for test defaulting after the first fix

- return new HashSet<>()(Arrays.asList(strings));

+ return new LinkedHashSet<>()(Arrays.asList(strings));

Figure 3.10: Fix proposed by DexFix for test defaulting after the second fix

14

- HashMap<String, Object> obj = new HashMap<>();

+ HashMap<String, Object> obj = new LinkedHashMap<>();

Figure 3.11: Fix proposed by DexFix for test test_dupType2

After this change, when the test is rerun with NonDex, it fails with an assertion violation,
but unlike previous cases where a test failed for some random seeds, this test fails for all
seeds. This deterministic failure means that the test fails even without NonDex, indicating
that the actual cause is likely not an underdetermined specification but some other reason.
In particular, this test fails on line 44 of WriteDuplicateType.java (as shown in Figure 3.12),
which compares two strings (we simplified some irrelevant parts with [...]).

Assert.assertEquals("[pre]\"@type\":[...],\"id\":1001[post]", text1);

Figure 3.12: The test assertion of test_dupType2 that fails after the fix

At this point we run ReAssert [12] to fix the failing assertion. For these cases of assertEquals
with a string literal, ReAssert replaces the expected string with the actual string that the
test produces. Specifically, ReAssert generates the following change as shown in Figure 3.13.

- Assert.assertEquals("[pre]\"@type\":[...],\"id\":1001[post]", text1);

+ Assert.assertEquals("[pre]\"id\":1001,\"@type\":[...][post]", text1);

Figure 3.13: The new assertion proposed by ReAssert for test_dupType2

These two changes now make the test pass both with and without NonDex. We submitted
this fix [44], and the developer merged it.

3.4 A NOVEL STRATEGY FOR JSON STRINGS

Our fourth example is a case where DexFix proposes a fix just for comparing JSON strings.
On the project Nutz [45], commit 97745dd, NonDex detected several tests that depend
on some underdetermined specifications, including JsonTest#test_enum. According to the
NonDex debugging output, this test also has getDeclaredFields as the root cause, but in
a location that is in a third-party library not in the Nutz project, which means DexFix

cannot make changes directly around where getDeclaredFields is used. However, the failed
assertion (on line 1031 of JsonTest.java) just compares a JSON string to a hard-coded
string literal, i.e., string expected. As such, DexFix has a general, automated fix strategy

15

to utilize a Java library, JSONAssert [46], to change such comparisons. JSONAssert is a
designated library to assist in writing tests on JSON strings, and it provides library methods
like JSONAssert#assertEquals that compares two JSON strings in a smart way that ignores
ordering of elements in the JSON structure. DexFix proposed the following change with
JSONAssert#assertEquals, as shown in Figure 3.14.

+ import static org.junit.Assert.fail;

+ import org.json.JSONException;

+ import org.skyscreamer.jsonassert.JSONAssert;

...

- assertEquals(expected, Json.toJson(TT.T)); // former line 1031

+ try {

+ JSONAssert.assertEquals(expected, Json.toJson(TT.T), false);

+ } catch (JSONException jse) {

+ fail("Not comparing JSON strings.");

+ }

Figure 3.14: The new assertion proposed by DexFix for test_enum

The parameter false instructs the method to ignore the ordering of fields in the JSON
object. The change also requires wrapping the call in a try-catch block to fail when the
assertion does not compare JSON strings. Another required change is to modify pom.xml

to add the org.skyscreamer.jsonassert-1.5.0.jar dependency. Because this same JsonTest

class had 4 similar failures, we (manually) extracted all try-catch blocks in a helper method,
called assertJsonEqualsNonStrict, and replaced calls to assertEquals with calls to the helper
method. These changes make all the tests pass both with and without NonDex. We sub-
mitted this fix [47], and the developers merged it: “thank you very much ˆ_ˆ”.

16

CHAPTER 4: TECHNIQUE

We next describe our DexFix technique for automated fixing of tests that fail due to
underdetermined specifications. The input to our technique conceptually consists of (1) the
project source code including the production and test code, and (2) the debugging output
from (our extension of) NonDex for a failing test. In general, NonDex can detect multiple
test failures, but DexFix fixes them one at a time. The output of our technique is a fix,
consisting of one or more code changes, that makes the test pass when run with NonDex—if
DexFix cannot propose such a fix, it may still provide some code changes that may help
developers to manually fix the code. Inspired by ReAssert [12], DexFix proceeds by applying
various fix strategies and checking if the test passes with NonDex.
Section 4.1 presents an overview of DexFix. Section 4.2 describes the novel strategies that

DexFix uses for tests that fail due to underdetermined specifications. Section 4.3 presents
how our prototype implementation of DexFix, which extends both NonDex and ReAssert,
adds new strategies, and also provides scripts to automate running DexFix at scale.

4.1 OVERVIEW

Figure 4.1 presents the pseudo-code of the DexFix top-level repair function that modifies
a project’s source code. The specific inputs of DexFix are the test that fails due to underde-
termined specifications, the failing assertion reported by JUnit, the root cause reported by
NonDex, and the debug location reported by our extension of NonDex.

DexFix first calls repair_location to attempt to repair the code location itself. If the
location is in a library dependency and not in the source code of the project being analyzed,
then DexFix cannot change the source code at that location (but could still change the test
code later). Otherwise, if DexFix can change the source code, it checks whether the root cause
is HashMap/HashSet or getDeclaredFields for which it can apply an appropriate strategy (as
discussed in Section 4.2.1 and 4.2.2). If DexFix modifies the code, it checks whether the test
fails, and if so, DexFix tries to update the failing test assertion by applying the traditional
ReAssert strategies [12] (as illustrated in Section 3.3).
If repair_location does not repair the test, DexFix applies its JSONAssertEquals strategy

(as discussed in Section 4.2.3). This strategy is the last resort because it adds a dependency
to the project, and developers tend to be cautious about adding more dependencies. After
all these changes, if the test passes without NonDex, DexFix runs the test with NonDex (for
a configurable number of rounds). If the test fails with NonDex, DexFix uses the potentially

17

input/output: project source code that gets modified

inputs: failing test t, failing assertion a, root cause c, debug location l

output: status REPAIRED/UNREPAIRED

def repair(t, a, c, l):

result = repair_location(t, c, l)

if result == UNREPAIRED:

apply_strategy(JSONAssertEqualsStrategy, t, a)

if compile_and_run(t) == FAIL:

return UNREPAIRED

by now the test (with the fix) passes without NonDex

result, an, cn, ln = run_NonDex(t, NUM_ROUNDS)

if result == FAIL:

return repair(t, an, cn, ln)

else:

return REPAIRED

def repair_location(t, c, l):

if l in library:

return UNREPAIRED

if c is Hash*:

apply_strategy(HashToLinkedHashStrategy, l)

elif c is getDeclaredFields:

apply_strategy(SortFieldsStrategy, l)

else

return UNREPAIRED

if compile_and_run(t) == FAIL:

apply_strategy(ReAssertStrategies, t, a)

if compile_and_run(t) == FAIL:

return UNREPAIRED

return REPAIRED

Figure 4.1: Pseudo-code of DexFix repair process

new failing assertion an, root cause cn, and debug location ln to recursively apply repair

again, e.g,. as illustrated in Section 3.2. However, if the test passes with NonDex, it is finally
considered fixed. We then proceed to manually inspect the fix and prepare a pull request.

