
Towards a Framework for Differential Unit Testing of

Object-Oriented Programs

Tao Xie1 Kunal Taneja1 Shreyas Kale1 Darko Marinov2

1Department of Computer Science, North Carolina State University, USA
2Department of Computer Science, University of Illinois at Urbana-Champaign, USA

xie@csc.ncsu.edu, {ktaneja,sakale}@ncsu.edu, marinov@cs.uiuc.edu

Abstract

Software developers often face the task of determining

how the behaviors of one version of a program unit differ

from (or are the same as) the behaviors of a (slightly) dif-

ferent version of the same program unit. In such situations,

developers would like to generate tests that exhibit the be-

havioral differences between the two versions, if any dif-

ferences exist. We call this type of testing differential unit

testing. Some examples of differential unit testing include

regression testing, N-version testing, and mutation testing.

We propose a framework, called Diffut, that enables dif-

ferential unit testing of object-oriented programs. Diffut en-

ables “simultaneous” execution of the pairs of correspond-

ing methods from the two versions: methods can receive the

same inputs (consisting of the object graph reachable from

the receiver and method arguments), and Diffut compares

their outputs (consisting of the object graph reachable from

the receiver and method return values). Given two versions

of a Java class, Diffut automatically synthesizes annota-

tions (in the form of preconditions and postconditions) in

the Java Modeling Language (JML) and inserts them into

the unit under test to allow the simultaneous execution of

the corresponding methods.

1 Introduction

Software developers often manipulate (slightly) different

versions of the same software. The most common scenario

is changing software systems by evolving them from one

version to another. Another scenario is having multiple im-

plementations of the same interface, feature, or functional-

ity. For example, we may have multiple C compilers that

handle ANSI C code [14]. Yet another scenario is in the

context of mutation testing [4]: intentionally making slight

changes to a program to create mutant versions. In all these

scenarios with multiple versions of programs, the versions

can have different functional behaviors. A typical task then

is to determine how the behaviors of one version differ from

(or are the same as) the behaviors of a different version. In

such tasks, developers would like to generate test inputs that

exhibit the behavioral differences between the two versions

(producing different outputs for the same inputs), if any dif-

ferences exist. This type of testing is called differential test-

ing [14]. Some example uses of differential testing include

regression testing, N-version testing, and mutation testing.

Researchers have developed approaches for differential

testing of software at the system level, including testing of C

compilers [14], flash file system software [7], and grammar-

driven functionality [10]. We focus on differential unit test-

ing, where differential testing is applied on a program unit.

Specifically, we focus on object-oriented programs, where

a unit can be a class or a set of classes. Object-oriented unit

tests for a class consist of sequences of method invocations.

Behavior of an invocation depends on the method’s argu-

ments and the state of the receiver at the beginning of the

invocation. Behavior of an invocation can often be observed

through the method’s return and the state of the receiver at

the end of the invocation. Differential unit testing of object-

oriented programs thus requires (1) execution of pairs of

corresponding methods from the two versions on the con-

ceptually same inputs and (2) comparison of the outputs of

the resulting method executions.

We propose a framework, called Diffut, that enables

differential unit testing of object-oriented programs. Dif-

fut enables “simultaneous” execution of the pairs of corre-

sponding methods from the two program versions: meth-

ods can receive the same inputs (consisting of the object

graph reachable from the receiver and method arguments),

and Diffut compares their outputs (consisting of the object

graph reachable from the receiver and method return val-

ues). If the outputs are different, Diffut reports to develop-

ers the different behaviors of the two versions.

Given two versions of a Java class, Diffut automatically

synthesizes annotations (in the form of preconditions and

postconditions) in the Java Modeling Language (JML) [11]

and instruments them into the unit under test. These annota-

tions, compiled with the JML compiler into the class byte-

code for runtime checking, allow the simultaneous execu-



public class MyInput implements Comparable {
private int o;

public MyInput(int i) { o = i; }
public boolean equals(Object that) {

if (!(that instanceof MyInput)) return false;

return (o == ((MyInput)that).o);

}
}

class BST implements Set {
Node root;

int size;

static class Node {
MyInput value;

Node left;

Node right;

}
public BST() { ... }
public void insert(MyInput m) { ... }
public void remove(MyInput m) { ... }
public boolean contains(MyInput m) { ... }

}

Figure 1. A set implemented as a binary
search tree (BST)

tion of the corresponding methods. We have implemented

Diffut in a tool that operates on Java classes. This paper

introduces the Diffut framework, presents our implemen-

tation, discusses some alternative implementations of the

framework, and proposes differential test generation based

on the code instrumented by Diffut.

