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Abstract. Software developers frequently check their code changes by
running a set of tests against their code. Tests that can nondeterministi-
cally pass or fail when run on the same code version are called flaky tests.
These tests are a major problem because they can mislead developers to
debug their recent code changes when the failures are unrelated to these
changes. One prominent category of flaky tests is order-dependent (OD)
tests, which can deterministically pass or fail depending on the order in
which the set of tests are run. By detecting OD tests in advance, de-
velopers can fix these tests before they change their code. Due to the
high cost required to explore all possible orders (n! permutations for n
tests), prior work has developed tools that randomize orders to detect
OD tests. Experiments have shown that randomization can detect many
OD tests, and that most OD tests depend on just one other test to fail.
However, there was no analysis of the probability that randomized or-
ders detect OD tests. In this paper, we present the first such analysis and
also present a simple change for sampling random test orders to increase
the probability. We finally present a novel algorithm to systematically
explore all consecutive pairs of tests, guaranteeing to detect all OD tests
that depend on one other test, while running substantially fewer orders
and tests than simply running all test pairs.
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1 Introduction

The most common way that developers check their software is through frequent
regression testing performed while they develop software. Developers run regres-
sion tests to check that recent code changes do not break existing functionality.
A major problem for regression testing is flaky tests [27], which can nondeter-
ministically pass or fail when run on the same code version. The failures from

?? Tao Xie is with the Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education, China, and is the corresponding author.



2 A. Wei et al.

these tests can mislead developers to debug their recent changes while the fail-
ures can be due to a variety of reasons unrelated to the changes. Many software
organizations have reported flaky tests as one of their biggest problems in soft-
ware development, including Apple [18], Facebook [5, 10], Google [8, 30, 31, 43,
48], Huawei [16], Microsoft [11, 12, 20, 21], and Mozilla [40].

These flaky tests are among the tests, called test suite, that developers run
during regression testing; a test suite is most often specified as a set, not a
sequence, of tests. Having a test suite as a set provides benefits for regression
testing techniques such as selection, prioritization, and parallelization [23, 45].
The test execution platform can choose to run these tests in various test orders.
For example, for projects using Java, the most popular testing framework is
JUnit [17], and the most popular build system is Maven [28]. Tests in JUnit
are organized in a set of test classes, each of which has a set of test methods.
By default, Maven runs tests using the Surefire plugin [29], which does not
guarantee any order of test classes or test methods. However, the use of Surefire
and JUnit does not interleave the test methods from different test classes in a
test order. The same structure is common for many other testing frameworks
such as TestNG [41], Cucumber [4], and Spock [38].

One prominent category of flaky tests is deterministic order-dependent (OD)
tests [22, 24, 32, 47], which can deterministically pass or fail in various test orders,
with at least one order in which these tests pass and at least one other order
in which they fail. Other flaky tests are non-deterministic (ND) tests, which
are flaky due to reasons other than solely the test order [24]; for at least one
test order, these tests can nondeterministically pass or fail even in that same
test order. Our iDFlakies work [22] has released the iDFlakies dataset [15] of
flaky tests in open-source Java projects. We obtained this dataset by running
test suites many times in randomized test orders, collecting test failures, and
classifying failed tests as OD or ND flaky tests. In total, 50.5% of the dataset
are OD tests, while the remaining 49.5% are ND tests.

Prior research has proposed multiple tools [2, 6, 9, 14, 22, 47] to detect OD
tests. Some of the tools [9, 14] search for potential OD tests and may therefore
report false alarms, i.e., tests that cannot fail in the current test suite (but may
fail in some extended test suite). The other tools [2, 6, 22, 47] detect OD tests
that actually fail by running multiple randomized orders of the test suite. Run-
ning tests in random orders is also available in many testing platforms, e.g.,
Surefire for Java has a mode to randomize the order of test classes, pytest [35]
for Python has the --random-order option, and rspec [36] for Ruby has the
--order random option. While these tools can detect many OD tests, the tools
run random orders and hence can miss running test orders in which OD tests
would fail. The listed prior work has not studied the flake rates, i.e., the proba-
bility that an OD test would fail when run in (uniformly) sampled test orders.

Our iFixFlakies work [37] has studied the causes of failures for OD tests. We
find that the vast majority of OD tests are related to pairs of tests, i.e., each
OD test would pass or fail due to the sharing of some global state with just one
other test. Our iFixFlakies work has also defined multiple kinds of tests related
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to OD tests. Each OD test belongs to one of two kinds: (1) brittle, which is a
test that fails when run by itself but passes in a test order where the test is
preceded by a state-setter ; and (2) victim, which is a test that passes when run
by itself but fails in a test order where the test is preceded by a (state-)polluter
unless a (state-)cleaner runs in between the polluter and the victim. Most of the
work in this paper focuses on victim tests because most OD tests are victims
rather than brittles (e.g., 91% of the truly OD tests in the iDFlakies dataset are
victims [15]), and the analysis for brittles often follows as a simple special case
of the analysis for victims.

This paper makes the following two main contributions.

Probability Analysis. We develop a methodology to analytically obtain the
flake rates of OD tests and propose a simple change to the random sampling
of test orders to increase the probability of detecting OD tests. A flake rate is
defined as the ratio of the number of test orders in which an OD test fails divided
by the total number of orders. Flake rates can help researchers analytically com-
pare various algorithms (e.g., comparing reversing a passing order to sampling a
random order as shown in Section 4.4) and help practitioners prioritize the fixing
of flaky tests. Specifically, we study the following problem: determine the flake
rate for a given victim test with its set of polluters and a set of cleaners for each
polluter. We first derive simple formulas with two main assumptions: (A1) all
polluters have the same set of cleaners and (A2) all of the victim, polluters, and
cleaners are in the same test class. We then derive formulas that keep A1 but
relax A2. Our results on 249 real flaky tests show that our formulas are appli-
cable to 236 tests (i.e., only 13 tests violate A1). To relax both assumptions, we
propose an approach to estimate the flake rate without running test orders. Our
analysis finds that some OD tests have a rather low flake rate, as low as 1.2%.

