
Solution Enumeration Abstraction: A Modeling
Idiom to Enhance a Lightweight Formal Method

Allison Sullivan1, Darko Marinov2, and Sarfraz Khurshid3

1 North Carolina A&T State University, Greensboro, USA
aksullivan@ncat.edu

2 University of Illinois at Urbana-Champaign, Urbana, USA
marinov@illinois.edu

3 University of Texas at Austin, Austin, USA
khurshid@utexas.edu

Abstract. Formal methods are a key to engineering more reliable sys-
tems. In this paper, we focus on an important application of formal
methods — enumerating solutions to logical formulas that encode prop-
erties of interest. Solution enumeration has many uses, e.g., in systematic
software testing, model counting, or hardware analysis. We introduce so-
lution enumeration abstraction, a novel idiom that allows users to define
data abstractions to enhance solution enumeration by specifying how the
solutions must differ, so enumeration creates a high quality set of solu-
tions of a manageable size. We embody the idiom as a technique built on
top of Alloy, a well-known lightweight formal method, which is comprised
of a first-order relational logic with transitive closure, and a SAT-based
analysis engine. Experimental results show that our technique supports
a variety of data abstractions, and can substantially reduce the number
of solutions enumerated and the time to enumerate them.

1 Introduction
Enumerating solutions to logical formulas that describe properties of interest is a
highly useful application of formal methods in many domains. For example, solu-
tion enumeration enables validation of software designs [19,33,36,44], systematic
testing of implementations [30,35], model counting for reliability analysis of sys-
tems [12], or program synthesis for security analysis of hardware [5,46,47]. While
solution enumeration has found many uses, its effectiveness relies heavily on the
quality and number of solutions enumerated. Creating too similar or too many
solutions can lead to redundancy and inefficiency in the supported application,
and harm scalability [5, 19,30,33,35,36,44,46,47].

In this paper, we introduce solution enumeration abstraction, a novel idiom
that allows users to define data abstractions to enhance solution enumeration by
specifying how the solutions must differ. As a result, the collection of solutions
enumerated is a tailored subset that focuses on solutions explicitly of value to the
user. We implement our idiom for Alloy [19], a declarative, first-order modeling
language that is deployed with the analyzer and a solution enumeration toolset.
Given an Alloy model and a scope, i.e., bound on the universe of discourse,



the analyzer creates a constraint-solving problem in propositional logic and uses
off-the-shelf SAT technology [9, 11,16,27,42] to solve it.

Alloy has been used in academia and industry for design and modeling of
software systems [3, 6, 20, 22, 48, 51], and for various forms of analyses of code,
including deep static checking [13, 21], systematic testing [30], data structure
repair [41, 50], and automated debugging [17]. To illustrate one application do-
main in more detail, Alloy has been recently used to model and analyze not
only software but hardware systems. Trippel et al. [5, 46, 47] in the CheckMate
project use Alloy to model program executions valid in a given microarchitecture
in order to explore memory consistency and security properties of such microar-
chitecture. Their work found new variants of security exploits such as Meltdown
and Spectre. From the Alloy perspective, their models are highly interesting as
they employ some key structures. In particular, they build graphs (called µhb
graphs—for “microarchitectural happens-before” graphs) that capture the pre-
cise valid ordering of events on a given microarchitecture. These graphs often
give rise to structures that the domain modeling considers equivalent and, as
such, it is not needed to explore all those equivalent structures1.

Our idiom is founded on the principles of data abstraction, e.g., as embodied
by abstraction functions, which map concrete data structures to abstract entities
that the structures represent [28]. Abstraction functions naturally occur when
abstract data types are used. To illustrate, consider a height-balanced binary
search tree that implements a set of integers. An abstraction function can map
trees to sets of integers, e.g., a tree with 3 nodes — where 2 is the value in the
root, and 1 and 3 are, respectively, the values in the left and the right child of
the root — can be mapped to the set {1,2,3}.

Traditional abstraction functions have many well-known uses. They docu-
ment the key relationships that form the foundation of the implementation of
the abstract data type; the implementation must provide behaviors that are cor-
rect with respect to the corresponding operations on the abstract data type.
Moreover, abstraction functions facilitate analysis of code, e.g., using modular
reasoning [26]. Furthermore, they enable synthesis of code, e.g., to synthesize
equals or hashCode methods [38], or iterators over collections [39].

Our newly proposed idiom allows Alloy users to define abstraction functions
in their models, and lays the foundation for a novel technique for abstraction-
directed solution enumeration that restricts the enumeration to only create so-
lutions that are mutually different at the level of the abstract domain, thereby
providing the user vital control over solution enumeration. To illustrate, if a
binary search tree implements a set, and two trees contain the same set of val-
ues, only one of them is generated. In general, an abstraction function maps
many concrete structures to one abstract structure. Hence, enumerating (con-
crete) structures that map to unique abstract values can substantially reduce
the number of solutions.

1 We thank Caroline Trippel for pointing out specific examples of the equivalence
properties in the domain of µhb graphs. We abstract these architecture-specific mod-
els into more general cases that are easier to present for a broader audience.