2 Example

To illustrate our Diffut framework, we use a binary

search tree class BST that implements a set of comparable

elements, shown in Figure 1. The class MyInput in the fig-

ure is the comparable type of elements (e.g., integers in this

example) stored in the stack. Each tree has a pointer to the

root node and a field size that denotes the number of el-

ements in the tree. Each node has an element and pointers

to the left and right children. The class also implements the

standard set operations: insert, remove, and contains.

The class also has a constructor that creates an empty tree.

In this example, we consider BST to be the class under test,

and its earlier version to be the reference class, renamed

to ReferenceBST. Our current implementation of Diffut

adopts class renaming to distinguish the class under test and

its old version (reference class). Note that there are other

mechanisms, such as renaming packages or using different

class loaders, to distinguish classes with the same name.

Given the class under test (BST) and its reference

class (ReferenceBST), Diffut automatically synthesizes

for ReferenceBST a wrapper class (WrBST) shown in Fig-

ure 2. This wrapper class inherits ReferenceBST, and

declares a set of wrapper methods for the public meth-

ods (called reference methods) declared in ReferenceBST.

Each wrapper method (1) invokes the wrapped refer-

ence method in ReferenceBST with the same argu-

ments being passed to the corresponding method under

test in BST, (2) compares the receiver-object state (of the

public class WrBST extends ReferenceBST {
public WrBST() { super(); }

public boolean equals(Object t) {
if (!(t instanceof BST))

return false;

BST b = (BST)t;

if (size != b.size) return false;

if (!root.equals(b.root)) return false;

return true;

}

public boolean insert(BST c, MyInput m) {
this.insert(m);

return this.equals(c);

}

public boolean remove(BST c, MyInput m) {
this.remove(m);

return this.equals(c);

}

public boolean contains(BST c, MyInput m, boolean r) {
return (r == this.contains(m)) && this.equals(c);

}
}

Figure 2. Synthesized wrapper class for

ReferenceBST

WrBST/ReferenceBST class) after the reference-method

execution with the object state (of the BST class) after the

method-under-test execution, (3) compares the return val-

ues of the reference method and method under test if the

methods have non-void returns.

Diffut then automatically annotates BST with synthe-

sized JML [11] preconditions and postconditions, as well as

one extra WrBST-type field oldThis and one extra method

createShadowReferenceObj. Figure 3 shows the anno-

tated class. The createShadowReferenceObj method

constructs an object of the wrapper class WrBST and assigns

it to oldThis. Diffut annotates the constructor with a JML

precondition (marked with “@requires”, as shown in Fig-

ure 3) that simply invokes createShadowReferenceObj

to create a reference-class object for comparisons dur-

ing later method executions. Diffut also annotates each

public method with a JML postcondition (prefixed with

“@ensures”, as shown in Figure 3). The postcondition of

a method f invokes on oldThis the corresponding wrap-

per method with these arguments: first, the current receiver

object after the method execution (if f is not static); then,

f’s arguments (if any, taken in the pre-state, denoted with

“\old” in JML); and finally f’s return (if any, denoted with

“\result” in JML). Note that the JML compiler (jmlc)

translates the given annotations into Java code. For post-

conditions that involve “\old(m)”, jmlc instruments ex-

tra code at the beginning of the method body to cache the

value of the argument m, because m may be modified at the

end of the method execution. The wrapper method requires

the preceding arguments to accomplish its three tasks, de-

scribed earlier. The synthesized wrapper class for the ref-

erence class and the synthesized JML annotations for the

class under test form the core mechanism for coordinating



class BST implements Set {
...

transient WrBST _oldThis;

boolean _createShadowReferenceObj() {
_oldThis = new WrBST();

return true;

}

/*@normal_behavior

@requires _createShadowReferenceObj();

@*/

public BST() { ... }

/*@normal_behavior

@ensures _oldThis.insert(this, \old(m));
@*/

public void insert(MyInput m) { ... }

/*@normal_behavior

@ensures _oldThis.remove(this, \old(m));
@*/

public void remove(MyInput m) { ... }

/*@normal_behavior

@ensures _oldThis.contains(this, \old(m), \result);
@*/

public boolean contains(MyInput m) { ... }
}

Figure 3. BST annotated with synthesized JML

preconditions and postconditions

the execution and result checking of corresponding methods

from two versions of the same class.