4.2 STRATEGIES

We develop three new strategies for DexFix. The first two strategies focus on the most
common root causes for underdetermined specifications. These strategies can apply to both
the production and test code, depending on where HashMap/HashSet objects are allocated
or where getDeclaredFields is called. The third strategy focuses on comparisons of strings
that encode JSON objects. This strategy applies only to the test code. In brief, the high-

18

level goal of our strategies is to make the output deterministic or to make the test assertion
order-agnostic.

4.2.1 HashToLinkedHash Strategy

This strategy simply replaces allocation sites new HashMap, respectively, new HashSet, with
new LinkedHashMap, respectively, new LinkedHashSet. The strategy applies when the root
cause of a test failure is a random choice of iteration of some HashMap/HashSet object. While
NonDex can provide the stack trace at the iteration point, it did not provide the stack trace
of the allocation until we extended NonDex. A minor issue for this strategy is that sometimes
it needs to add an appropriate import statement to use LinkedHashMap or LinkedHashSet, i.e.,
import java.util.LinkedHashMap; or import java.util.LinkedHashSet;.

4.2.2 SortFields Strategy

This strategy adds sorting of fields arrays returned by the method getDeclaredFields. The
strategy applies when the root cause of a test failure is a random choice of elements returned
in such an array. NonDex already provides the stack trace at the point where the method is
invoked. If the method invocation is the only expression in a statement, e.g., field = clazz.

getDeclaredFields(), then adding sorting is easier.
A more challenging issue is handling method invocations that appear in more complex

expressions, e.g., as illustrated in Section 3.1. Our solution is to use a fresh variable to store
the array, then sort it, and finally replace the original invocation with the new variable name.
A minor issue is that this strategy may need to add two appropriate import statements for
comparing and sorting, i.e., import java.util.Arrays; and import java.util.Comparator;.

4.2.3 JSONAssertEquals Strategy

This strategy replaces invocations of the JUnit’s standard Assert.assertEquals with in-
vocations of JSONAssert.assertEquals taken from the Skyscreamer JSONassert library [48],
specifically version 1.5.0. This strategy is illustrated in Section 3.4. Replacing Assert with
JSONAssert would be easy, but the issues with this strategy involve the need to provide an
additional argument (false) to the invocation, and to handle the potential JSONException.
This strategy only applies when the strings being compared represent JSON objects.

19

4.3 IMPLEMENTATION

We implement our DexFix technique in a prototype tool, also called DexFix. Our current
implementation is an amalgam of our extensions to publicly available NonDex [34] and
ReAssert [36] codebases, with some newly written code.
Our key modification to NonDex is the collection of additional debugging info. Specifically,

for every allocation of a HashMap/HashSet object, our extension records the stack trace at
the allocation point. When NonDex reports the stack trace at the iteration point where it
performs its random choice, our extension also reports the stack trace at the allocation point
of the object being iterated. Our extension then finds the code location from this stack trace
by looking for the first stack frame whose source code is in the project being analyzed (and
not in a library, either the Java standard library or some third-party library).
Our key modifications to ReAssert implement the JSONAssertEquals strategy and up-

grade ReAssert to work with most of Java 8. For the JSONAssertEquals strategy, we reuse
the prior ReAssert code for its AssertEquals strategy (illustrated in Section 3.3). The prior
code already instruments tests to capture the expected and actual values for a string compar-
ison, and the (test) code location that invokes the comparison. Our extension checks whether
the strings are likely JSON strings, by the presence of the ‘{’ characters and the fact that
the expected and actual strings when sorted (just by character ordering, not considering any
of the JSON format) should be equal. Unlike AssertEquals that just replaces a literal, our
extension has to perform somewhat elaborate changes to replace the invoked method, add
an argument, and add a try-catch block. While working with existing ReAssert code, we
find that it uses an old version of the Spoon library [49] for parsing Java files, which does not
support most modern Java 8 features; we update the Spoon dependency and appropriately
modify the ReAssert code. However, the Spoon version that we use still does not support all
Java 8 features (e.g., lambda expressions). Spoon does have even newer versions, but they
substantially broke backwards compatibility, so trying to use those latest versions would
require substantial rewriting of the prior ReAssert code.
Our key new additions implement the HashToLinkedHash and SortFields fix strategies.

We used the javaparser library [50] to parse the input Java files (whether production and
test code), modify the code, and print the file content with modifications. The javaparser
library is much more modern than Spoon and supports all the latest features of Java 8 (We
analyze Java 8 projects as we use NonDex, and Java 8 is the most common among popular
Java projects). Our implementation directly follows the descriptions in Section 4.2 and the
examples in Chapter 3. This part of our prototype is more robust than our extension of
ReAssert. Last but not least, our new code includes several scripts that connect NonDex,

20

ReAssert, and our fix strategies, to implement the overall DexFix technique and to allow us
to run DexFix at scale in our experiments.

21

CHAPTER 5: EXPERIMENTAL SETUP

In this chapter, we first describe how we select projects for our evaluation and how we use
NonDex [34, 35] to detect tests within these projects that fail due to wrong assumptions on
underdetermined specifications. We then describe how we use DexFix to propose fixes for
these detected tests and how we prepare pull requests for these proposed fixes to developers.