Our technique generalizes beyond traditional abstraction functions. For ex-
ample, the user can simply enumerate solutions that differ with respect to a
subset of existing relations in their model, e.g., creating a set of binary trees
where no two trees have the exact same parent pointers. Another example is
where the users want to reduce the number of solutions based on a criteria they
desire, e.g., create graphs that do not have the same transitive closure in the
context of hardware modeling1; the users can encode the criteria using our id-
iom, and then use our technique to focus enumeration on the relations that are
introduced to define the criteria. Another example in the context of hardware
modeling is when the user writes an alternative model with the goal to reduce the
number of solutions even if doing so impacts some other quality attribute (e.g.,
readability) of the model1; the user can instead embed the alternative model in
the abstraction and use it without modifying the original model.

Our technique is complementary to existing approaches for reducing the num-
ber of solutions. One such well-known approach is symmetry breaking, where
additional constraints are added to the formula to remove isomorphic solutions
to help the solvers prune more [8,23,43], e.g., to remove isomorphic graphs when
enumerating binary search trees. Our enumeration technique allows defining and
utilizing abstraction functions even in the presence of symmetry breaking con-
straints. Moreover, our technique can completely subsume symmetry breaking,
and allows writing symmetry breaking constraints directly as abstractions.

Overall, our new technique enables a key separation of concerns in software
modeling, where the user can build the model without worrying about refining
it to facilitate solution enumeration, which can then be guided by defining an
appropriate abstraction using our idiom. We make the following contributions:

– Idiom. We introduce an idiom to model abstraction functions in Alloy;
– Abstraction-directed solution enumeration. We present an abstraction

technique to direct solution enumeration, so the solutions enumerated dif-
fer at the abstract level, or stated dually, some solutions that differ at the
concrete level are not generated if they map to the same abstract values;

– Generalization. We present a generalization of our core technique to sup-
port various forms of abstractions to direct solution enumeration; and

– Evaluation. We present an experimental evaluation using several subject
models; the results show that our technique can substantially reduce the
number of solutions and the generation time. Our prototype and the subject
models are available online: “https://github.com/Allisonius/Seabs”.

Related work. Abstraction functions are a central concept in data abstrac-
tion [28]. They have been supported by many systems for writing formal specifi-
cations, e.g., by the Larch family [18, 25]. Various analyses leverage abstraction
functions [26, 38, 39], or more general forms of abstraction [14, 29, 34, 37, 49] for
increased efficacy. A key difference between previous work and this paper is our
use of abstraction functions in the context of logical formulas to direct solution
enumeration using propositional satisfiability solvers.

In the context of Alloy, solution enumeration is commonly used for scenario
exploration where the user inspects the solutions to validate the Alloy models.

https://github.com/Allisonius/Seabs


module list
one sig List { header: lone Node }
sig Node { elem: Int, link: lone Node }

pred Acyclic { /* no directed cycle */
all n: List.header.*link | n !in n.^link }

pred NoRepetition { /* unique nodes have unique elements */
all disj m, n: List.header.*link | m.elem != n.elem }

pred RepOk { Acyclic and NoRepetition }
fact Reachability { List.header.*link = Node } /* no disconnected node */

run RepOk for 3 but 2 int

Fig. 1: Alloy model of a singly-linked list of integers.

Several past projects improve solution enumeration by focusing it using differ-
ent criteria, e.g., symmetry [23], minimality [33], field exhaustiveness [35], and
coverage [36, 44]. Our approach is orthogonal to these techniques and can work
in tandem with them, e.g., as we show for symmetry breaking (Section 3.3.2).

More generally, solution enumeration is a technique that enables a number
of software analyses, e.g., test input generation for automated testing [30] and
model counting for reliability analysis [12]. Researchers have developed various
optimizations, e.g., dedicated search [4], mixing of generators and solvers [15,24],
solver-aided languages [40], and sampling [10,31] for more effective enumeration.
We believe our approach can also combine with some of these optimizations, and
we plan to explore the integration in future work.

2 Overview
This section describes two illustrative examples to provide an overview of our
approach for controlling solution enumeration in Alloy by utilizing abstraction
functions. The first example shows a traditional abstraction function for an ab-
stract data type (Section 2.1). The second example shows how our approach
addresses a problem in the context of recent work [5, 46, 47] on hardware mod-
eling using Alloy (Section 2.2). We describe the basics of Alloy as needed.

2.1 Singly-linked list and set
Consider modeling in Alloy an implementation of a set of integers using a singly-
linked acyclic list of nodes that contain integers without repetition (Figure 1).

The module keyword names the model, which contains a set (sig) of lists
(List) and a set of nodes (Node). Each element in an Alloy set is an atom. The
keyword one declares the set of lists to contain only one element — each solution
will contain exactly one list. The field header (in List) declares a binary relation
of type List×Node. The keyword lone makes header a partial function; thus, each
list has at most one header. The field elem (in Node) models the node elements
and introduces a total function Node× Int, where Int is the built-in Alloy type
that models primitive integers; link models the linking structure of the list and
is a partial function of type Node× Node.



List

Node2
elem: -2

Node1
elem: -1

Node0
elem: 1

header

link

link

List

Node2
elem: -2

Node1
elem: -1

Node0
elem: 0

header

link

link

List

Node2
elem: 0

Node1
elem: -1

Node0
elem: 1

header

link

link

List

Node1
elem: 0

Node0
elem: -1

header

link

List

Node1
elem: 0

Node0
elem: -2

header

link

List

Node2
elem: 0

Node1
elem: -2

Node0
elem: 1

header

link

link

List

Node2
elem: 0

Node1
elem: -2

Node0
elem: -1

header

link

link

List

Node2
elem: 1

Node1
elem: -2

Node0
elem: 0

header

link

link

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2: First 8 solutions generated by the Alloy analyzer. For each structure, the
square box is the list atom (List), and each ellipse is a node atom and is labeled
with its identity (Node0, Node1, or Node2) and integer element (elem).