3 Framework

We first describe how we represent states of non-

primitive-type objects. Based on the state representation,

we define the input and output of a method execution. We

then present techniques for providing the same inputs to

pairs of corresponding methods from the two class versions

and for comparing the outputs of the pairs of methods.

3.1 State Representation

When a variable (such as the return or receiver of a

method invocation) is a non-primitive-type object, we use

concrete-state representation from our previous work [20]

to represent the variable’s value or state. A program exe-

cutes on the program state that includes a program heap.

The concrete-state representation of an object considers

only parts of the heap that are reachable from the object.

We also call each part a heap and view it as a graph: nodes

represent objects, and edges represent fields. Let P be the

set consisting of all primitive values, including null, in-

tegers, etc. Let O be a set of objects whose fields form a

set F . (Each object has a field that represents its class, and

array elements are considered index-labelled fields of the

array objects.)

Definition 1 A heap is an edge-labelled graph 〈O, E〉,
where E = {〈o, f, o′〉|o ∈ O, f ∈ F, o′ ∈ O ∪ P}.

Heap isomorphism is defined as graph isomorphism

based on node bijection [2].

Definition 2 Two heaps 〈O1, E1〉 and 〈O2, E2〉 are iso-

morphic iff there is a bijection ρ : O1 → O2 such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪

{〈ρ(o), f, o′〉|〈o, f, o′〉 ∈ E1, o
′ ∈ P}.

The definition allows only object identities to vary: two iso-

morphic heaps have the same fields for all objects and the

same values for all primitive fields.

The state of an object is represented with a rooted heap:

Definition 3 A rooted heap is a pair 〈r, h〉 of a root object

r and a heap h whose all nodes are reachable from r.

Another way of representing an object state is to use

the method-sequence-representation technique [8, 20]. The

technique uses sequences of method invocations that pro-

duce the object. The state representation uses symbolic ex-

pressions with the grammar shown below:

exp ::= prim | invoc “.state” | invoc “.retval”

args ::= ǫ | exp | args “,” exp

invoc ::= method “(” args “)”

prim ::= “null” | “true” | “false” | “0” | “1” | “-1” | . . .

Each object or value is represented with an expression.

Arguments for a method invocation are represented as se-

quences of zero or more expressions (separated by com-

mas); the receiver of a non-static, non-constructor method

invocation is treated as the first method argument. A static

method invocation or constructor invocation does not have

a receiver. The .state and .retval expressions denote

the state of the receiver after the invocation and the return

of the invocation, respectively.

3.2 Method Execution

The execution of an object-oriented program produces a

sequence of method executions.

Definition 4 A method execution is a six-tuple e = (m,

Sargs, Sentry , Sexit, Sargs′ , r), where m is the method

name (including the signature), Sargs are the argument-

object states at the method entry, Sentry is the receiver-

object state at the method entry, Sexit is the receiver-object

state at the method exit, Sargs′ are the argument-object

states at the method exit, and r is the method return value.

Definition 5 The input of a method execution (m, Sargs,

Sentry , Sexit, Sargs′ , r) is a pair (Sargs, Sentry) of the

argument-object states and the receiver-object state at the

method entry.



Definition 6 The output of a method execution (m, Sargs,

Sentry , Sexit, Sargs′ , r) is a triple (Sexit, Sargs′ , r) of the

receiver-object state at the method exit, the argument-object

states at the method exit, and the method return value.

(Our framework and its implementation consider only the

receiver-object state at the method exit and method return

value; argument-object states at the method exit are rarely

updated and thus often ignored for checking the output.)

Note that when m’s return is void, r is void; when m is

a static method, Sentry and Sexit are empty; when m is a

constructor method, Sentry is empty.