5.1 SELECTING PROJECTS AND DETECTING TESTS WITH NONDEX

For our evaluation, we use open-source Java projects that build using the Maven build
system [51]; our requirement for Maven stems from the fact that NonDex currently only
supports running tests for Maven-based projects. We queried GitHub to find the top 1000
Java projects by number of stars, then we choose 200 from the 242 projects that have a
top-level pom.xml file used to configure Maven. We ran NonDex on all these 200 projects.
For each project, we use the latest commit as of September 2019. We create a separate

Docker image for each project. Each Docker image has the cloned project (including the
production and test code), installed using mvn install -DskipTests, and an installed version
of our modified version of NonDex. We build all Java code using Java 8, also installed in
the Docker image.
For each Docker image, we start a Docker container where we run NonDex detection on all

tests using mvn nondex:nondex. We configure NonDex to run 10 rounds (with varying random
seeds) for each project. We also configure NonDex to run using the “ONE” mode [13], where
NonDex randomizes the order for each method with an underdetermined specification only
once for the first call and then reuses that randomized order for subsequent calls (with the
same receiver object). We choose the “ONE” mode because tests that fail in this mode most
likely indicate real problems due to wrong assumptions that developers tend to be interested
in fixing. This mode puts a lower bound on the number of tests NonDex can detect on these
projects; in the “FULL” mode, NonDex could find even more test failures by randomizing all
calls for methods with underdetermined specifications. We collect all the tests that fail with
NonDex randomization but pass when run normally without NonDex.
For each detected test, we run mvn nondex:debug to obtain debugging info (specifically a file

that we copy outside of the Docker container). The prior NonDex debugging reports a single
method-call location where NonDex random choice leads the test to fail [34]. When the call
iterates over a HashMap/HashSet, our NonDex extension also reports the location where that
object is allocated (as discussed in Section 4.3).

22

During this process NonDex can find that some tests are flaky [5], i.e., pass or fail even
when rerun for the same random seed, so we remove such tests. Also the prior NonDex
debugging occasionally crashes altogether and produces no output, so we also remove such
tests. Because there is no info about any method-call location, our extension cannot report
where the receiver object is allocated. These crashes are infrequent and hard to reproduce,
so we have not yet reported them to NonDex developers but plan to do so in the future.

5.2 FIXING TESTS USING DEXFIX

DexFix uses the debugging info from (our extended) NonDex to fix each test individually.
For each test, we start a new Docker container based on the Docker image for the test’s
project. We copy into this container the debug file from NonDex and then run DexFix for
the test. This procedure ensures that DexFix proposes fixes for each test when run on the
same version of code where NonDex detected the test. An alternative would have been to
fix tests one after another in the same container, but an issue is that a later test would have
been run on a different version of the code that contains the fix for a prior test.
When DexFix needs to check if its proposed fix works, we configure it to run NonDex on

the test for 10 rounds to check if the test, after the applied change, can fail for any of the
NonDex rounds. If the test does fail in any of these rounds, DexFix then has to again use the
info collected from the NonDex run to propose additional changes to the code (Section 4.1).
This process continues until either DexFix generates a fix, or it reports that it still cannot
fully repair the test after potentially making some changes.
After collecting the fixes for tests that DexFix can fix for a project, we inspect the fixes

and prepare GitHub pull requests with those fixes to the developers of that project.
The fixes for different tests can contain the same or similar code changes, because we use

DexFix to fix each test individually on the same version of code where NonDex detected the
test (without using changes from the fix of one test as a starting point for fixing another
test). If fixes for multiple tests have some same changes to the production code or the test
code (even if they still have separate changes to their test assertions), these fixes can be
safely combined, because they all address the same cause of non-determinism. Moreover, all
the changes to test assertions need to be combined together along with the changes to the
production code; otherwise, the tests will fail when run without NonDex. Some pull requests
we send to the developers fix multiple tests at once and are a combination of fixes for these
related tests, with all the fixes sharing the same changes to the production and test code,
modulo changes to the test assertions. Some other pull requests simply fix only one test.
As we prepare a pull request, we manually make stylistic changes to make the code changes

23

match the coding style of the surrounding code. When we send pull requests, for a new
project that we have not yet sent pull requests, we send one pull request to that project for
review. As the pull request remains pending, we do not send more because we do not want
to overwhelm developers with pull requests that they may not have time to review. We only
send additional pull requests once developers accept the initial one. Also, if a pull request is
rejected, we take that feedback into account and do not submit other similar pull requests
to that same project. We describe more of our results concerning when we do not send pull
requests to developers in Section 6.3.

24

CHAPTER 6: EXPERIMENTAL RESULTS

Our evaluation aims to answer the following research questions:
RQ1: What is the breakdown of the root causes and debug locations for tests that fail

with NonDex due to wrong assumptions on underdetermined specifications?
RQ2: How many tests can DexFix fix, and which fix strategies are the most effective?
RQ3: How effective is DexFix at proposing fixes that developers actually accept?
We address RQ1 to better understand the causes for failing tests so that we and others

can tailor fix toward the most common causes. We address RQ2 to evaluate how effective
DexFix is at proposing fixes for such tests and to understand which strategies are effective at
fixing which root causes. We address RQ3 to evaluate whether developers accept the fixes
that DexFix proposes. Our dataset and pull requests (submitted using anonymous GitHub
accounts) are publicly available [33].

6.1 RQ1: ROOT CAUSES OF DETECTED TESTS

Among the 200 projects on which we run NonDex, NonDex detects 275 tests that fail due
to wrong assumptions in 37 projects. Table 6.1 lists these 37 projects. The “ID” column
shows the brief ID we give to each project for later reference. The “Commit” column is
the Git commit SHA on which we run NonDex for each project. The remaining columns
show the breakdown of the root causes and debug locations that (our extension of) NonDex
reports for test failures. The “Hash∗” column shows the number of tests due to iteration
over an unordered HashMap/HashSet collection, hence the header “Hash∗”. The “gDF” column
shows the number of tests due to calling getDeclaredFields. The “Rest” column shows the
remaining tests, of which 15 are due to getMethods, and the remaining due to six vari-
ous causes: getAnnotationsByType, getDeclaredClasses, getDeclaredConstructors, getFields,
unordered ConcurrentHashMap iteration, and unordered PriorityQueue iteration. Note that
these columns, under “Root Cause”, show the single cause from the debugging file that mvn

nondex:debug outputs on the first run, but a test may have multiple root causes, e.g., as
illustrated in Section 3.2. The next two columns, under “Source?”, show whether the debug
location reported by our NonDex extension is in the project’s source code (in either produc-
tion or test code) or in a third-party library. The final column shows the total number of
tests detected per project.
While the NonDex tool implements random exploration for over 40 methods with underde-

termined specifications, only a small number of these methods cause most test failures. From

25

Table 6.1: Projects used in the study and breakdown of root causes and their locations
Root Causes Source?