Systematic Test-Pair Exploration. Because random sampling of test orders
may miss test orders in which OD tests fail, we propose a systematic approach to
cover all consecutive test pairs to detect OD tests. We present an algorithm that
systematically explores all consecutive test pairs, guaranteeing the detection of
all OD tests that depend on one other test, while running substantially fewer
tests than a naive exploration that runs every pair by itself. Our algorithm builds
on the concept of Tuscan squares [7], studied in the field of combinatorics. Given
a test suite, the algorithm generates a set of test orders, each consisting of at least
two distinct tests and at most all of the tests from the test suite, that cover all
of the consecutive test pairs, while trying to minimize the cost of running those
test orders. The algorithm can cover pairs of tests from the same and different
classes, while considering only the test orders that do not interleave tests from
different test classes, being a common constraint of testing frameworks such as
JUnit [17]. Our analysis shows that the algorithm runs substantially fewer tests
than naive exploration. To experiment with the new algorithm based on Tuscan
squares, we run some of the test orders generated by the algorithm for some of
the test suites in the iDFlakies dataset. Our experiments detect 44 new OD tests,
not detected in prior work [22, 24, 25], and we have added the newly detected
tests to the Illinois Dataset of Flaky Tests [19].
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1 public void testMRAppMasterSuccessLock() { // testV for short
2 ... // setup MapReduce job, e.g., set conf and userName
3 MRAppMaster appMaster =
4 new MRAppMasterTest("appattempt_...", "container_...", "host", -1,
5 -1, System.currentTimeMillis(), false, false);
6 try {
7 MRAppMaster.initAndStartAppMaster(appMaster, conf, userName);
8 } catch (IOException e) { ... }
9 ... // assert the state and some properties of appMaster

10 appMaster.stop();
11 }

Fig. 1. Victim OD test from Hadoop’s TestMRAppMaster class.

1 public void testSigTermedFunctionality() { // testP for short
2 JHEventHandlerForSigtermTest jheh =
3 new JHEventHandlerForSigtermTest(Mockito.mock(AppContext.class), 0);
4 jheh.addToFileMap(Mockito.mock(JobId.class));
5 ... // have jheh handle a few events
6 jheh.stop();
7 ... // assert whether the events were handled properly
8 }

Fig. 2. Polluter test from Hadoop’s TestJobHistoryEventHandler class.

2 Background and Example

We use an example to introduce some key concepts for OD tests and to illustrate
challenges in debugging these tests. We represent a test order as a sequence
of tests 〈t1, t2, . . . , tl〉. In Java, each test order is executed by a Java Virtual
Machine (JVM) that starts from the initial state (e.g., all shared pointer variables
initialized to null) and then runs each test, which potentially modifies the shared
state. Each test is run at most once in one JVM run. (Thus, covering test orders
and test pairs has to be done with a set of test orders and cannot be done with
just one very long order, e.g., using superpermutations [13].) A test v is a victim
if it passes in the order 〈v〉 but fails in another order; the other order usually
contains a single polluter test p (besides many other tests) such that v fails even
in the order 〈p, v〉. Moreover, the test suite may contain a cleaner test c such
that v passes in the order 〈p, c, v〉. Note that test orders may contain more tests
besides polluters and cleaners for a victim v, but these other tests do not modify
the relevant state and do not affect whether v passes or not in any order. Precise
definitions for these tests are in our previous work [37].

Figure 1 shows a snippet of a victim test, testMRAppMasterSuccessLock
(in short testV), from the widely used Hadoop project [1]. The test suite for
this test has 392 tests. This test is from the MapReduce (MR) framework and
aims to check an MR application. This test is a victim because it passes when
run by itself but has two polluter tests. If the victim is run after either one of its
polluter tests (and no cleaner runs in between the polluter and the victim), then
the victim fails with a NullPointerException. Figure 2 shows a snippet of one
of these two polluter tests, testSigTermedFunctionality (in short testP).

These tests form a polluter-victim pair because they share a global state,
namely all “active” jobs stored in a static map in the JobHistoryEventHandler
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class. (In JUnit 4, only the heap state reachable from the class fields declared
as static is shared across tests; JUnit does not automatically reset that state,
but developers can add setup and teardown methods to reset the state.) To
check an MR application, testV first sets up some state (Line 2), then cre-
ates an MR application (Line 3), and starts the application (Line 7). The
NullPointerException arises when the test tries to stop the MR application
(Line 10). Specifically, the appMaster accesses the shared map data structure
that tracks all jobs run by any application. When testV is run after testP, then
appMaster will attempt to stop a job created by the polluter, although the job
has already been stopped.

This static map is empty when the JVM starts running a test order, and
it is also explicitly cleared by some tests. In fact, we find 11 cleaner tests
that clear the map, and the victim passes when any one of these 11 tests
is run between testP and testV. Interestingly, for the other polluter test,
testTimelineEventHandling (in short testP’), the victim fails for the same
reason, but testP’ has 31 cleaners—the same 11 as testP and 20 other cleaners.
Our manual inspection finds that the testP’ polluter has other cleaners because
the job created by testP’ is named job 200 0001, while the job created by the
testP polluter is a mock object. The 20 other cleaners also create and stop
jobs named job 200 0001 and therefore act as cleaners for the testP’ polluter
but not the testP polluter. This example illustrates not only how victims and
polluters work but also the complexity in how these tests interact with cleaners.