Each predicate (pred) defines a formula that can be invoked elsewhere. The
predicate Acyclic defines acyclicity of a linked list using universal quantification
(all). The expression List.header.*link uses relational composition (‘.’) and re-
flexive transitive closure (‘*’) to represent the set of all nodes reachable from the
list’s header node. The operator ‘ˆ’ is transitive closure; the expression n.ˆlink
represents the set of all nodes reachable from n following one or more traversals
along the link field. The operator ‘!’ is logical negation, and the keyword in
represents the subset operation. Thus, the predicate Acyclic requires the list
not to contain a directed cycle. The predicate NoRepetition also uses universal
quantification; the keyword disj makes m and n distinct. Thus, the predicate
NoRepetition requires distinct list nodes to contain unique elements and the list
to not contain any duplicates. The predicate RepOk uses logical conjunction to
require the list to be acyclic and free of duplicates.

Each fact defines a constraint that must be satisfied by every solution. The
fact Reachability requires every node to be in the list so there are no discon-
nected components in any solution. This fact helps create more meaningful solu-
tions that do not contain parts that are not relevant to the properties modeled.

The run command instructs the Alloy analyzer to create a solution with
respect to the RepOk predicate, the predicates it transitively invokes, and the
facts. The command specifies a scope of 3 for all the sigs in the model, i.e., up
to 3 atoms in each sig, and a bit-width of 2 for integers, i.e., 4 integer values
{-2, -1, 0, 1}. The analyzer can enumerate multiple (and if desired, all) solutions.
Figure 2 shows the first 8 solutions created by the analyzer. In total, the analyzer
creates 41 solutions for the given scope. All these solutions are non-isomorphic
with respect to the identity of atoms. The Alloy analyzer automatically adds
symmetry-breaking predicates [8, 43] which, in general, remove many but not all
isomorphic solutions. For this scope, these predicates remove all symmetries.
While these solutions are non-isomorphic, more than one solution contains the
same set of node values. For example, the two lists in figures 2(f) and 2(h)
represent the same set {-2, 0, 1} with 3 values. In fact, of the 41 solutions found,
6 represent the set {-2, 0, 1}.



module listAF
open list
one sig AbsFun { af: set Int }
fact AbsFunDef { AbsFun.af = List.header.*link.elem }

Fig. 3: An abstraction function modeled using our idiom..

2.1.1 Idiom for modeling abstraction functions Next, consider modeling
the abstraction function for the list representing a set. The abstraction function
α : C → A maps each concrete data structure (in the concrete domain C) to an
abstract value (in the abstract domain A). In general, each value in the abstract
domain may itself be a structure. In this example, we describe our idiom for
the special case when the abstract domain contains sets of integers; Section 3.1
presents a more general treatment. Our modeling idiom has 2 basic steps: 1) add
a new singleton sig, e.g., called AbsFun, that introduces a field, e.g., af , that
models A; and 2) add a new fact that defines the value of the field af (in
AbsFun) in terms of the fields that model the concrete structure.

Figure 3 shows an Alloy model that defines the abstraction function for our
list example. The keyword open allows importing another model, which, in this
case, is our list model (Figure 1). The sig AbsFun and field af model the ab-
straction function. Specifically, af introduces a binary relation AbsFun× Int; the
keyword set declares af to be an arbitrary relation that maps to a set of integers.
The expression List.header.*link.elem represents the set of all integer elements
in the list nodes. The fact AbsFunDef constrains the field af’s value to equal the
set of integers in the list and hence defines the abstraction function.

Our model of the abstraction function introduces a new sig and a new binary
relation. Any solution for RepOk that is generated with respect to this new model
contains a solution for the original model (list), i.e., in the concrete domain, and
in addition, contains the corresponding value in the abstract domain (given by
the value of the field af), which allows observing applications of the abstraction
function (as well as inspecting concrete structures as before). The number of
solutions for the old model (list, Figure 1) is the same as the number of solutions
for new model (listAF, Figure 3) because each solution to listAF is a pair that
contains a solution to list and its abstract value, and each abstract value has
at least one corresponding concrete structure.

2.1.2 Using abstraction functions to direct solution enumeration Next,
we describe how our idiom enables directing solution enumeration to reduce the
number of solutions. Observe that many solutions to the original model (list,
Figure 1) can map to the same abstract value, e.g., there are 6 lists l1, . . . , l6 with
exactly 3 nodes with elements -1, 0, and 1, and each li (1 ≤ i ≤ 6) maps to the
same set {-1, 0, 1}. Our key insight is that if we require enumeration to create
solutions that differ with respect to the fields that model the abstraction function,
the set of all solutions created will not contain any two solutions that have the
same value in the abstract domain. We embody this insight into a new solution
enumeration technique built on top of the Alloy analyzer’s Kodkod back-end
(Section 3.2).