ID Project Commit Hash∗ gDF Rest Y N Σ

P1 apache/flink 23c9b5a 31 1 9 34 7 41
P2 alibaba/fastjson d4a6271 27 - - 21 6 27
P3 apache/hive 90fa906 15 10 - 11 14 25
P4 Graylog2/graylog2-server 87d63f6 12 11 - 9 14 23
P5 apache/commons-lang 7c32e52 - 21 - 21 - 21
P6 flowable/flowable-engine 399ab58 3 - 14 17 - 17
P7 apache/incubator-shardingsphere 038232e 15 - - 15 - 15
P8 dropwizard/dropwizard 616ed86 6 3 - 6 3 9
P9 square/retrofit 8c93b59 - 9 - - 9 9
P10 rest-assured/rest-assured d3602d9 3 5 - 3 5 8
P11 alibaba/jetcache d280196 6 - - 6 - 6
P12 apache/hadoop 14cd969 2 4 - 4 2 6
P13 graphhopper/graphhopper 91f1a89 6 - - 6 - 6
P14 abel533/Mapper 1764748 - 5 - 5 - 5
P15 apache/pulsar 505e08a - 5 - 5 - 5
P16 nutzam/nutz 97745dd - 5 - 5 - 5
P17 stanfordnlp/CoreNLP 08f6dca 5 - - 5 - 5
P18 apache/avro bfbd2d1 - 2 2 4 - 4
P19 ctripcorp/apollo 24062ad 1 - 3 3 1 4
P20 liquibase/liquibase 31a2256 4 - - 1 3 4
P21 apache/kylin 31ab936 3 - - 3 - 3
P22 kiegroup/optaplanner dff7457 - 3 - 2 1 3
P23 vipshop/vjtools 60c743d - 3 - - 3 3
P24 Alluxio/alluxio e6d7680 - 2 - - 2 2
P25 eclipse/jetty.project 9cede68 2 - - - 2 2
P26 elasticjob/elastic-job-lite b022898 - 1 1 - 2 2
P27 intuit/karate 2ca51ac 2 - - 2 - 2
P28 quarkusio/quarkus 84128ce 2 - - 2 - 2
P29 querydsl/querydsl 2bf234c 2 - - 2 - 2
P30 seata/seata d334f85 1 - 1 1 1 2
P31 OpenFeign/feign 744fd72 1 - - 1 - 1
P32 classgraph/classgraph d3b5aeb - 1 - 1 - 1
P33 hs-web/hsweb-framework 9eb96c4 - 1 - 1 - 1
P34 mybatis/mybatis-3 0ca4860 1 - - 1 - 1
P35 pedrovgs/Algorithms ed6f8a4 1 - - 1 - 1
P36 spring-cloud/spring-cloud-config 922590e 1 - - 1 - 1
P37 zhangxd1989/spring-boot-cloud e3966d7 - 1 - - 1 1

Σ - - 152 93 30 199 76 275

26

the table, the majority of the detected tests fail due to some HashMap/HashSet (152 out of the
total 275 tests). The second most common root cause is due to calling getDeclaredFields

(93 out of the total 275 tests). Prior reports from running NonDex on older versions of
open-source projects also found these two causes to be the most common [13, 34], but inter-
estingly, the ranking between these two is reversed in our findings compared to prior work,
which found the most common cause to be from calling getDeclaredFields [13, 34]. The
difference in ranking is due to the differences in projects and versions, but the fact that
these two causes remain the most common among detected tests increases confidence that
our fix strategies for DexFix will remain general for fixing tests detected by NonDex.
Compared to prior work, the number of tests that NonDex detects in our experiment—275

failing tests in 37 out of 200 open-source projects—is greater than the previously reported
number, e.g., Shi et al. [13] detected 60 failing tests in 21 out of 195 open-source projects.
While we run on some much larger (multi-module) Maven projects, it could be also that the
problem of tests due to underdetermined specifications is growing, so it is timely to develop
techniques and tools such as NonDex and DexFix.
In terms of debug locations, we see that the majority are in the production and test

code as opposed to third-party libraries. These numbers also increase confidence that our
fix strategies for DexFix can be effective, because they mostly work on production and test
code. While we have a strategy (the JSONAssertEquals strategy) that can work even if the
location is in library code, it applies only in some cases (for JSON strings).

6.2 RQ2: FIXED TESTS

Table 6.2 shows the number of detected tests for which DexFix automatically proposes a
fix. Overall, DexFix fixes a total of 101 tests (out of 275). We discuss the cases that DexFix
cannot fix in Section 7.1. The table shows the breakdown of fixed tests per root cause that
NonDex reports and the strategy that DexFix uses: “L1” uses HashToLinkedHash at only
one allocation site; “LM” uses HashToLinkedHash strategy at multiple allocation sites; “LA”
uses HashToLinkedHash strategy (once) and also updates some test assertion(s); “JA” uses
JSONAssertEquals strategy (which applies to both top root causes); “SF” uses SortFields at
only one site (we never observe a case where the strategy needs to change more than one
site) without updating any test assertion; and “SA” uses SortFields and also updates some
test assertion(s). In the table, the breakdown of the strategies is grouped based on the root
cause for the tests to fail, either Hash∗ or gDF, which are the most common causes as we
discussed in Section 6.1. Note that JSONAssertEquals applies to both top root causes.
From the table, we see most fixes that DexFix proposes require using only one Hash-

27

ToLinkedHash strategy on a single allocation site (42 out of 69 for the cause Hash∗) or only
one SortFields strategy for a getDeclaredFields invocation (16 out of 32 for the cause gDF),
without changing any test assertion. The tests can still assert on the same expected values
as before, but now the outcomes are deterministic and will not be affected by evolution of
the implementation of the library methods in the future.
The JSONAssertEquals strategy helps in a number of cases, with a total of 16 tests fixed

for both causes. This total highlights that tests often make incorrect assumptions by re-
lying on JSON serialization. We see that most of the tests fixed this way are caused by
getDeclaredFields (13). DexFix cannot fix these tests with SortFields, because the call to
getDeclaredFields is in library code. Our analysis shows that these cases often stem from
the project using a library to serialize objects into the JSON format. As such, it is under-
standable why most of the JSONAssertEquals fixes are for tests that use getDeclaredFields

instead of HashMap/HashSet.
Another interesting point to note is the relatively high number of tests (12 for “LM”) whose

fixes involve using HashToLinkedHash on multiple allocation sites. This number highlights
that the fixes for these tests are not always straightforward, hence DexFix needs to make
multiple passes, running the debugging support multiple times to find all the relevant code
locations where non-determinism can happen to make tests to fail.
For repair cost, DexFix takes relatively little time to apply its strategies and change the

code for each test, because DexFix applies only targeted changes and runs each test at most
5-6 times (unlike program repair that may need to explore thousands of changes and run
many tests hundreds or thousands of times [24]). Our regression testing runs DexFix on all
275 tests and takes under 7 hours, for an average of ∼90 seconds per test, with minimum of
32 seconds and maximum of 388 seconds.