In Section 4.2, we explore how to compute the flake rate for a victim test, i.e.,
the probability that the test fails in a randomly sampled test order of all tests
in the test suite. For this example, the 392 tests could, in theory, be run in 392!
(∼ 10848) test orders (permutations), but in practice, JUnit never interleaves
test methods from different test classes. These tests are split into 48 classes
that actually have ∼ 10234 test orders that JUnit could run. The relevant 34
tests (1 victim, 2 polluters, and 31 cleaners) belong to 8 test classes: 2 polluters
belong to one class (TestJobHistoryEventHandler), 11 cleaners belong to the
same class as the polluters, 1 cleaner belongs to the same class as the victim
(TestMRAppMaster), and the remaining 19 cleaners belong to six other classes.
For this victim, randomly sampling the orders that JUnit could run gives a
flake rate of 4.5%. In Section 4.4, we propose a simple change to increase the
probability of detecting OD tests by running a reverse of each passing test order.
For this victim, the conditional probability that the reverse order fails is 4.9%.

A commonly asked question is whether all detected OD tests should be fixed.
While ideally all flaky tests should be fixed, some are not fixed [21, 23]. For the
majority of OD tests, fixing them is good to prevent flaky-test failures that
can mislead the developers into debugging the wrong parts of the code; also,
fixing OD tests enables tests to be run in any order, which then enables the use
of beneficial regression-testing techniques [23]. Some OD tests are intentionally
run in specific orders (e.g., using the @FixMethodOrder annotation in JUnit) to
speed up testing by reusing states. We have submitted fixes for a large number
of flaky tests in our prior work [19].
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3 Preliminaries

We next formalize the concepts that we have introduced informally and define
some new concepts. Let T = {t1, t2, . . . , tn} be a set of n tests partitioned in k
classes C = {C1, C2, . . . , Ck}. We use class(t) to denote the class of test t. Each
class Ci has ni = |{t ∈ T | class(t) = Ci}| tests.

We use ω(T ′) to denote a test order, i.e., a permutation of tests in T ′ ⊆ T ,
and drop T ′ when clear from the context. We use ωi to denote the i-th test
in the test order ω, and |ω| to denote the length of a test order as measured
by the number of tests. We use t ≺ω t′ to denote that test t is before t′ in
the test order ω. We will analyze some cases that allow all n! permutations,
potentially interleaving tests from different classes. We use ΩA(T ) to denote the
set of all test orders for T . Some testing tools [47] explore all these test orders,
potentially generating false alarms because most testing frameworks [4, 17, 38,
41] do not allow all these test orders.

We are primarily concerned with class-compatible test orders where all tests
from each class are consecutive, i.e., if class(ωi) = class(ωi′), then for all j
with i < j < i′, class(ωi) = class(ωj). We use ΩC(T ) to denote the set of all
class-compatible test orders for T . The number of such class-compatible test
orders is k!

∏k
i=1 ni!. Section 4.2 presents how to compute the flake rate, i.e.,

the percentage of test orders in which a given victim test (with its polluters and
cleaners) fails.

Section 5 presents how to systematically generate test orders to ensure that
all test pairs are covered. A test pair 〈t, t′〉 consists of two distinct tests t 6= t′. We
say that a test order ω covers a test pair 〈t, t′〉, in notation cover(ω, 〈t, t′〉), iff the
two tests are consecutive in ω, i.e., ω = 〈. . . , t, t′, . . .〉. Considering consecutive
tests is important because a victim may not fail if not run right after a polluter,
i.e., when a cleaner is run between the polluter and the victim. A set of test
orders Ω covers the union of test pairs covered by each test order ω ∈ Ω. In
general, test orders in a set can be of different lengths. Each test order ω covers
|ω| − 1 test pairs.

We distinguish intra-class test pairs, where class(t) = class(t′), and inter-
class test pairs, where class(t) 6= class(t′). Of the total n(n− 1) test pairs, each
class Ci has ni(ni − 1) intra-class test pairs, and the number of inter-class test
pairs is 2

∑
1≤i<j≤k ninj . Each class-compatible test order of all T tests covers

ni − 1 intra-class test pairs for each class Ci and k − 1 inter-class test pairs.
We aim to generate a set of test orders Ω that cover all test pairs3. If we

consider ΩA(T ) that allows all test orders, we need at least n test orders to
cover all n(n−1) test pairs. When we have only one class or all classes have only
one test, then all test orders are class-compatible. However, consider the more
common case when we have more than one class and some class has more than
one test. If we consider ΩC(T ) that allows only class-compatible test orders,
we need at least maxki=1 ni test orders to cover all intra-class test pairs and at

3 This problem should not be confused with pairwise testing [33], which typically aims
to cover pairs of values from different test parameters.
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least M = 2
∑

1≤i<j≤k ninj/(k− 1) test orders to cover all inter-class test pairs;

because M > maxki=1 ni, we need at least M class-compatible test orders to
cover all test pairs.