List

Node2
elem: 0

header

List

Node2
elem: 1

Node1
elem: 0

header

link

List

Node2
elem: 1

header

List

Node2
elem: 0

Node1
elem: -2

header

link

List

Node2
elem: 1

Node1
elem: -1

header

link

List

Node2
elem: -2

Node1
elem: 1

header

link

List

Node2
elem: -1

Node1
elem: 0

header

link

List

Node2
elem: -1

Node1
elem: -2

header

link

{0} {0, 1} {1} {-2, 0} {-1, 1} {-2, 1} {-1, 0} {-2, -1}

List

Node2
elem: -1

header

List

Node2
elem: -2

header

List

List

Node2
elem: 0

Node1
elem: -2

Node0
elem: 1

header

link

link

List

Node2
elem: 1

Node1
elem: -1

Node0
elem: -2

header

link

link

List

Node2
elem: 1

Node1
elem: 0

Node0
elem: -1

header

link

link

List

Node2
elem: -1

Node1
elem: 0

Node0
elem: -2

header

link

link

{-1} {-2} ∅ {-2, 0, 1} {-2, -1, 1} {-1, 0, 1} {-2, -1, 0}

Fig. 4: All 15 solutions enumerated by our technique. Each solution has a linked
list (in the concrete domain) and a set (in the abstract domain).

To illustrate, enumerating all solutions for the command “run RepOk for 3
but 2 int” with respect to the model listAF (Figure 3) using our new technique
for directed enumeration creates 15 solutions (Figure 4) instead of the 41 that
default enumeration creates for the model list (Figure 1). As the scope increases,
the reduction in the number of solutions increases. For the command “run RepOk
for 6 but 3 int” (i.e., up to 6 nodes and 8 integers {-4, -3, . . ., 2, 3}), our
directed approach creates 247 solutions whereas the default enumeration creates
28,961 solutions. Generating fewer solutions also takes much less time; for this
latter command, our directed approach takes 1.2 seconds (total) whereas the
default enumeration takes 35.1 seconds (total).

2.2 Graph and transitive closure

Recent work [5, 46, 47] used Alloy to model microarchitectural happens-before
graphs in the context of hardware modeling, and introduced a number of custom
techniques to reduce the number of solutions enumerated by the Alloy analyzer
since each solution contributed to a security litmus test. Figure 5 shows a minimal
Alloy model that represents the nodes and edges of the graph. For this model,
the Alloy analyzer enumerates 152 solutions using the default scope of 3.

One reduction the authors desired was to create one representative graph
from each class that has the same transitive closure1. Figure 6 shows how our
technique allows defining an abstraction function, which basically is transitive
closure, to direct enumeration as desired. Our technique enumerates only 59
solutions for this model (using the default scope), which reduces the number of
enumerated solutions by over 2.5x.

Moreover, if self-loops are not relevant in differentiating solutions, the ab-
straction function can instead be the reflexive transitive closure: “AbsFun.af =



module graph
sig Node { edges: set Node }

Fig. 5: Alloy model of a graph simplified from CheckMate [46].

module graphAF
open graph
one sig AbsFun { af: Node -> Node }
fact AbsFunDef { AbsFun.af = ^edges }

Fig. 6: Directing enumeration to create one representative graph from each class
that has the same transitive closure.

*edges”. Our technique then enumerates 26 solutions for the resulting model (us-
ing the default scope), reducing the number over 5.8x over the original model.

3 Abstraction-directed Solution Enumeration
Our basic approach has two parts: 1) an idiom for writing an abstraction function
in Alloy (Section 3.1); and 2) a technique for using it for solution enumeration
(Section 3.2). Therefore, to utilize our approach, a user first writes an abstraction
function for their model and then invokes our solution enumeration technique.
While we focus on abstraction functions, our approach supports more general
forms of abstractions to guide solutions enumeration (Section 3.3). In future
work, we plan to generalize our approach to other solvers, e.g., SMT solvers that
allow enumeration [32].

3.1 Idiom

The abstraction function α : C → A maps structures in the concrete domain C
to values in the abstract domain A. In general, each abstract value may itself be
a structure. Assume the abstract domain is modeled using k relations a1, . . . , ak
(k ≥ 1). Our idiom for modeling the abstraction function has two basic steps:

1. Add a new singleton sig A with fields a1, . . . , ak that model A; and
2. Add a new fact F to constrain a1, . . . , ak (in A) with respect to the relations

that model the concrete domain (to define the abstraction).

Given an initial model m that characterizes the concrete domain, our idiom
results in a model m′ that consists of m and, in addition, has a new sig A,
k new relations a1, . . . , ak, and a new fact F . Some examples are shown in
figures 3 and 6 in Section 2. Because F simply defines the values for the new
relations in terms of the relations in m, and the abstraction function α should
be total, any solution to m can be extended to a solution for m′. In other words,
the number of solutions for m and m′ is identical; there is a bijection between
solutions of m (each solution is only a concrete structure) and solutions of m′

(each solution is a pair of a concrete structure and an abstract value). Therefore,
simply writing the abstraction function does not by itself reduce the number



of solutions enumerated using the Alloy analyzer. However, our new directed
enumeration technique enables the reduction (Section 3.2).

There are other ways to model abstraction functions in Alloy. Perhaps the
simplest is to use the function (fun) paragraph, which introduces a named expres-
sion. For example, for the singly-linked list model (Figure 1), we can write “fun
AbstractionFunction(): set Int { List.header.*link.elem }” to define the ab-
straction function. An advantage is that no new sig (or field) must be added.
A disadvantage is that the return type (i.e., the type of the expression in the
function body), which models the abstract domain, can be just one relation (of
arity 1, i.e., a set, or higher). This approach can be extended to support more
general return types, e.g., by adding a new sig and fields that model the abstract
domain, but doing so reduces this approach to our idiom.