6.3 RQ3: PULL REQUESTS

We have submitted pull requests for 84 out of 101 tests for which DexFix proposes a fix.
Table 6.2 also shows the status of these pull requests. The status of a pull request can be
Accepted (“A”), Pending (“P”), or Rejected (“R”); we also show Unsubmitted (“U”).
Overall, developers have accepted pull requests that we submitted for majority of the tests

for which DexFix proposes a fix. This high ratio of accepted pull requests shows that the fixes
that DexFix proposes are effective, and developers welcome the changes, e.g., consider the
messages in Chapter 3. There are 25 tests that still have their pull requests open on GitHub,
because our proposed changes are still pending review or final judgment from developers.
When we look into the breakdown of the tests in the accepted pull requests across the two

28

Table 6.2: Tests repaired, strategy used, and PR statistics
Hash∗ gDF PR Σ

ID L1 LM LA JA SF SA JA A P R U

P1 11 6 - - - - - 5 8 - 4 17
P2 9 - 7 - - - - 5 2 - 9 16
P3 1 - - - 1 - - - 2 - - 2
P4 2 - - - - - 8 10 - - - 10
P5 - - - - 6 - - 6 - - - 6
P6 1 - - - - - - 1 - - - 1
P7 1 4 - - - - - 5 - - - 5
P8 3 - - - - - - 3 - - - 3
P10 - - - 3 - - 2 4 1 - - 5
P11 2 - - - - - - 2 - - - 2
P12 - - - - 2 - - 2 - - - 2
P13 2 - 4 - - - - - - 2 4 6
P14 - - - - 3 2 - - 5 - - 5
P16 - - - - 3 1 - 4 - - - 4
P18 - - - - 1 - - - 1 - - 1
P20 1 - - - - - - 1 - - - 1
P21 3 - - - - - - 3 - - - 3
P23 - - - - - - 3 - 3 - - 3
P28 - 2 - - - - - 2 - - - 2
P29 2 - - - - - - - 2 - - 2
P30 1 - - - - - - 1 - - - 1
P31 - - 1 - - - - 1 - - - 1
P34 1 - - - - - - 1 - - - 1
P35 1 - - - - - - - 1 - - 1
P36 1 - - - - - - 1 - - - 1

Σ 42 12 12 3 16 3 13 57 25 2 17 101

root causes, the numbers are roughly similar: 36 of 69 for Hash∗, and 21 of 32 for gDF.
Unfortunately, we have 2 tests whose pull requests have been Rejected. The developers

of this project, graphhopper/graphhopper (P13), rejected one of our pull requests because
the fix uses JSONAssertEquals, which adds a dependency on the JSONassert library. The
developers did not want to include that dependency, commenting that “We never had a
problem with this test and so I would not want to change it. Especially when we need a
big dependency for something small.” Such feedback shows that, while JSONAssertEquals
effectively modifies just the test code that compares JSON strings, the cost of including a
dependency on a new library is too high for some developers. For the other pull request, the
fix was from HashToLinkedHash, but the developers did not provide any feedback before

29

rejecting, so we do not know their reason for rejection.
Concerning the Unsubmitted fixes, we have not submitted fixes for 17 tests for two reasons.

First, two tests—com.graphhopper.routing.ch.CHProfileSelectorTest#onlyEdgeBasedPresent

and com.graphhopper.routing.ch.CHProfileSelectorTest#onlyNodeBasedPresent—that DexFix
fixes on an older code version (on which we started our experiments) in graphhopper/graph-
hopper (P13) do not even depend on underdetermined specifications in the latest code ver-
sion. The developers substantially restructured their code in a commit [52] and (1) instead
of using HashMap for a configuration, switched to use a different data structure, and (2) also
changed the test assertion to no longer compare a string to a hard-coded constant, specifi-
cally, the test was failing with expected value “{weighting=fastest, vehicle=car}” that could
get the actual value “{vehicle=car, weighting=fastest}”.
Second, the remaining 15 fixes that DexFix proposes are unlikely to get positive responses,

and we choose not to send and bother developers. For apache/flink (P1), we do not send pull
requests for 4 fixes because the first one we sent is still pending review. For alibaba/fastjson
(P2), our manual inspection shows that the 9 proposed fixes do not make sense in the context
of how the test is run, so we do not feel comfortable sending out a pull request. Finally, for
graphhopper/graphhopper (P13), where we have 2 rejected fixes, the remaining two fixes for
the project are very similar to the rejected ones, so we do not send.

30

CHAPTER 7: DISCUSSION

We discuss limitations and overhead for DexFix. First, DexFix has limitations and cannot
fix every test detected by NonDex. Second, the fix strategies that DexFix uses may introduce
additional overhead into the production and test code.

7.1 LIMITATIONS

DexFix currently cannot fix 174 out of 275 tests detected by NonDex. We have inspected
most of these cases, including at least one unfixed test from each project that has unfixed
test(s). Some of the cases arise from engineering deficiencies of our current prototype, some
are limitations on our fix strategies, and some are rare enough that they do not merit
developing general strategies.
In terms of tool engineering, ReAssert crashes when run on 42 tests. ReAssert cannot

run on 28 tests that use JUnit 5 or TestNG [53], as ReAssert currently supports only JUnit
3 and JUnit 4. Our attempt to upgrade ReAssert to support JUnit 5 revealed that this
would require a major re-implemenation effort. Further, ReAssert does not work on 23 tests
because they use assertions from the popular AssertJ library [54], which supports “fluent
assertions” that use assertThat and are easier to read as English text than code. Again,
the ReAssert code that we obtained (version 0.4.1) does not support this style of assertion;
a published tool paper [36] claims that some JUnit’s assertThat methods are supported by
ReAssert, but ReAssert does not support AssertJ’s assertThat methods. Finally, our toolset
also does not handle source languages beyond Java; for example, 6 tests are written in Scala.
In terms of fix strategies, the current DexFix strategies focus on addressing the two top

root causes for tests to fail due to wrong assumptions on underdetermined specifications—
iterating over HashMap/HashSet and the order of fields returned in getDeclaredFields—as
reported by prior work [13] and confirmed in our experiments (Section 6.1). We find 30
tests fail for 7 other root causes which form a small minority among all the detected tests,
and it is generally not worthwhile to develop “one-off” strategies for each cause. The largest
number of tests, 15, is for getMethods, but they come from only two projects. We inspect all
14 tests in flowable/flowable-engine (P6), and they all fail because a class has two methods
called equals (one method declared in the class itself and another method inherited from
java.lang.Object). We could easily build a new “strategy” to sort these methods by name,
but it would not be widely applicable. In fact, the project has a comment “By convention,
the implementing class should have one method with the same name” [55]. We do not want

31

to add a specialized strategy to inflate the number of fixed tests. The remaining test for
getMethods is interesting in that its root cause is not just one random choice but two random
choices. However, the fix would again be specialized to this one case.
Two of DexFix’s strategies only apply where the source code is accessible, and only the

JSONAssertEquals strategy can apply if the cause is in a third-party library. There are 28
tests that have causes in a library but JSONAssertEquals does not apply (not a JSON string
comparison). We do not currently handle these cases.
Finally, DexFix cannot handle 17 tests due to one-off instances, such as creating HashMap

through reflection or using parts of the Java language that are not properly handled by the
tooling DexFix relies on (javaparser or ReAssert). Again, developing a specific fix strategy
for these one-off cases would be too specialized for the effort needed.