More precisely, we aim to generate a set of test orders Ω that has the lowest
cost for test execution. The cost for each test order ω can be modeled well as
a sum of a fixed cost Cost0 (e.g., corresponding to the time required to start a
JVM and load required classes) and a cost for each test (e.g., the time to execute
the test method): Cost(ω) = Cost0 +

∑
t∈ω Cost(t). The cost for a set of test

orders is then simply the sum of individual costs Cost(Ω) =
∑
ω∈Ω Cost(ω). For

example, a trivial way to cover all test pairs is with a set of test orders where
each test order is just a test pair: Ωp = {〈t, t′〉 | t, t′ ∈ T ∧ t 6= t′}; however, the
cost is unnecessarily high: Cost(Ωp) = n(n− 1)Cost0 + 2(n− 1)Cost(T ), where
Cost(T ) =

∑
t∈T Cost(t).

To simplify, we can assume that each test in T has the same cost, say, Cost1,
and then Cost(Ωp) = n(n− 1)Cost0 + 2n(n− 1)Cost1. In the optimal case, each
test order would be a permutation of n tests covering n − 1 test pairs, and the
number of test orders would be just n(n− 1)/(n− 1) = n. Therefore, the lowest
cost is Cost(Ωopt) = nCost0 + n2Cost1, demonstrating that the factor for Cost0
can be substantially reduced, while the factor for Cost1 is nearly halved ( n

2(n−1) ).

However, in most realistic cases, due to the constraints of class-compatible test
orders and the big differences in the number of tests across different classes, we
cannot reach the optimal case.

3.1 Dataset for Evaluation

Besides deriving some analytical results, we also run some empirical experiments
on flaky tests from Java projects. Our recent work [25] ran the iDFlakies tool
on most test suites in the projects from the iDFlakies dataset [15] using the
configurations recommended by our iDFlakies work [22]. Specifically, we ran 100
randomly sampled test orders from ΩC(T ) and 1 test order that is the reverse
order of what Maven Surefire [29] runs by default. Note that unlike our work in
Section 4.4, where we propose running a reverse test order of every test order
where all tests passed, the one reverse order that we ran in our recent work [25]
may or may not have been from a passing test order, and the reverse order is
run only once and not for every passing test order.

Each project in the iDFlakies dataset is a Maven-based, Java project orga-
nized into one or more modules, which are (sub)directories that organize code
under test and test code. Each module contains its own test suite. For the re-
mainder of the paper, we use the 121 modules in which our recent work [25]
found at least one flaky test (but not necessarily OD test). To illustrate diver-
sity among these 121 modules, the number of classes ranges from 1 to 2215, with
an average of 61, and the total number of tests ranges from 1 to 4781, with an
average of 287. The number of tests per class ranges from 1 to 200, with an
average of 4.8.

When we run some of the test orders generated by our systematic test-pair
exploration as described in Section 5.2, we detect a total of 249 OD tests in 44
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of the 121 modules. Of the 249 OD tests, 57 are brittles and 192 are victims.
Compared to the OD tests detected in our prior work [22, 24, 25] that used the
iDFlakies dataset, we find 44 new OD tests that have not been detected before.
Of the 44 OD tests, 1 is brittle and 43 are victims. One of the newly detected
victim tests (testMRAppMasterSuccessLock) is shown in Section 2.

4 Analysis of Flake Rate and Simple Algorithm Change

We next discuss how to compute the flake rate for each OD test. Let T be a test
suite with an OD test. Prior work [22, 24, 25, 47] would run many test orders of T
and compute the flake rate for each test as a ratio of the number of test failures
and the number of test runs. However, failures of flaky tests are probabilistic,
and running even many test orders may not suffice to obtain the true flake rate
for each test. Running more test orders is rather costly in machine time; in the
limit, we may need to run all |T |! permutations to obtain the true flake rate for
OD tests. To reduce machine time needed for computing the flake rate for OD
tests, we first propose a new procedure, and then derive formulas based on this
procedure. We finally show a simple change for sampling random test orders to
increase the probability of detecting OD tests.

4.1 Determining Test Outcome without Running a Test Order

We use a two-step procedure to determine the test outcome for a given OD test.
We assume that some prior runs already detected the OD test, and the goal is
to determine the test outcome for some new test orders that were not run.

In Step 1, we classify how each test from T relates to each OD test in a simple
setting that runs only up to three tests. Specifically, we first determine whether
an OD test t is a victim or a brittle by running the test in isolation, i.e., just
〈t〉, by itself 10 times: if t always passes, it is considered a victim (although it
may be an ND test); if t always fails, it is considered a brittle (although it may
be an ND test); and if t sometimes passes and sometimes fails, it is definitely an
ND, not OD, test. This approach was proposed for iFixFlakies [37], and using
10 runs is a common industry practice to check whether a test is flaky [31, 40].

We then find (1) for each victim, all its single polluters in T and also all
single cleaners for each polluter, and (2) for each brittle, all its single state-
setters in T . To find polluters (resp. state-setters) of a victim (resp. brittle) test,
iFixFlakies [37] takes as input a test order (of entire T ) where the test failed
(resp. passed) and then searches the prefix of the test in that test order using
delta debugging [46] (an extended version of binary search). While iFixFlakies
can find all polluters (resp. state-setters) in the prefix, it does not necessarily
find all polluters in T , and it takes substantial time to find these polluters using
delta debugging. The experiments show that in 98% of cases, binary search finds
one test to be a polluter, although some rare cases need a polluter group that
consists of two tests.
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We propose a simpler and faster approach to find polluters (resp. state-
setters) for the most common case: for each victim v (resp. brittle b) and each
test t ∈ T \{v} (resp. t ∈ T \{b}), we run a pair of the test and the victim (resp.
brittle), i.e., 〈t, v〉 (resp. 〈t, b〉). If the victim fails (resp. brittle passes), then the
test t is a polluter (resp. state-setter). Further, for each victim v, its polluter
p, and a test t ∈ T \ {v, p}, we run a triple of 〈p, t, v〉, and if v passes, then t
is a cleaner for the pair of v and p. Note that for the same victim v, different
polluters may have different cleaners such as the example presented in Section 2.