3.2 Directed enumeration
We next describe our key technique for directing solution enumeration to reduce
the number of solutions. Our insight is to require solution enumeration to create
solutions that each differ from all previous solutions with respect to the fields
that model the abstraction function, so the set of all solutions created will not
contain two different solutions with the same value in the abstract domain.

In Alloy, solution enumeration is provided by the Kodkod [45] back-end,
which uses enumerating SAT solvers [9, 11, 16, 27, 42]. When the user desires
another solution after a solution, say s, is generated, Kodkod follows the standard
practice in modern SAT solvers [11] for solution enumeration and adds a new
clause c to the propositional formula in conjunctive normal form (CNF) such
that any solution to the new formula will differ from s for at least one boolean
variable. This difference is only with respect to the primary variables, which
Kodkod creates when it translates the model m to a propositional formula p
but before p is translated to a CNF formula, because the translation to CNF
introduces auxiliary variables, and only the primary variables directly model
the relations in m. Different assignments to auxiliary variables may represent
the same assignment for primary variables. However, different assignments to
primary variables always represent different solutions to the model.

To direct enumeration using the abstraction function, we adapt Kodkod’s
enumerator to require the solutions to differ with respect to only the boolean
variables that correspond to the fields that model the abstraction function (and
not all fields in the model as done traditionally). Algorithm 1 shows the pseu-
docode of our directed enumeration. The inputs are a formula φ, a scope s, and
a set of all relations Abs that model the abstract domain. For each relation ρ,
primaryV ariables (in Kodkod) returns the set of primary variables that model
ρ; Kodkod represents each variable using a unique integer id. The method solve()
returns a solution if one exists and null otherwise. Lines 10–16 show the logic
for adding a new clause negSolAbsV ars that ensures the next solution differs
from the previous ones with respect to the abstract domain.

The guard on Line 13 is the key for restricting solutions to differ at the
abstract level; without this guard, we get the Kodkod’s traditional enumera-
tion (hence we show the guard explicitly rather than iterating over absV ars).



Algorithm 1: Abstraction-directed solution enumeration.
Input: Formula φ, Scope s, Set of relations Abs.
Output: Solutions enumerated with respect to the given abstraction.

1 absVars = {} // empty set of unique ids for variables
2 foreach ρ ∈ Abs do
3 absVars = absVars ∪ primaryVariables(ρ)

4 solver = new Solver(φ, s) // instatiate Kodkod for solution enumeration
5 while True do
6 solution = solver.solve()
7 if solution == null then break // no (new) solution found
8 output(solution)
9 // add the negation of the current solution w.r.t. absVars

10 negSolAbsVars = new int[absVars.size()]
11 int j = 0
12 for i← 1 to solver.numPrimaryVars do
13 if i ∈ absVars then
14 negSolAbsVars[j ] = solultion.valueOf(i) ? -i : i
15 j++

16 solver.addClause(negSolAbsVars)

Kodkod’s numPrimaryV ars returns the number of primary variables. The new
clause only contains literals for the primary variables that represent the relations
in Abs; for each such variable v, the clause contains literal v, resp. !v, if the value
of v is false, resp. true in the last solution.

3.3 Generalization
We next describe how our approach generalizes to support a wide range of sce-
narios for directing solution enumeration to create higher quality solutions. Our
approach is not restricted to just abstraction functions. In fact, it does not even
require the use of the idiom (Section 3.1) for modeling abstraction functions! In
particular, our directed enumeration algorithm does not require the existence of
an abstraction function in the Alloy model. The set of relations Abs can be any
relations that already exist in the model. The user simply marks this set, e.g.,
in our current tool, as a comma-separated list of relations in the command-line
arguments (e.g., −−absRels this/AbsFun,this/AbsFun.af). Thus, our approach
embodies a general technique for directed enumeration where the goal is to create
solutions that must differ with respect to a given set of relations. Next, we briefly
describe how our approach supports three scenarios that differ from traditional
abstraction functions.

3.3.1 Focused enumeration Consider supporting a goal or criterion, e.g., a
test purpose, that the enumerated solutions should meet [2]. For example, Alloy
users often write additional constraints in their models to focus enumeration, say
to create structures with no disconnected components (as illustrated in Figure 1).
Our approach provides a new way for users to actively focus enumeration, where
solution differences that do not matter can be explicitly defined and utilized.



To illustrate, the user can define the abstraction function List.header.*link for
the model in Figure 1 to direct enumeration to not create two solutions where
the list has the same set of nodes (regardless of whether or not the disconnected
components differ).

As another example of focused enumeration, consider enumerating red-black
trees that are height-balanced binary search trees where each node is colored
either red or black [7]. Two red-black trees may be identical as binary search
trees and differ only in the node colors. If it is desirable to create solutions that
must differ as binary search trees modulo color, our approach directly supports
this requirement by using the existing set of relations except color to define the
abstraction and direct enumeration of desired red-black trees.