7.2 OVERHEAD

It is interesting to consider whether the three new strategies that DexFix provides (Sec-
tion 4.2) should be applied in all cases, even if it currently does not fail any test: should
all Hash* objects be LinkedHash*, should all arrays from getDeclaredFields be sorted, and
should all JSON strings be compared with something like JSONAssert.assertEquals? In the
limit, did Java standard library developers make a mistake by having some methods with
underdetermined specifications?
While our strategies change code to make tests not fail due to wrong assumptions on un-

derdetermined specifications, the changes can introduce other side-effects to the production
and test code, in particular with introducing some extra overhead in execution.
Compared to Hash*, LinkedHash* objects provide a small overhead in both space (as

LinkedHash* objects need to maintain a list in addition to a hashtable maintained by Hash*)
and runtime (to manipulate the list) for most operations. However, that overhead is neg-
ligible for all applications outside microbenchmarks; and moreover some operations on
LinkedHash* can be faster [56], including iteration, which becomes not only predictable but
also faster, as well as resizing or containsValue method. In retrospect, the developers of the
Java standard library could have specified that all hash maps behave like LinkedHashMap, but
it would create a somewhat higher overhead even in cases where deterministic iteration is
not required. In Python, all dictionaries since version 3.7 are guaranteed to behave similarly
to a LinkedHashMap, while the older versions behaved like HashMap [57]. Some Java developers
still raise concerns about these overheads, e.g., one of our pull requests had a discussion
about it [58], but later the developer still accepted the fix.
Sorting getDeclaredFields provides an even smaller overhead as the library typically does

32

this only once and then caches for later calls. In contrast to Java, Python’s interface for
reflection involves a __dict__ attribute that returns a dictionary with attributes as keys, a
global dir function that returns a list of members, and the inspect module whose getmembers

function returns a list of members. However, since Python 3.7, the latter is more precisely
specified: “inspect.getmembers(object[...]) Return all the members of an object in a list
of (name, value) pairs sorted by name.”
Finally, using JSONAssert.assertEquals would affect only the test code and not the produc-

tion code, so the overhead is even less important, while providing for deterministic failures
and easier debugging.

33

CHAPTER 8: THREATS TO VALIDITY

In this chapter, we discuss why our overall results may not generalize to all projects,
beyond those used in our evaluation. Our evaluation uses a diverse set of popular projects
from GitHub but, due to limitations of the existing tooling on top of which we develop
DexFix, all projects are written primarily in Java and build using the Maven build system.
However, the 200 projects for our evaluation are among the most popular Java projects on
GitHub, and we believe they are fairly representative of all Java projects.

DexFix itself may have bugs that affect our results. To reduce this threat, we have devel-
oped DexFix on top of existing tools, NonDex [34] and ReAssert [36], which have been used
in prior research. Furthermore, several collaborators of the thesis author reviewed the new
code and discussed the proposed fixes.
The tests for which NonDex detected failure due to wrong assumptions regarding under-

determined specifications are true positives since the tool actually observes these failures,
and we can reproduce all 275 cases used in our evaluation. In fact, the number of tests
detected in our evaluation is a lower-bound on the true number of tests that could fail due
to underdetermined specifications in these projects. Most importantly, the key threat is the
quality of the fixes proposed by DexFix. We confirm that these fixes actually do provide
useful contributions by sending the fixes as pull requests to developers, allowing them to
make the final judgment call.

34

CHAPTER 9: RELATED WORK

9.1 REPRODUCIBILITY AND RERUN/REPLAY

Differing library implementations can have consequential impacts on software due to the
potential for unanticipated non-determinism in production code. In scientific applications,
for example, there is a need to detect and fix non-determinism in order of operations [59, 60,
61]. Unanticipated changes in the results of code can cast doubt on the scientific accuracy
or the utility of a result [62]. Some applications, e.g., n-body system simulations, may
require bit-wise numerical reproducibility [59]. This work advances the state of the art in
scientific reproducibility by introducing methods to reduce non-determinism in repeated code
executions, a general interpretation of reproducibility in scientific research [63, 64, 65, 66]. In
addition, efforts to advance scientific reproducibility have recently focused on the expanded
use of software testing [67].

9.2 DETECTING FLAKY TESTS

Mora et al. [68] proposed the concept of client-specific equivalence, when two library
versions are equivalent with respect to a specific client, to study how changes in upstream
library code affect downstream clients. Shi et al. [13] studied when tests fail due to wrong
assumptions on underdetermined specifications, and they developed NonDex to detect such
tests. They focused on specifications for methods, from the Java standard library, whose
actual implementation may not guarantee a deterministic outcome, e.g., the iteration order
over a HashSet/HashMap is not guaranteed to be in any specific order. Our work focuses on
an automated fix for such tests, which is carried out by modifying both the production and
test code.
The tests NonDex detects can be considered as a type of flaky tests, which are tests that

non-deterministically pass or fail on the same version of production code [5]. In the case
of tests that fail due to wrong assumptions with underdetermined specifications, they can
fail on the same version of code after the library they depend on (in this case the Java
standard library) gets updated. By studying open-source projects, Luo et al. [5] found that
one reason for flaky tests is reliance on unordered collections. NonDex detects flaky tests
of this category among other tests that fail due to wrong assumptions on underdetermined
specifications [13, 34]. Other prior work focused on detecting different types of flaky tests [6,
7, 8, 9, 10, 11, 69].

35

9.3 AUTOMATED PROGRAM REPAIR

Automated program repair aims to generate patches for fixing bugs in code in an auto-
mated manner [20, 21, 22, 23, 24, 25, 26]. Given that these techniques rely on test outcomes
to guide them, they usually do not aim to fix the test code but focus on fixing the production
code. In this thesis, we develop DexFix to fix tests that fail due to wrong assumptions, and
our fix strategies change both the production and test code.
In contrast, there is prior work focused on fixing test code [12, 28, 29, 30, 31], specifically

repairing tests that become outdated when code evolves. In our work, we develop DexFix to
fix flaky tests, making sure they do not fail due to reasons unrelated to changes in the code
in the future. To fix flaky tests, Shi et al. [27] proposed using a technique named iFixFlakies.
iFixFlakies fixes order-dependent flaky tests, relying on the insight that the necessary code
for such tests is often found in the test suite itself. Our technique DexFix aims to fix flaky
tests with wrong assumptions on underdetermined specifications. Furthermore, our way of
fixing such flaky tests is not restricted to changes to the test code but sometimes also involves
making changes to the production code as well. We utilize ReAssert [12] to automatically
repair assertions that have to be updated after changes are made to the production code to
make the computations deterministic.