3.3 Method-Execution Comparison

The Diffut framework treats one of the two class versions

as the class under test and the other version, called a refer-

ence class, as the class to be checked against during pro-

gram execution. The framework provides two key steps in

supporting differential unit testing: pre-method-execution

setup and post-method-execution checking.

3.3.1 Pre-Method-Execution Setup

The step of pre-method-execution setup occurs before the

execution of a method in the class under test (called the

method under test). In this step, Diffut collects and pre-

pares the same input (defined in Section 3.2) to be executed

on the corresponding method in the reference class (called

the reference method). Note that the execution of the refer-

ence method can occur in this step (before the execution of

the method under test), concurrently with the execution of

the method under test, or after the execution of the method

under test (in the step of post-method-execution checking).

To implement the preceding feature, some existing capture

and replay techniques [6, 15, 16] may be applicable.

In general, arguments for the method under test and the

reference method can have different types. For example,

a string parameter representing an integer value in the ref-

erence method can correspond to an integer parameter in

the method under test. To enable Diffut to handle differ-

ent types during differential unit testing, developers need to

construct a conversion method to convert the arguments of

the method under test to the format of the reference method.

In addition, the class under test and reference class may dif-

fer in declared fields: a new field may be added, an old field

may be removed, or a field name may be changed. In the

concrete-state representation (presented in Section 3.1), a

receiver-object state (part of the input) is represented based

on the object fields declared in the class under test or the

reference class. When fields differ, developers need to con-

struct a conversion method to convert the receiver-object

state of the method under test to the one of the reference

method.

Using the method-sequence representation (presented in

Section 3.1), Diffut does not need to reconstruct a receiver-

object state before every execution of a reference method;

instead, it can reuse the receiver-object state constructed af-

ter the execution of the previous reference method. In such

an implementation, a shadow object of the reference class

may be needed for each object of the class under test, and

the framework needs to ensure that the same method se-

quences are invoked on these two objects during their life

time. The example in Section 2 shows one framework im-

plementation based on the method-sequence representation.

In addition, the behaviors of the method under test and

the reference method are sometimes intentionally made dif-

ferent for a subdomain of inputs. For example, the reference

method that can handle only positive integers is extended

to handle additionally negative integers. When inputs fall

into the new subdomain (e.g., negative integers in the pre-

ceding example), the differences in the outputs of the two

method executions should be ignored. If developers would

like to exclude the warnings of these differences automati-

cally, they need to construct a predicate method for deter-

mining whether an input falls into this subdomain.

3.3.2 Post-Method-Execution Checking

The step of post-method-execution checking occurs after

the executions of a method in the class under test and its

corresponding reference method. As discussed earlier in

the pre-method-execution setup, these two method execu-

tions can be concurrent or sequential (in any order). This

step compares the outputs (defined in Section 3.2) of the

two executions.

The formats of the outputs (especially the receiver-object

state) can be different for the method under test and the

reference method. As discussed earlier, developers would

need to provide conversion methods that convert the out-

put of the method under test to the format of the refer-

ence method. If developers already construct a conversion

method for receiver-object states used for the inputs (for

the concrete-state representation), developers can reuse the

same conversion method for the outputs. For checking out-

put only (e.g., when the method-sequence representation is

used to represent the receiver-object states in the inputs of

method executions), developers may define an abstraction

function [12, 20] such as an equals method for mapping

the receiver-object states that are deemed to be equivalent

into the same abstract values.

4 Implementation

Figure 4 shows the overview of our implementation of

Diffut. Diffut takes as inputs the class under test, C, and its

reference class, R (likely an old version of C). Diffut gener-



Reference Class (R)   Class under Test (C)

Instrumentation Using Diffut

Wrapper Class (W)

     extending R
 Class C Annotated 

        with JML   

Compilation Using JMLC

Java Byte Code

Test Generation using Existing Tools

Tests

Test Execution

Behavioral Differences

   between R and C

Figure 4. Diffut implementation overview

ates a wrapper class that extends R. Our current implemen-

tation of Diffut uses the annotations of Java Modeling Lan-

guage (JML) [11] to implement the steps of pre-method-

execution setup and post-method-execution checking. Dif-

fut annotates each constructor or public method of C with

JML preconditions and postconditions. The preconditions

for constructors create shadow reference objects for later

method execution and behavior comparison, while postcon-

ditions for public methods invoke the corresponding meth-

ods in the wrapper class to compare the behaviors of the cor-

responding methods in C and R. Developers can customize

the wrapper class or the JML annotations to adjust for the

intended changes of inputs and outputs between C and R.