3.3.2 Symmetry breaking Symmetry breaking is a widely used technique
for helping SAT solvers prune their search or create fewer solutions [8,23,43,52].
Our approach has a three-fold interaction with symmetry breaking.
Abstraction functions in the presence of symmetry breaking con-
straints for the concrete domain — our idiom is orthogonal to the use
of symmetry breaking and can be used regardless of whether the original Alloy
model uses symmetry breaking constraints or not;
Symmetry breaking constraints for the abstract domain — our idiom
allows defining symmetry breaking constraints for the abstract domain, e.g., to
remove isomorphism at the abstract level. The user simply applies the stan-
dard practice of adding symmetry breaking constraints but does so only for the
relations that model the abstract domain.
Symmetry breaking constraints as abstraction functions — a model m
that has explicit symmetry breaking constraints, e.g., as a fact sb, can be aug-
mented using our idiom such that 1) the abstract domain contains new relations
that correspond to the relations that are originally in m, and 2) the abstraction
function constrains the abstract domain values to equal the concrete domain
structures, and lifts the symmetry breaking constraints sb to the abstract do-
main, which are no longer enforced at the concrete domain. Doing so gives a
clean separation of symmetry breaking constraints from the base model because
the purpose of these constraints is only to assist the back-end solvers and direct
solution enumeration, and they would otherwise not be a part of the model.

3.3.3 Modeling alternatives An Alloy model typically evolves through dif-
ferent stages, some of which resemble how code evolves. Specifically, the Alloy
user has to balance multiple concerns (correctness, analyzability, readability,
etc.) when creating their model. Our approach allows a key separation of con-
cerns that enables the user to consider analyzability — with regards to solution
enumeration — as a separate concern when writing the model.

To illustrate, recent work on using Alloy for hardware modeling [46] intro-
duced an initial model that is natural to write but leads to too many solu-
tions. They then used an alternative model to make it more useful for solution
enumeration, although the alternative made it cumbersome to write and rea-
son about some key expressions that involved transitive closure1. The original



model used a binary relation “edges : Node × Node” to model edges, where
each node is an 〈Event, Location〉 pair; this model allows the user to simply
write “ˆedges” for transitive closure. The alternative model removed the in-
direction of using node atoms in the definition of edges, and used a different
relation “edges′ : Event × Location × Event × Location”, to ensure the Alloy
analyzer does not enumerate the many combinations that relate node atoms to
〈Event, Location〉 pairs. While the use of edges′ reduces the number of solutions
enumerated, the use of transitive closure becomes cumbersome because it can
only be applied to a homogeneous binary relation, which the user must now
construct from edges′ before using the transitive closure operator.

With our approach, the user simply defines the alternative formulation using
the abstraction without having to rewrite the original constraints, which are
written using natural and intuitive formulas. To illustrate, for the edges and
edges′ example, the user states how the values of edges and edges′ relate. (The
model is available online: https://github.com/Allisonius/Seabs.) Thus, the
abstraction function definition simply relates the structures in the original model
to the values in the alternative model — without any need to transform or adapt
the original structural constraints to the alternative model.

4 Evaluation
This section presents an experimental evaluation of our approach. We use a
suite of 15 Alloy models, including data structures that implement abstract data
types [7], models from the standard Alloy distribution [1], and models based on
recent work that used Alloy for hardware security analysis1 [5, 46,47].

For each model, Table 1 lists the relations in the original model, the relations
that define the abstract domain, and the form of abstraction used. The abstract
domain relations are either a subset of the relations in the original model, e.g.,
for rbt, or new relations that we introduced for abstraction-directed enumeration
and list with their types. The form of abstraction is either traditional abstrac-
tion function, e.g., a set implemented as a dynamic data structure (Section 2.1),
focused enumeration (Section 3.3.1), symmetry breaking (Section 3.3.2), or mod-
eling alternatives (Section 3.3.3).

The models include object arrays (objarray), multi-sets of integers (multiset),
singly-linked lists (list, listsymbr), doubly-linked lists (dll), binary search trees
(bst, bstsymbr), search trees with parent pointers (bstp), min-heaps (minheap),
red-black trees (rbt), general directed trees with integers (dtree), general directed
graphs (graph and graph2), and specialized modeling of edges as a map be-
tween 〈Event, Location〉 pairs (graphsym and graphsym2). The graph, graph2,
graphsym, and graphsym2 subjects are based on models from CheckMate [46].

Table 2 presents the results of our experimental evaluation. We consider two
versions of Alloy: 1) the latest stable release, i.e., Alloy 4.2; and 2) the latest
(possibly unstable) build, i.e., Alloy 5.0 [1]. We use each version to compare, for
each model, the two techniques: 1) Alloy analyzer’s default enumeration for the
original Alloy model (Original) and 2) our abstraction-directed enumeration for
the augmented model that includes the desired abstraction (Abstraction-directed

https://github.com/Allisonius/Seabs


Model Relations - Original Model Relations - Abstract Domain Abstraction
objarray ObjectArray.array AbsFun.af: set Object Traditional – set of objects
list List.header, Node.elem AbsFun.af: set Int Traditional –

Node.link set of integers
bst BST.root, BST.size, AbsFun.af: set Int Traditional –

Node.key, Node.left, set of integers
Node.right

minheap MinHeap.root, Node.key, AbsFun.af: set Int Traditional –
Node.left, Node.right set of integers

dll DLL.header, Node.pre, AbsFun.af: set Int Traditional –
Node.nxt, Node.elem set of integers

dtree Tree.root, Node.edges, AbsFun.af: set Int Traditional –
Node.elem, set of integers

graph Node.edges AbsFun.af: Node×Node Focused enumeration –
transitive closure

graph2 Node.edges AbsFun.af: Node×Node Focused enumeration –
reflexive transitive closure

bstp BST.root, BST.size, Node.parent Focused enumeration –
Node.key, Node.left, parent must differ
Node.right, Node.parent

rbt RBT.root, RBT.size RBT.root, RBT.size Focused enumeration –
Node.key, Node.left, Node.key, Node.left, search tree must differ
Node.right, Node.color Node.right

listsymbr List.header, Node.elem AbsFun.af1: List×Node, Symmetry breaking –
Node.link AbsFun.af2: Node×Int, non-isomorphic structures