In Step 2, we determine whether each OD test passes or fails in a given test
order using only the abstraction from Step 1, without actually running the test
order. We focus on victims because they are more complex than brittles; brittles
can be viewed as special cases with slight changes (requiring a state-setter to
run before a brittle to pass, rather than requiring a polluter not to run before
a victim to pass). Without loss of generality, we consider one victim at a time.
Intuitively, the victim fails in a test order if a polluter is run before the victim
without a cleaner between the polluter and the victim. Formally, we define the
test outcome as follows.

Definition 1 (Test Outcome from Abstraction). Let T be a test suite with
one victim v ∈ T , polluters P ⊂ T , and a family of cleaners Cp ⊂ T indexed by
each polluter p ∈ P . The outcome of v in a test order ω is defined as follows:

fail(ω) ≡ ∃p ∈ P. p ≺ω v∧ 6 ∃c ∈ Cp. p ≺ω c ∧ c ≺ω v; pass(ω) ≡ ¬fail(ω).

This definition is an estimate of what one would obtain for all (repeated) runs
of |T |! permutations, for three main reasons: (1) tests may behave differently in
test orders than in isolation [24] (and an OD test may even be an ND test in
some orders [24]); (2) polluters, cleaners, and state-setters may not be single
tests but groups (iFixFlakies [37] reports that groups are rather rare); and (3) a
test that fails in some prefix may behave differently for the tests that come
after it in a test order than when the test passes (again, iFixFlakies [37] reports
this issue to be rare, finding just one such case). Despite these potential sources
of error, our evaluation shows that our use of abstraction obtains flake rates
similar to iDFlakies for orders that iDFlakies ran. Most importantly, our use of
abstraction allows us to evaluate many more orders without actually running
them, thus taking much less machine time.

4.2 Computing Flake Rate

We next define flake rate, derive formulas for computing flake rate for two cases,
and show why we need to sample test orders for other cases.

Definition 2 (Flake Rate). For a test suite T with exactly one victim, given
a set of test orders Ω(T ), the flake rate is defined as the ratio:

f(T ) = |{ω ∈ Ω(T ) | fail(ω)}| / |Ω(T )|;

we use the subscript fA and fC when we need to refer specifically to the flake
rate for ΩA(T ) and ΩC(T ) (defined in Section 3), respectively.
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We derive the formula for flake rate based on the number of polluters P and
cleaners C for two special cases. In general, computing the flake rate can ignore
tests that are not relevant, i.e., not in {v}∪P ∪

⋃
p∈P Cp. It is easy to prove that

f(T ) = f(T ′) if T and T ′ have the same victim, polluters, and cleaners—the
reason is that the tests from T \ T ′ are irrelevant in any order and do not affect
the outcome of v; we omit the proof due to space limit. The further analysis
thus focuses only on the relevant tests.
Special Case 1: Assume that (A1) all polluters have the same set C of cleaners:
C = Cp,∀p ∈ P ; and (A2) all of the victim, polluters, and cleaners are in the
same class: ∀t, t′ ∈ {v}∪P∪C.class(t) = class(t′); it means that ΩA(T ) = ΩC(T )
and fA = fC . Let π = |P | and γ = |C|. The total number of permutations of
the relevant tests is (π + γ + 1)!. While we can obtain |{ω ∈ Ω(T ) | fail(ω)}|
purely by definition, counting test orders where the victim fails, we prefer to
take a probabilistic approach that will simplify further proofs. A victim fails
if (1) it is not in the first position, with probability (π + γ)/(π + γ + 1), and
(2) its immediate predecessor is a polluter, with probability π/(π + γ), giving
the overall flake rate f(T ) = π/(π + γ + 1). This formula is simple, but real
test suites often violate A1 or A2. Of the 249 tests used in our experiments, 13
violate both A1 and A2, 207 violate only A2, and only 29 do not violate either.
Special Case 2: Keeping A1 but relaxing A2, assume that the victim is in class
C1 with π1 polluters and γ1 cleaners, and the other k−1 classes have πi polluters
and γi cleaners, 2 ≤ i ≤ k, where in general, either πi or γi, but not both, can be
zero for any class except for the victim’s own class where both π1 and γ1 can be
zero. Per Special Case 1, we have fA(T ) = (

∑k
i=1 πi)/(

∑k
i=1 πi +

∑k
i=1 γi + 1).

Next, consider class-compatible test orders, which do not interleave tests from
different classes. The victim fails if (1) it fails in its own class, with probability
π1/(π1 + γ1 + 1), or (2) the following three conditions hold: (2.1) the victim is
the first in its own class, with probability 1/(π1 + γ1 + 1), (2.2) the class is not
the first among classes, with probability (k − 1)/k, and (2.3) the immediately
preceding class ends with a polluter, with probability πi/(πi + γi) for each class

i and thus the probability
∑k
i=2(πi/(πi + γi))/(k− 1) across all classes. Overall,

fC(T ) =
π1 + 1

k

∑k
i=2

πi
πi+γi

π1 + γ1 + 1
.

The formula is already more complex. It is important to note that we can have
either fA(T ) ≥ fC(T ) or fC(T ) ≥ fA(T ), based on the ratio of polluters and
cleaners in the victim’s own class vs. the ratio of polluters and victims in other
classes, i.e., neither set of test orders ensures a higher flake rate. We show in
Section 4.3 that both cases arise in practice.
General Case: In the most general case, relaxing A1 to allow different polluters
to have a different set of cleaners, while also having all these relevant tests in
different classes, it appears challenging to derive a closed-form expression for
fA(T ), let alone for fC(T ). We thus resort to estimating flake rates by sampling
orders from ΩA(T ) or ΩC(T ), and counting what ratio of them fail based on
Definition 1 in Section 4.3.
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Fig. 3. Distribution of flake rate for two sets of test orders.