Diffut compiles the wrapper class and class C (annotated

with JML annotations) using the JML compiler that gen-

erates Java bytecode with runtime checking code. When

there is any behavioral difference between classes C and R,

the runtime checking code throws an exception signifying

JML postcondition violations. We can feed the generated

bytecode to the existing Java test-generation tools [20, 21]

or new specially developed test-generation tools to conduct

differential test generation that intends to generate tests on

which the two program versions exhibit behavioral differ-

ences, if any exist.

The core of our implementation is an automatic instru-

menter developed using the Java Tree Builder (JTB) frame-

work [1]. The instrumenter uses JTB to determine the struc-

ture of a Java file. We modified the Visitor class to add

to the code both the JML annotations and the extra fields or

methods. The instrumenter also synthesizes a wrapper class

for each reference class. Although our current implemen-

tation handles one class under test and its single reference

class, we can easily extend our implementation to handle

one class under test and its multiple reference classes. Note

that our current implementation has already supported anal-

ysis of multiple classes under test by analyzing one of them

at a time. Our framework has been applied in facilitating

mutation testing in assessing fault-detection capability of a

test suite in our previous work [20].

5 Discussion

5.1 Implementation Variants

Besides the implementation of Diffut that we present,

several other implementation variants are possible. Differ-

ent implementation variants have different tradeoffs in pro-

viding a stronger guarantee for finding unintended behav-

ioral differences of two program versions or for filtering out

warnings for intended behavioral differences. For example,

the current implementation instruments only public meth-

ods with JML annotations; an alternative implementation

can additionally instrument private methods.

The current implementation uses the method-sequence

representation (Section 3.1) to represent and maintain the

receiver-object state in the input of a method execution.

An alternative implementation is to copy the receiver-object

state of the class under test to the receiver-object state of the

reference class before each execution of the method under

test. As discussed in Section 3.3.1, if object fields of the

two class versions are different, a user-defined conversion

method is needed to convert an object of the class under test

to an object of the reference class in the alternative imple-

mentation. Note that for both the current and alternative im-

plementations, we still need an abstraction function or con-

version function for comparing the receiver-object states af-

ter the execution of the two method versions. Alternatively,

we can skip comparing receiver-object states and focus only

on comparing return values to provide weaker oracle check-

ing. In general, to reduce the manual efforts in creating ab-

straction or conversion functions across versions, we may

develop some heuristics to construct an initial version of

abstraction or conversion functions for developers to start

with.

Our current implementation uses the same class

loader [17] to run two different classes (the class under test

and the reference class) that likely have the same name.

To address the naming conflicts, we rename the reference

class to distinguish it from the class under test. However,

such global renaming can lead to some syntactic or seman-

tic problems. One implementation variant is to copy the

original class as well as other classes under the same orig-

inal package to another new package and update the pack-

age names declared in these classes. This variant may ad-



dress some previously encountered problems but may still

be fragile for some specific cases, causing syntactic or se-

mantic problems. Note that in the implementation based on

class or package renaming, we compare the object states by

synthesizing equals methods in the wrapper class for the

reference class (Figure 2).

An alternative way is to use different class loaders to syn-

chronize the execution of two classes with the same package

and class names. For example, Ferastrau [13], a mutation

testing tool, can use different class loaders for the original

program and each mutant. This Ferastrau implementation

uses serialization through a memory buffer to compare ob-

jects across class loaders. But the implementation based on

multiple class loader may pose restrictions of using special-

ized class loaders as the execution environment.

5.2 Differential Test Generation

We next describe how the class bytecode compiled from

the Diffut-instrumented code can be fed to existing test gen-

eration tools to conduct differential test generation: gen-

erating tests to exhibit behavioral differences of two class

versions, if any differences exist. There is a lot of recent

research on automating test generation for object-oriented

programs. For the brevity, we illustrate test generation us-

ing only two of our previous approaches [20,21] that gener-

ate tests based on exploring states with method sequences:

Rostra [20] explores concrete states by executing method

sequences with concrete arguments and Symstra [21] ex-

plores symbolic states by executing method sequences with

symbolic arguments. Both approaches take as input class

bytecode of the class under test and generate tests up to a

user-specified bound of method sequences.