36

CHAPTER 10: FUTURE WORK

One potential line for future work is to speed up NonDex itself. To detect tests that
have wrong assumptions on underdetermined specifications, we ran projects’ regression test
suites with the public version of NonDex tool [34] to conduct random shuffling for certain
underdetermined methods. To fully utilize the features from NonDex, each test from the test
suite needs to be run multiple times. According to the original NonDex study [13], a user of
NonDex needs to run each test ten or more times with different random seeds from NonDex,
to have high confidence of finding all the tests with wrong assumptions. The shuffling by
NonDex also adds an overhead to each run. For example, for method getDeclaredFields,
NonDex shuffles and caches the order of the returned array when getDeclaredFields is called
the first time, if NonDex is in ONE mode. If NonDex is in FULL mode, NonDex could further
increase the overhead because NonDex shuffles the order every time when the method is
called. In addition, for large-scale projects, running entire test suite itself is already very
costly [4], let alone running multiple times with random shuffles. So, although DexFix can
propose fixes in a relatively short time (as discussed in Section 6.2), the high cost of detecting
tests that have wrong assumptions may prevent developers from using NonDex to detect tests
and then DexFix to fix flaky tests in their test suite. In the future, one could add a new
module which performs test selection to select tests that indeed execute some random shuffles
from NonDex in the first round of running each test, so that after the first round, tests that
do not execute random shuffles should not be run because running them cannot help detect
flaky tests that have wrong assumptions on underdetermined specifications.
In addition, even if many tests execute methods with underdetermined specifications,

those tests may not produce different outcomes if the underlying implementation changes.
For example, a user of getDeclaredFields may just use the Field objects acquired to check
if a specific field name exists in the specific class, which means the order does not affect
the test outcome. Sophisticated static analysis techniques can be implemented to reason if
a test will be affected by a different implementation of underlying library methods, which
hopefully reduces the size of test suite before running any test.
In the future, one could also add new strategies to handle other underdetermined methods,

in addition to the existing strategies for HashMap/HashSet iterations and getDeclaredFields.
Previously Shi et al. [13] found 31 methods that have underdetermined specifications, from
14 classes in the Java standard library. From a high-level perspective, our strategy to sort
the Field array returned by getDeclaredFields should also apply to, for example, getMethods,
but instead of sorting the array of Field objects, the strategy will sort the array of Method

37

objects. Inspired by our JSONAssertEquals strategy (as described in Section 4.2.3), another
interesting extension to DexFix’s fix strategies can be made to fix tests that compare other
popular string formats, e.g., XML [70].

38

CHAPTER 11: CONCLUSIONS

Software testing is an important practice to increase the quality of software by execut-
ing tests to evaluate if software behaves correctly according to the software specifications
which guide the implementations. Regression testing is a popular software testing approach
whose main assumption is that a test which fails after a new change but passes before the
change indicates faults introduced by the change. In practice, however, this assumption may
not always hold because test outcomes can be unreliable. A test that produces unreliable
outcomes is often called flaky, i.e., passes or fails without changes made to the code, which
makes the test less useful to detect regression. One cause of unreliable test output is wrong
assumptions on underdetermined specifications. Such specifications, which allow software
to produce different outputs given the same input, are important to provide library devel-
opers flexibility for their implementations, but library users may incorrectly assume specific
deterministic behavior, e.g., the output of the underlying library is always the same given
a specific input, which results in unreliable test outcomes. In the literature, a previous ap-
proach, NonDex, has been successful to detect regression tests that have wrong assumptions
on underdetermined specifications but, to the best of our knowledge, there has not yet been
tools that can generate automated fixes for those tests.
This thesis presents the DexFix approach to propose automated fixes for tests that fail

due to wrong assumptions on underdetermined specifications. We run the public version
of NonDex tool on 200 open-source Java projects and detect 275 tests that fail due to
wrong assumptions, and where NonDex provides a specific root cause. We observe that the
major root causes are from the HashMap/HashSet class iterations and the getDeclaredFields

method. Additionally, we identify several tests that fail due to test assertions that compare
JSON strings. Based on the observations, we have implemented a prototype, also named
DexFix, which extends the work on program and test repair with novel, simple, yet effective
fix strategies that can, in an automated way, fix wrong assumptions on underdetermined
specifications. Unlike most prior work that focuses on fixing exclusively either the production
code or test code, DexFix can fix both as necessary, sometimes needing to change both. We
apply our prototype on the 275 tests, and find that DexFix can propose fixes for 101 tests.
In addtion, this thesis also studies how effective those fixes proposed by DexFix are, i.e.,

how often developers accept fixes by DexFix. The empirical results are encouraging: we
have reported fixes proposed by DexFix as GitHub pull requests, and 57 have already been
merged, with only 2 rejected, and the remaining pending.

39

REFERENCES

[1] J. M. McQuade, R. M. Murray, G. Louie, M. Medin, J. Pahlka, and T. Stephens,
Software is never done: Refactoring the acquisition code for competitive advantage.
Defense Innovation Board, 2019.

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University
Press, 2008.

[3] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
A survey,” Software Testing, Verification & Reliability, 2012.

[4] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining test-suite
reduction and regression test selection,” in ESEC/FSE, 2015.

[5] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in
ESEC/FSE, 2014.

[6] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker:
Automatically detecting flaky tests,” in ICSE, 2018.

[7] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm? Automatic cause
analysis for test alarms in system and integration testing,” in ICSE, 2017.

[8] K. Herzig and N. Nagappan, “Empirically detecting false test alarms using association
rules,” in ICSE, 2015.

[9] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A framework for detecting
and partially classifying flaky tests,” in ICST, 2019.

[10] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency detection for
safe Java test acceleration,” in ESEC/FSE, 2015.

[11] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin,
“Empirically revisiting the test independence assumption,” in ISSTA, 2014.

[12] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Suggesting repairs for
broken unit tests,” in ASE, 2009.

[13] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions on deterministic
implementations of non-deterministic specifications,” in ICST, 2016.

[14] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs in test code,”
in ICSME, 2015.

[15] B. Liskov and J. Guttag, Program development in Java: Abstraction, specification, and
object-oriented design. Addison-Wesley Professional, 2000.

40

[16] “java.lang.Class#getDeclaredFields Javadoc,” https://docs.oracle.com/javase/8/docs/
api/java/lang/Class.html#getDeclaredFields, 2020.

[17] “Java SE 7 and JDK 7 compatibility,” https://www.oracle.com/technetwork/java/
javase/compatibility-417013.html#jdk77, 2020.