4.3 Comparing Flake Rate for Different Sets of Test Orders

While tools such as iDFlakies [22] incorporate the requirement of not interleaving
tests from different classes in a test order, some other tools [47] do not incorporate
this requirement, so they allow all test orders. Recall that ΩA(T ) denotes the
set of all test orders and ΩC(T ) denotes the set of test orders that satisfy the
requirement. The reason to run ΩA(T ) is to try to maximize the detection of all
potential OD tests at the risk that some detected failures would be false positives.
In particular, a test failure observed in some non-class-compatible order may
not be reproducible in any class-compatible prefix of that order, e.g., due to
the various ways to customize JUnit [17] (with annotations such as @Before,
@BeforeClass, @Rule) or similar testing frameworks. The reason to run only
ΩC(T ) is to detect OD-test failures that developers can observe from running
the tests and are therefore motivated to fix.

While both sets of test orders can detect all true positive OD tests, it is not
clear which set of test orders are more likely to detect true positive OD tests.
Intuitively, running ΩA(T ) test orders can more likely detect failures if cleaners
and victims are in the same class, while polluters are in different classes; in such
cases, polluters are less likely to come in between cleaners and the victim. For
example, for the victim presented in Section 2, the ΩA(T ) flake rate is 10.5%,
while the ΩC(T ) flake rate is 4.5%. On the other hand, running ΩC(T ) test
orders can more likely detect failures if polluters and victims are in the same
class, while cleaners are in different classes. Similar reasoning applies to brittles:
if state-setters are more often in the same test class as the brittle, then the brittle
is less likely to fail than if state-setters are more often in other classes.

To compare these sets of test orders on real OD tests, we use the dataset of
192 victim and 57 brittle tests described in Section 3.1. We collect all single test
polluters for each victim and all single test cleaners for each polluter-victim pair.
We also collect all single test state-setters for the brittles. We then use either the
formulas presented in Section 4.2 or a large number of uniformly sampled test
orders to obtain the flake rates, fA(T ) and fC(T ), for each test. Specifically, our
formulas apply for 236 of the 249 tests. For the remaining 13 tests (all victims),
we sample 100,000 test orders from each of ΩA(T ) and ΩC(T ) to estimate their
flake rates.

Figure 3 summarizes the results. For each set of test orders, the figure shows
a boxplot that visualizes the distribution of flake rates for 249 OD tests. The
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fA(T ) flake rates have a slightly higher mean (38.4%) than the fC(T ) flake
rates (38.0%). Statistical tests for paired samples of the flake rates—specifically,
dependent Student’s t-test obtains a p-value of 0.47 and Wilcoxon signed-rank
test obtains a p-value of 0.01—show that the differences could be statistically
significant (at α = 0.05 level). However, if we omit the 13 tests that required
samplings, the means are 38.3% for fA(T ) and 38.6% for fC(T ), and the differ-
ence is not statistically significant (dependent Student’s t-test obtains a p-value
of 0.55, and Wilcoxon signed-rank test obtains a p-value of 0.19).

Prior work [6, 22, 24, 47] has not performed any explicit comparison between
the two sets of test orders. Our results demonstrate that running ΩA(T ) might
be more likely to detect true positive OD tests. However, using such test orders
may contain false positives. Future work on detecting OD tests should explore
how to address false positives if ΩA(T ) test orders are run.

4.4 Simple Change to Increase Probability of Detecting OD Tests

Inspired by our probability analysis, we propose a simple change to increase
the probability of detecting OD tests. The standard algorithm for sampling S
random test orders simply repeats S times the following steps: (1) ω ← sample a
random test order from possible test orders (ΩA(T ) or ΩC(T )); (2) obtain result
r ← run(ω); (3) if r is FAIL, then print ω. (A variant [22] may store previously
sampled test orders to avoid repetition, but the number of possible test orders
is usually so large that sampling the same one is highly unlikely, so one can save
space and time by not tracking previously sampled test orders.)

Our key change is to select the next test order as a reverse of the prior test
order that passed: (4) if r is PASS, then ωR ← reverse(ω). The intuition for this
change is that a passing order may have the polluter after the victim. Therefore,
reversing the passing order would have the polluter before the victim, and thus
the reverse of the passing order should have a higher probability to fail than a
random order that may have the polluter before or after the victim. Note that
the reverse of a class-compatible test order is also a class-compatible test order,
so this change applies to ΩC(T ). The other changes are to run ωR, print if it fails,
and properly count the test orders to select exactly S samples of test orders.

We next compute the probability that the reverse of a passing order fails.
Special Case 1: Consider the Special Case 1 scenario from Section 4.2 with π
polluters and γ cleaners. For the standard algorithm, f(T ) = fA(T ) = fC(T ) =
π/(π + γ + 1). For our change, the conditional probability that the second
test order fails given that the first test order passes is P (fail(ωR)|pass(ω)) =
P (fail(ωR) ∧ pass(ω))/P (pass(ω)). We already have P (pass(ω)) = 1 − f(T ) =
(γ + 1)/(π + γ + 1).