In concrete-state exploration [20], the inserted field

oldThis of the reference-class type (more precisely, the

wrapper-class type) in the instrumented class under test al-

lows the states being explored to additionally include the

object states of the reference class.

In symbolic-state exploration [21], we explore each path

in the method under test and accumulate a path condition,

i.e., constraints on symbolic arguments that must hold for

the execution to follow the path. The postconditions instru-

mented on the method under test allow to explore the ref-

erence method with the same symbolic arguments, relating

the path condition explored in the method under test with

the one explored in the reference method.

6 Related Work

McKeeman [14] used the name differential testing for

testing several implementations of the same functionality,

specifically testing different implementations of C compil-

ers. Lämmel and Schulte [10] developed a C#-based test-

data generator called Geno and applied it in differential test-

ing of grammar-driven functionality. Groce et al. [7] applied

random testing on flash file system software and conducted

differential testing on the software and its reference imple-

mentation. These previous approaches focus on differential

testing of whole systems, whereas our Diffut framework fo-

cuses on differential testing of units in object-oriented pro-

grams. It is usually easier to provide the same inputs to two

versions and to compare two outputs for overall systems as

such inputs and outputs do not involve internal states en-

countered in unit testing.

Sometimes the quality of the existing tests might not

be sufficient enough to expose behavioral differences be-

tween two program versions by causing their outputs to

be different. Then some previous differential test gen-

eration approaches generate new tests to expose behav-

ioral differences. DeMillo and Offutt [5] developed a

constraint-based approach to generate unit tests that can ex-

hibit program-state deviations caused by the execution of a

slightly changed program line (in a mutant produced during

mutation testing [4]) in Fortran programs. Korel and Al-

Yami [9] created driver code that compares the outputs of

two C program versions, and then exploited existing white-

box test-generation approaches to generate tests for which

the two versions produce different outputs. Winstead and

Evan [18] proposed an approach for using genetic algo-

rithms to generate tests that differentiate versions of C pro-

grams. Although the preceding approaches for procedu-

ral programs can be applied on individual methods of the

class under test, our Diffut framework provides a general

solution for allowing object-oriented test-generation tools

(which generate sequences of method calls) to conduct dif-

ferential unit testing of object-oriented programs.

Some existing capture and replay techniques [6, 15, 16]

capture the inputs and outputs of the unit under test dur-

ing system-test execution. These techniques then replay the

captured inputs for the unit as less expensive unit tests, and

can also check the outputs of the unit against the captured

outputs. Our Diffut framework can be used in combination

with these techniques, but Diffut does not need to capture

or save the outputs of the unit.

Cook and Dage [3] proposed the HERCULES deploy-

ment framework for upgrading components while keeping

multiple versions of a component running. The specific sub-

domain that a new version of a component correctly ad-

dresses is formally specified. For each invocation of the

component, multiple versions of the component are run in

parallel and the results from the version whose specified

domain contains this invocation’s arguments are selected.

Both HERCULES and Diffut support N-version executions.

HERCULES is used to ensure reliable upgrading of com-

ponents whereas Diffut is used to conduct differential unit

testing or differential unit-test generation.



Our previous Orstra approach [19] automatically aug-

ments an automatically generated test suite with extra as-

sertions for guarding against regression faults. Orstra first

runs the given test suite and collects the return values and

receiver-object states after the execution of methods under

test. Based on the collected information, Orstra synthe-

sizes and inserts new assertions in the test suite for assert-

ing against the collected method-return values and receiver-

object states. Orstra instruments a given test suite (with new

assertions), whereas Diffut instruments the class under test

(with JML annotations), which can be executed by any test

suite or can be fed to existing test-generation tools for con-

ducting differential test generation.