[18] “JUnit and Java 7,” http://intellijava.blogspot.com/2012/05/junit-and-java-7.html,
2012.

[19] “JUnit test method ordering,” http://www.java-allandsundry.com/2013/01, 2013.

[20] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms for patch
generation,” in ESEC/FSE, 2017.

[21] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” in ICSE, 2012.

[22] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches
using genetic programming,” in ICSE, 2009.

[23] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix: Program repair
via semantic analysis,” in ICSE, 2013.

[24] M. Monperrus, “Automatic software repair: A bibliography,” ACM Computing Surveys,
2018.

[25] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via bytecode muta-
tion,” in ISSTA, 2019.

[26] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware patch generation
for better automated program repair,” in ICSE, 2018.

[27] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A framework for
automatically fixing order-dependent flaky tests,” in ESEC/FSE, 2019.

[28] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic execution,” in
ISSTA, 2010.

[29] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Supporting test suite evolution through
test case adaptation,” in ICST, 2012.

[30] G. Yang, S. Khurshid, and M. Kim, “Specification-based test repair using a lightweight
formal method,” in FM, 2012.

[31] X. Li, M. d’Amorim, and A. Orso, “Intent-preserving test repair,” in ICST, 2019.

[32] “Introducing JSON,” https://www.json.org/json-en.html, 2020.

[33] “DexFix: Automated fixing of wrong assumptions on underdetermined specifications,”
https://sites.google.com/view/dexfix, 2020.

41

[34] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov, “NonDex: A tool for de-
tecting and debugging wrong assumptions on Java API specifications,” in FSE DEMO,
2016.

[35] “TestingResearchIllinois/NonDex: A tool for finding assumptions on APIs with under-
determined specifications,” https://github.com/TestingResearchIllinois/NonDex, 2020.

[36] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec, S. H. Tan,
and D. Marinov, “ReAssert: A tool for repairing broken unit tests,” in ICSE DEMO,
2011.

[37] “apache/hadoop: Apache Hadoop,” https://github.com/apache/hadoop, 2020.

[38] “HADOOP-16897. Sort fields in ReflectionUtils.java,” https://github.com/apache/
hadoop/pull/1868, 2020.

[39] “[HADOOP-16897] Sort fields in ReflectionUtils.java - ASF JIRA,” https://issues.
apache.org/jira/browse/HADOOP-16897, 2020.

[40] “quarkusio/quarkus: Quarkus: Supersonic subatomic Java,” https://github.com/
quarkusio/quarkus, 2020.

[41] “LinkedHashMap Javadoc,” https://docs.oracle.com/javase/8/docs/api/java/util/
LinkedHashMap.html#LinkedHashMap, 2020.

[42] “Make tests more stable by using LinkedHashSet for deterministic iterations,” https:
//github.com/quarkusio/quarkus/pull/6839, 2020.

[43] “alibaba/fastjson: A fast JSON parser/generator for Java,” https://github.com/
alibaba/fastjson, 2020.

[44] “Use LinkedHashMap for deterministic iterations,” https://github.com/alibaba/
fastjson/pull/2996, 2020.

[45] “nutzam/nutz: Nutz – Web framework(mvc/ioc/aop/dao/json) for all Java developer,”
https://github.com/nutzam/nutz, 2020.

[46] “skyscreamer/JSONassert: Write JSON unit tests in less code. Great for testing REST
interfaces,” https://github.com/skyscreamer/JSONassert.

[47] “Make test more stable by using JSONAssert equals,” https://github.com/nutzam/
nutz/pull/1541, 2020.

[48] “JSONAssert - Write JSON unit tests with less code,” http://jsonassert.skyscreamer.
org, 2020.

[49] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “Spoon: A
library for implementing analyses and transformations of Java source code,” Software:
Practice and Experience, 2016.

42

[50] “JavaParser,” http://javaparser.org, 2020.

[51] “Maven,” https://maven.apache.org, 2020.

[52] “Select appropriate CH profile when no weighting or vehicle is given,” https://github.
com/graphhopper/graphhopper/commit/
524aaeab96bb778936120de957d787e91d51cf47, 2020.

[53] “TestNG,” https://testng.org/doc, 2020.

[54] “AssertJ - fluent assertions Java library,” https://assertj.github.io/doc, 2020.

[55] “AbstractFlowableShortHandExpressionFunction.java,” https://github.com/flowable/
flowable-engine/blob/
9b647e3c9a10ee28d8f290f6ea651aa478346860/modules/flowable-engine-common/
src/main/java/org/flowable/common/engine/impl/el/function/
AbstractFlowableShortHandExpressionFunction.java#L96, 2020.

[56] “How is the implementation of LinkedHashMap different from HashMap?” https://
stackoverflow.com/questions/3020601, 2020.

[57] “Why is dictionary ordering non-deterministic?” https://stackoverflow.com/questions/
14956313, 2020.

[58] “Use LinkedHashMap for deterministic iterations,” https://github.com/OpenFeign/
feign/pull/1165, 2020.

[59] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision computation: Mathematical
physics and dynamics,” Applied Mathematics and Computation, 2012.

[60] N. Honarmand and J. Torrellas, “Replay debugging: Leveraging record and replay for
program debugging,” SIGARCH Computer Architecture News, 2014.

[61] D. Chapp, K. Sato, D. H. Ahn, and M. Taufer, “Record-and-replay techniques for HPC
systems: A survey,” Supercomputing Frontiers and Innovations, 2018.

[62] A. Dakkak, C. Li, J. Xiong, and W.-M. Hwu, “Frustrated with replicating claims of a
shared model? A solution,” 2018.

[63] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden, “Reproducible
research in computational harmonic analysis,” Computing in Science Engineering, 2009.

[64] V. Stodden, J. M. Borwein, and D. H. Bailey, “ “Setting the default to reproducible” in
computational science research,” SIAM News, 2013.

[65] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson, M. A. Heroux,
J. P. Ioannidis, and M. Taufer, “Enhancing reproducibility for computational methods,”
Science, 2016.

43

[66] V. Stodden, M. S. Krafczyk, and A. Bhaskar, “Enabling the verification of computational
results: An empirical evaluation of computational reproducibility,” in P-RECS, 2018.

[67] M. Krafczyk, A. Shi, A. Bhaskar, D. Marinov, and V. Stodden, “Scientific tests and
continuous integration strategies to enhance reproducibility in the scientific software
context,” in P-RECS, 2019.

[68] F. Mora, Y. Li, J. Rubin, and M. Chechik, “Client-specific equivalence checking,” in
ASE, 2018.

[69] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,” in ICST, 2018.

[70] “Extensible markup language (XML),” https://www.w3.org/XML, 2016.

44