AbsFun.af3: Node×Node
bstsymbr BST.root, BST.size, AbsFun.af: set Int Symmetry breaking

Node.key, Node.left, Node.right and traditional
multiset MultiSet.array, AbsFun.array: Int×Int, Modeling alternatives –

MultiSet.length AbsFun.length: Int sorted array of integers
graphsym Node.event, Node.location, AbsFun.af: Event×Location× Modeling alternatives –

Node.edges Event×Location map between 〈E,L〉 pairs
graphsym2 Node.event, Node.location AbsFun.af1: Event×Location Modeling alternatives –

Node.edges AbsFun.af2: Event×Location× two maps to allow isolated
Event×Location nodes

Table 1: Models used in our evaluation.

enumeration). For each technique, the table lists the number of all (boolean) vari-
ables in the SAT encoding (#Var), the number of primary variables (#PVar),
the number of all clauses (#Cls), the number of solutions (#Sol), and the time
taken to find all solutions (T v.4 using Alloy 4.2 and T v.5 using Alloy 5.0). For
each model, the table also lists the scope (Scope), which we selected as the
minimum of 10 and the largest scope for which the default enumeration can
enumerate all solutions in under 1 minute (so that all experiments finish in a
reasonable time).

For all but 2 cases, the number of primary variables is smaller for the original
model than the model that includes the abstraction to guide solution enumer-
ation. Being smaller is expected, as modeling the abstraction introduces a new
sig and relation(s). For 2 cases (bstp and rbt), the numbers are the same because
the abstraction is simply a subset of the existing relations.

As expected, the number of solutions enumerated by our technique is no
more than the number enumerated by the default enumeration. For one case
(objarray), the numbers are the same, because the Alloy’s default symmetry
breaking behaves the same as the abstraction function we defined. Across all
cases, the number of solutions can be reduced by up to 405.3x (dtree).



Model Original Abstraction-directed enumeration Scope#Var #PVar #Cls #Sol Tv.4 Tv.5 #Var #PVar #Cls #Sol Tv.4 Tv.5

bst 14036 341 34936 2179 40.9 40.2 13779 357 34099 9 2.9 2.5 9
bstp 8200 290 18954 625 4.6 7.7 8018 290 18211 429 3.6 7.6 7
bstsymbr 12780 332 34220 626 13.4 8.5 12523 348 33383 9 4.0 13.9 9
dtree 1244 75 2751 88769 59.9 59.3 1319 83 3254 219 0.8 0.7 5
dll 2113 132 5119 28961 22.6 24.9 2196 140 5354 247 0.5 0.5 6
list 1874 96 4742 28961 24.0 24.7 1957 104 4977 247 0.5 0.6 6
listsymbr 1874 96 4742 28961 24.0 24.7 1696 180 4232 20160 9.1 8.9 6
minheap 2322 100 5033 15913 13.0 12.0 2397 108 5236 219 0.6 0.6 5
multiset 306 72 489 585 1.0 1.0 1662 144 4257 165 0.3 0.6 3
graph 138 20 200 6344 4.9 4.3 448 36 994 671 0.6 0.9 4
graph2 138 20 200 6344 4.9 4.3 460 36 994 190 0.3 0.9 4
graphsym 360 36 500 915 1.7 1.6 4323 126 7319 148 0.8 0.6 3
graphsym2 360 36 500 915 1.7 1.6 4515 126 7652 170 1.0 0.5 3
objarray 1398 110 3716 11 0.5 0.5 1478 120 3843 11 0.2 0.1 10
rbt 8639 255 20648 84 4.5 11.0 8373 255 19737 65 4.1 13.4 7
Table 2: Performance comparison between the techniques. Times are in seconds.

For Alloy 4.2 (the latest stable release), for all cases, enumerating all so-
lutions using our technique takes less time than the default enumeration. The
time speedup using our technique is between 1.1x (rbt) to 74.9x (dtree). For
Alloy 5.0 (the latest, possibly unstable, build), the relative performance results
are different for 2 cases (bstsymbr and rbt) where our technique has a slow-
down of 1.6x and 2.9x for bstsymbr and rbt, respectively; however, the number
of solutions is not impacted by the choice of the Alloy version and is still sub-
stantially reduced. Moreover, because each solution may be used for expensive
post-processing [46] (e.g., to test long-running code executed on each solution),
the number of solutions can be more important than the time to generate them.
Across the remaining 13 cases, the time speedup using our technique is between
1.7x (graphsym2) to 84.7x (dtree). Overall, the performances of Alloy 4.2 and
Alloy 5.0 are similar.

5 Conclusions
We introduced solution enumeration abstraction, a new modeling idiom that
allows Alloy users to define abstractions to enhance solution enumeration. The
user specifies how the solutions must differ, so enumeration creates a high quality
set of solutions of a manageable size. We implemented our technique on top of
the Alloy tool-set and evaluated using a variety of abstractions to show the
generality and usefulness of the proposed idiom. The experimental results show
that the technique can substantially reduce the number of solutions and the time
taken to enumerate them.