To compute P (fail(ωR)∧pass(ω)), we consider two cases based on the position
of the victim in the passing test order ω. (1) If the victim is first, with the
probability of 1/(π+ γ + 1), then the second test should be a polluter, with the
probability of π/(π+γ), so we get π/((π+γ)(π+γ+ 1)) for this case. (2) If the
victim is not first, it cannot be the last in ω because otherwise, ωR would not
fail, so the victim is in the middle, with the probability of (π+γ−1)/(π+γ+1).
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We also need a cleaner right before the victim, with probability γ/(π + γ), and
a polluter right after the victim, with probability π/(π+ γ − 1). Overall, we get
the probability πγ/((π + γ)(π + γ + 1)) for this case. We can sum up the two
cases to get P (fail(ωR) ∧ pass(ω)) = π(γ + 1)/((π + γ)(π + γ + 1)).

Finally, the conditional probability that the reverse test order fails given

the first test order passes is P (fail(ωR)|pass(ω)) = ( π(γ+1)
(π+γ)(π+γ+1) )/(

γ+1
π+γ+1 ) =

π/(π+ γ). This probability is strictly larger than f(T ) = π/(π+ γ+ 1), because
π > 0 must be true for the victim to be a victim.

Special Case 2: For the Special Case 2 scenario from Section 4.2, the common
case is π1 + γ1 > 0 (i.e., the victim’s class C1 has at least one other relevant
test). Based on the relative position of the victim in class C1, we consider three
cases: the victim runs first, in the middle, or last in class C1. After calculating
the probability for the three cases separately and summing them up, we get the
probability that the reverse test order fails and the first test order passes as

P (fail(ωR) ∧ pass(ω)) =
π1+kπ1γ1+π1Sγ+γ1(π1+γ1+1)Sπ

k(π1+γ1)(π1+γ1+1) where Sπ =
∑k
i=2

πi
πi+γi

and Sγ =
∑k
i=2

γi
πi+γi

. In Section 4.2, we have computed P (pass(ω)), so dividing

P (fail(ωR) ∧ pass(ω)) by P (pass(ω)) gives the conditional probability that the
reverse test order fails given the first test order passes. Due to the complexity of
the formulas, it is difficult to show a detailed proof that P (fail(ωR)|pass(ω)) >
f(T ), so we sample test orders instead.

When we sample both ΩA(T ) and ΩC(T ) for 100,000 random test orders
on all 249 OD tests without reverse (i.e., the standard algorithm) and with
reverse when a test order passes (i.e., our change), we find that our change does
statistically significantly increase the chance to detect OD tests. Specifically, for
ΩA(T ), test orders without reverse obtain a mean of 38.6%, while test orders
with reverse of passing test orders obtain a mean of 45.3%. Statistical tests for
paired samples on the flake rates without and with reverse for ΩA(T ) show a
p-value of ∼ 10−38 for dependent Student’s t-test and a p-value of ∼ 10−43

for Wilcoxon signed-rank test. Similarly, for ΩC(T ), test orders without reverse
obtain a mean of 38.0%, while test orders with reverse of passing test orders
obtain a mean of 45.3%. Statistical tests for paired samples on the flake rates
without and with reverse for ΩC(T ) show a p-value of ∼ 10−42 for dependent
Student’s t-test and a p-value of ∼ 10−42 for Wilcoxon signed-rank test.

Based on these positive results, we have changed the iDFlakies tool [22] so
that, by default, it runs the reverse of the previous order, instead of running a
random order, if the previous order found no new flaky test.

5 Generating Test Orders to Cover Test Pairs

We next discuss our algorithm to generate test orders that systematically cover
all test pairs for a given set T with n tests. The motivation is that even with our
change to increase the probability to detect OD tests, the randomization-based
sampling remains inherently probabilistic and can fail to detect an OD test.
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5.1 Special Case: All Orders are Class-Compatible

We first focus on the special case where we have only one class, or many classes
that each have only one test, so all n! permutations are class-compatible. For ex-
ample, for n = 2 we can cover both pairs with Ω2 = {〈t1, t2〉, 〈t2, t1〉}, and for n =
4 we can cover all 12 pairs with 4 test orders Ω4 = {〈t1, t4, t2, t3〉, 〈t2, t1, t3, t4〉,
〈t3, t2, t4, t1〉, 〈t4, t3, t1, t2〉}. Recall that n is the minimum number of test orders
needed to cover all test pairs, so the cases for n = 2 and n = 4 are optimal. The
reader is invited to consider for n = 3 whether we can cover all 6 test pairs with
just 3 test orders. The answer is upcoming in this section.

To address this problem, we consider Tuscan squares [7], objects studied in
the field of combinatorics. Given a natural number n, a Tuscan square consists
of n rows, each of which is a permutation of the numbers {1, 2, . . . , n}, and every
pair 〈i, j〉 of distinct numbers occurs consecutively in some row. Tuscan squares
are sometimes called “row-complete Latin squares” [34], but note that Tuscan
squares need not have each column be a permutation of all numbers.

A Tuscan square of size n is equivalent to a decomposition of the complete
graph on n vertices, Kn, into n Hamiltonian paths [42]. The decomposition
for even n has been known since the 19th century and is often attributed to
Walecki [26]. The decomposition for odd n ≥ 7 was published in 1980 by Till-
son [42]. Tillson presented a beautiful construction for n = 4m+ 3 and a rather
involved construction for n = 4m + 1 with a recursive step and manually con-
structed base case for n = 9. In brief, Tuscan squares can be constructed for all
values of n except n = 3 or n = 5. We did not find a public implementation for
generating Tuscan squares, and considering the complexity of the case n = 4m+1
in Tillson’s construction, we have made our implementation public [44].