7 Conclusion

Differential testing such as regression testing, N-version

testing, and mutation testing considers two (or more) ver-

sions of the software and seeks test inputs that exhibit be-

havioral differences between these versions. To reduce the

manual effort in checking the outputs between versions and

generating inputs that expose behavioral differences, we

have proposed the Diffut framework for differential unit

testing of object-oriented programs. Given a class under test

and another version of the same class, Diffut automatically

generates wrapper classes and inserts annotations written in

the Java Modeling Language (JML) into the class under test.

For each public method in the class under test, these annota-

tions invoke the corresponding method in the other version

of the class (with the cached method arguments) and com-

pare the return values and receiver-object states of the two

corresponding method executions. We can run existing tests

on the Java code instrumented by Diffut to detect behavioral

differences between two versions. Moreover, the Java code

instrumented by Diffut can be fed to test-generation tools to

conduct differential test generation.

References

[1] JTB: Java tree builder, 2005. http://compilers.cs.

ucla.edu/jtb/.
[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-

mated testing based on Java predicates. In Proc. Interna-

tional Symposium on Software Testing and Analysis, pages

123–133, 2002.
[3] J. E. Cook and J. A. Dage. Highly reliable upgrading of

components. In Proc. the 21st international conference on

Software engineering, pages 203–212. IEEE Computer So-

ciety Press, 1999.
[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE

Computer, 11(4):34–41, April 1978.
[5] R. A. DeMillo and A. J. Offutt. Constraint-based automatic

test data generation. IEEE Trans. Softw. Eng., 17(9):900–

910, 1991.

[6] S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil. Carving

differential unit test cases from system test cases. In Proc.

14th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, pages 253–264, 2006.
[7] A. Groce, G. Holzmann, and R. Joshi. Randomized differen-

tial testing as a prelude to formal verification. In Proc. 29th

International Conference on Software Engineering, 2007.
[8] J. Henkel and A. Diwan. Discovering algebraic specifica-

tions from Java classes. In Proc. 17th European Conference

on Object-Oriented Programming, pages 431–456, 2003.
[9] B. Korel and A. M. Al-Yami. Automated regression test gen-

eration. In Proc. 1998 ACM SIGSOFT International Sym-

posium on Software Testing and Analysis, pages 143–152,

1998.
[10] R. Lämmel and W. Schulte. Controllable combinatorial cov-

erage in grammar-based testing. In Proc. 18th IFIP In-

ternational Conference on Testing Communicating Systems,

pages 19–38, 2006.
[11] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design

of JML: A behavioral interface specification language for

Java. Technical Report TR 98-06i, Department of Computer

Science, Iowa State University, June 1998.
[12] B. Liskov and J. Guttag. Program Development in Java:

Abstraction, Specification, and Object-Oriented Design.

Addison-Wesley, 2000.
[13] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and

M. Rinard. An evaluation of exhaustive testing for

data structures. Technical Report MIT-LCS-TR-921, MIT

CSAIL, Cambridge, MA, September 2003.
[14] W. M. McKeeman. Differential testing for software. Dig-

ital Technical Journal of Digital Equipment Corporation,

10(1):100–107, 1998.
[15] A. Orso and B. Kennedy. Selective capture and replay of

program executions. In Proc. 3rd International ICSE Work-

shop on Dynamic Analysis, pages 29–35, May 2005.
[16] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Auto-

matic test factoring for Java. In Proc. 21st IEEE Inter-

national Conference on Automated Software Engineering,

pages 114–123, November 2005.
[17] Sun Microsystems. Java 2 Platform, Standard Edi-

tion, v 1.4.2, API Specification. Online documentation,

Nov. 2003. http://java.sun.com/j2se/1.4.2/

docs/api/.
[18] J. Winstead and D. Evans. Towards differential program

analysis. In Proc. ICSE 2003 Workshop on Dynamic Analy-

sis, pages 37–40, May 2003.
[19] T. Xie. Augmenting automatically generated unit-test suites

with regression oracle checking. In Proc. 20th European

Conference on Object-Oriented Programming, pages 380–

403, July 2006.
[20] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework

for detecting redundant object-oriented unit tests. In Proc.

19th IEEE International Conference on Automated Software

Engineering, pages 196–205, Sept. 2004.
[21] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:

A framework for generating object-oriented unit tests using

symbolic execution. In Proc. 11th International Conference

on Tools and Algorithms for the Construction and Analysis

of Systems, pages 365–381, April 2005.