Acknowledgments. We thank Caroline Trippel for sharing some of her excel-
lent Alloy models and commenting on an earlier paper draft. This work was
partially supported by NSF grants. CNS-1646305, CCF-1718903, CNS-1740916,
and CCF-1918189, and an Intel ISRA grant for research on hardware security.

References

1. Alloy analyzer Website: http://alloytools.org (2019)

http://alloytools.org


2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2008)

3. Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for detection of
security flaws in the Android permission system. Formal Asp. Comput. (2018)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: ISSTA (2002)

5. CheckMate GitHub: https://github.com/ctrippel/checkmate (2019)
6. Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions and weak

memory in x86, Power, ARM, and C++. In: PLDI (2018)
7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

Third Edition. The MIT Press (2009)
8. Crawford, J.: A theoretical analysis of reasoning by symmetry in first-order logic

(extended abstract). In: AAAI-92 Workshop on Tractable Reasoning (1992)
9. CryptoMiniSat Solver Website: https://www.msoos.org/cryptominisat5/ (2019)
10. Dutra, R., Bachrach, J., Sen, K.: SMTSampler: Efficient stimulus generation from

complex SMT constraints. In: ICCAD (2018)
11. Een, N., Sorensson, N.: An extensible SAT-solver. In: SAT (2003)
12. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in Symbolic

PathFinder. In: ICSE (2013)
13. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient SAT-based

bounded verification using symmetry breaking and tight bounds. TSE (2013)
14. Ghiya, R., Hendren, L.J.: Is it a tree, a DAG, or a cyclic graph? A shape analysis

for heap-directed pointers in C. In: POPL (1996)
15. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:

Test generation through programming in UDITA. In: ICSE (2010)
16. Glucose Solver Website: https://www.labri.fr/perso/lsimon/glucose/ (2019)
17. Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using

SAT. In: TACAS (2011)
18. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification

(1993)
19. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press

(2006)
20. Jackson, D., Sullivan, K.J.: COM revisited: Tool-assisted modelling of an architec-

tural framework. In: SIGSOFT FSE (2000)
21. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA (2000)
22. Khurshid, S., Jackson, D.: Exploring the design of an intentional naming scheme

with an automatic constraint analyzer. In: ASE (2000)
23. Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D.: A case for efficient solution

enumeration. In: SAT (2003)
24. Kuraj, I., Kuncak, V., Jackson, D.: Programming with enumerable sets of struc-

tures. In: OOPSLA
25. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. Softw. Eng. Notes 31(3) (2006)
26. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: ESOP

(2006)
27. Lingeling, Plingeling, and Treengeling Website: http://fmv.jku.at/lingeling/

(2019)
28. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification,

and Object-Oriented Design (2000)
29. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and

canonical abstraction for singly-linked lists. In: VMCAI. pp. 181–198 (2005)

https://github.com/ctrippel/checkmate
https://www.msoos.org/cryptominisat5/
https://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/lingeling/


30. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of
Java programs. In: ASE (2001)

31. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D.,
Ivrii, A., Malik, S.: Constrained sampling and counting: Universal hashing meets
SAT solving. In: Beyond NP, AAAI Workshop (2016)

32. de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
33. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:

Principled scenario exploration through minimality. In: ICSE. pp. 232–241 (2013)
34. Pacheco, C., Ernst, M.D.: Randoop: Feedback-directed random testing for Java.

In: OOPSLA Companion. pp. 815–816 (2007)
35. Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: SIG-

SOFT FSE (2016)
36. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: Specification-

guided coverage for model finding. In: FM (2018)
37. Păsăreanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract

matching and refinement. In: CAV (2005)
38. Rayside, D., Benjamin, Z., Singh, R., Near, J.P., Milicevic, A., Jackson, D.: Equal-

ity and hashing for (almost) free: Generating implementations from abstraction
functions. In: ICSE (2009)

39. Rayside, D., Montaghami, V., Leung, F., Yuen, A., Xu, K., Jackson, D.: Synthe-
sizing iterators from abstraction functions. In: GPCE (2012)

40. Ringer, T., Grossman, D., Schwartz-Narbonne, D., Tasiran, S.: A solver-aided lan-
guage for test input generation. PACMPL OOPSLA (2017)

41. Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on executable specifications.
In: ECOOP (2010)

42. SAT4J Solver Website: https://www.sat4j.org/ (2019)
43. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-

lems. In: SAT (2001)
44. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation and

mutation testing for Alloy. In: ICST (2017)
45. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS (2007)
46. Trippel, C., Lustig, D., Martonosi, M.: CheckMate: Automated synthesis of hard-

ware exploits and security litmus tests. In: MICRO (2018)
47. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic

hardware-aware exploit synthesis: The CheckMate approach. IEEE Micro (2019)
48. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-

paring memory consistency models. In: POPL (2017)
49. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant

object-oriented unit tests. In: ASE (2004)
50. Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using Alloy. In:

ECOOP (2010)
51. Zave, P.: Reasoning about identifier spaces: How to make chord correct. IEEE

Transactions on Software Engineering (2017)
52. Zhang, J.: The generation and application of finite models. Ph.D. thesis, Institute

of Software, Academia Sinica, Beijing (1994)

https://www.sat4j.org/