We can directly translate permutations from Tuscan squares into n test orders
that cover all test pairs in this special case (where all test pairs are either only
intra-class test pairs of one class or only inter-class test pairs of n classes).
These sets of test orders have the minimal possible cost: Cost(Ωn) = n(Cost0 +
Cost(T )), substantially lower than Cost(Ωp) for running all test pairs in isolation.
For n = 3 and n = 5, we have to use 4 and 6 test orders, respectively, to cover
all test pairs. For example, for n = 3 we can cover all 6 pairs with 4 orders
{〈t1, t2, t3〉, 〈t2, t1, t3〉, 〈t3, t1〉, 〈t3, t2〉}.

5.2 General Case

Algorithm 1 shows the pseudo-code algorithm to generate test orders that cover
all test pairs in the general case where we have more than one class and at
least one class has more than one test. The main function calls two functions to
generate test orders that cover intra-class and inter-class test pairs.

The function cover intra class pairs generates test orders that cover all
intra-class test pairs. For each class, the function compute tuscan square is
used to generate test orders of tests within the class to cover all intra-class
test pairs. These test orders for each class are then appended to form a test
order for the entire test suite T . The function pick, invoked on multiple lines,
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Algorithm 1: Generate test orders that cover all intra-test-class and
inter-test-class test-method pairs

1 Input: T # test suite, a set of test methods partitioned into test classes
2 Output: Ω # output is a set of test orders
3 Function cover all pairs():
4 Ω = {} # empty set
5 cover intra class pairs()
6 cover inter class pairs()

7 Function cover intra class pairs():
8 map = {} # map each class to all its intra-class orders
9 for C ∈ classes(T ) do

10 map = map ∪ {〈C,ωC〉 |ωC ∈ compute tuscan square(C)}
11 while map 6= {} do
12 ω = 〈〉 # empty order
13 Cs = {C | ∃ωC . 〈C,ωC〉 ∈ map}
14 for C ∈ Cs do
15 ωC = pick({ωC | 〈C,ωC〉 ∈ map})
16 map = map \ {〈C,ωC〉}
17 ω = ω ⊕ ωC # append order

18 Ω = Ω ∪ {ω}

19 Function cover inter class pairs():
20 pairs = {〈t, t′〉 | t, t′ ∈ T ∧ class(t) 6= class(t′)}\ # from all inter-class pairs..
21 {〈t, t′〉 | ∃ω ∈ Ω. cover(ω, 〈t, t′〉)} # ..remove covered by intra-class orders
22 while pairs 6= {} do
23 ω = pick(pairs) # start with a randomly chosen not-covered pair
24 pairs = pairs \ {ω}
25 while true do
26 tp = ω|ω|−1 # previously last test
27 ts = {t | 〈tp, t〉 ∈ pairs ∧ class(t) /∈ classes(ω)}
28 if ts = {} then
29 break
30 tn = pick(ts) # next test to extend order
31 pairs = pairs\{〈tp, tn〉}
32 ω = ω ⊕ tn
33 Ω = Ω ∪ {ω}

chooses a random element from a set. The outer loop iterates as many times
as the maximum number of intra-class test orders for any class. When the loop
finishes, Ω contains a set of test orders that cover all intra-class and some inter-
class test pairs. Each test order that concatenates tests from l classes covers
l − 1 inter-class test pairs. (Using just these test orders, we already detected 44
new OD tests in the test suites from the iDFlakies dataset.) Each intra-class
test pair is covered by exactly one test order. Modulo the special cases for n = 3
and n = 5, each covered inter-class pair appears in exactly one test order in
Ω, because Tuscan squares satisfy the invariant that each element appears only
once as the first and once as the last in the permutations in a Tuscan square.
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The function cover inter class pairs generates more test orders to cover
the remaining inter-class test pairs. It uses a greedy algorithm to first initialize a
test order with a randomly selected not-covered test pair and then extend the test
order with a randomly selected not-covered test pair as long as an appropriate
test pair exists. Extending the test order as long as possible reduces both the
number of test orders and the number of times each test needs to be run.

We evaluate our randomized algorithm on 121 modules from the iDFlakies
dataset as described in Section 3.1. We use the total cost, which considers the
number of test orders and the number of tests in all of those test orders. The
number of test orders is related to Cost0, while the number of tests is related to
Cost1 as defined in Section 3. We run our algorithm 10 times for various random
seeds. The coefficient of variation [3] for each module shows that the algorithm
is fairly stable, with the average for all modules being only 1.1% and 0.25% for
the number of test orders and the number of tests, respectively.

Compared with Ωp that has all test orders of just test pairs, our randomized
algorithm’s average number of test orders and the average number of tests are
only 3.68% and 51.8%, respectively, that of all the Ωp test orders. The overall
cost of the test orders generated by our randomized algorithm is close to the
optimal, because the number of test orders is reduced by almost two orders of
magnitude, and 51.8% of the number of tests is close to the theoretical minimum
of 50% that of Ωp test orders for Cost1.

6 Conclusion

Order-dependent (OD) tests are one prominent category of flaky tests. Prior
work [22, 24, 47] has used randomized test orders to detect OD tests. In this
paper, we have presented the first analysis of the probability that randomized
test orders detect OD tests. We have also proposed a simple change for sampling
random test orders to increase the probability of detecting OD tests. We have
finally proposed a novel algorithm that systematically explores all consecutive
pairs of tests, guaranteeing to find all OD tests that depend on one other test.
Our experimental results show that our algorithm runs substantially fewer tests
than a naive exploration that runs all pairs of tests. Our runs of some test
orders generated by the algorithm detect 44 new OD tests, not detected in prior
work [22, 24, 25] on the same evaluation dataset.
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