
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Detecting Assumptions on Deterministic

Implementations of Non-deterministic Specifications

August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov

Department of Computer Science

University of Illinois at Urbana-Champaign, USA

Email: {awshi2,gyori,legunse2,marinov}@illinois.edu

Abstract—Some commonly used methods have non-
deterministic specifications, e.g., iterating through a set can
return the elements in any order. However, non-deterministic

specifications typically have deterministic implementations, e.g.,
iterating through two sets constructed in the same way may
return their elements in the same order. We use the term
ADINS code to refer to code that Assumes a Deterministic
Implementation of a method with a Non-deterministic
Specification. Such ADINS code can behave unexpectedly when
the implementation changes, even if the specification remains
the same. Further, ADINS code can lead to flaky tests—tests
that pass or fail seemingly non-deterministically.

We present a simple technique, called NONDEX, for detecting
flaky tests due to ADINS code. We implemented NONDEX for

Java: we found 31 methods with non-deterministic specifications
in the Java Standard Library, manually built non-deterministic
models for these methods, and used a modified Java Virtual
Machine to explore various non-deterministic choices. We evalu-
ated NONDEX on 195 open-source projects from GitHub and 72
student submissions from a programming homework assignment.
NONDEX detected 60 flaky tests in 21 open-source projects and
110 flaky tests in 34 student submissions.

I. INTRODUCTION

Non-deterministic specifications are not uncommon for

many methods, including in the standard libraries of many

programming languages. For example, the specification for the

Object#hashCode() method in Java can return any integer.

Non-deterministic specifications are not restricted to simple

APIs. The order in which elements of a set are returned by

an iterator is not-specified—it can be any order. The order in

which entries in a SQL table are returned is also sometimes

not specified—it depends on the query. Such specifications

give implementers more freedom to develop various imple-

mentations for different goals, e.g., to optimize performance,

while still satisfying the specification.

Even when specifications allow for non-determinism, typical

implementations of such specifications are often determinis-

tic, with respect to certain controlled sources. For example,

Object#hashCode() could return the same integer (if one

controls for all other sources, e.g., OpenJDK Java 8 could

return a deterministic value on the first call if the under-

lying random() implementation in C is deterministic). The

implementation of HashSet is such that iterating through the

elements returns them in a deterministic order for one Java

version, but that order can change between Java versions.

Code that Assumes a Deterministic Implementation of

a Non-deterministic Specification—which we call ADINS

code—is often bad. Such ADINS code can behave unexpect-

edly when the implementation changes, even if the specifica-

tion remains the same. For example, Java code that assumes

a specific iteration order of a HashSet, e.g., that a HashSet

with elements 1 and 2 will be always represented as a string

{1, 2} rather than {2, 1}, is ADINS and not robust: the Java

implementation of HashSet can change such that the iteration

order of the elements changes and the string differs.

Unexpected behavior of ADINS code can lead to flaky tests,

which are tests that seem to non-deterministically pass or fail.

Flaky tests are bad as they can mask bugs (pass when there are

bugs) or raise false alarms (fail when there are no bugs). A test

that executes ADINS code can be flaky if it assumes that some

values are deterministic even if they can change: when the

assumptions hold, the test passes, but when the assumptions

do not hold, the test may fail. Not all flaky tests are due to

ADINS code, e.g., a test asserting that a file system contains

/tmp could pass on one machine but fail on another. Flaky

tests are emerging as an active research topic, with recent

work on characterizing [25], detecting [2], [4], [10], [12], [14],

[38], and avoiding [1], [22] flaky tests. However, no previous

research investigated ADINS code as a cause for flaky tests.

While flaky tests are an important problem in software

practice and research, we also encountered them in teaching.

Typically, the teaching staff grades students’ solutions to

programming assignments using automated tests. These tests

can be flaky, and as a result students with correct solutions may

have failing tests, and students with incorrect solutions may

have passing tests. We discuss more details from one recent

course in Section IV-B. Besides educating people about flaky

tests, how can we help practitioners in the real world and the

students in our courses to detect more flaky tests faster?

We propose a simple technique, called NONDEX, to detect

flaky tests due to ADINS code. We implement NONDEX for

Java, but it can be easily generalized to any other language.

In a nutshell, we identify 31 methods with non-deterministic

specifications as discussed in Section III-A, wrote models for

these methods to produce various non-deterministic choices,

and use an execution environment that can explore various

combinations of these non-deterministic choices. Our tool,

called also NONDEX, modifies a regular Java Virtual Machine

(in particular, the OpenJDK JVM version b132) to randomly

explore choices by rerunning the test suites multiple times

from scratch with different random seeds.



We evaluated NONDEX on two sets of programs: 195 open-

source projects from GitHub and 72 student submissions from

one homework assignment in our software-engineering course.

We find NONDEX to be highly effective at detecting flaky

tests in both open-source projects and student submissions.

NONDEX detected 60 flaky tests in 21 of the 195 open-

source projects. Because our experiments use some older

project revisions, three of these tests were already fixed by

the developers in the latest revision. (This fixing additionally

confirms that flaky tests are important and that developers are

willing to address them.) We confirmed that 57 tests are still

present in the respective projects’ latest revision. We leave

it as future work to properly debug these tests and file bug

reports. For student submissions, NONDEX detected that 34

submissions, representing almost half of 72 considered, fail

due to some ADINS code, with a total of 110 flaky tests

detected. It is important to note that the homework assignment

was designed a few years ago by a teaching assistant who had

no knowledge of our research on flaky tests. We plan in the

future to expose students to NONDEX and teach them to better

detect and avoid ADINS code and flaky tests.

This paper makes the following contributions:

⋆ Problem. We define the problem of ADINS code, identify

it as a cause of flaky tests, and raise awareness about

the problem of flaky tests in both software development

practice and software engineering education.

⋆ Technique and Implementation. We propose a simple

technique for detecting flaky tests caused by ADINS code

and describe our non-deterministic models and a tool that

embody this technique.

⋆ Evaluation. We evaluated our NONDEX technique on

195 open-source Java projects and 72 student code

submissions. NONDEX detected 57 previously unknown

flaky tests in open-source projects and three flaky tests

that have been already fixed by the open-source software

developers. NONDEX also detected 110 flaky tests in

student submissions.

II. NON-DETERMINISTIC SPECIFICATIONS

A non-deterministic specification allows for multiple im-

plementations that can yield different outputs when executed

with the same input; we consider “input” in a broad sense

to include all interactions of code with its environment. For

example, consider the method File#list() that returns a

String array with names of all files and directories present

in the directory on which the method was invoked. Its JavaDoc

specification [6] states “There is no guarantee that the name

strings in the resulting array will appear in any specific

order; they are not, in particular, guaranteed to appear in

alphabetical order.” This specification allows implementations

to return names in any order even when executed with the

exact same input (the state of the file system), hence this

specification is non-deterministic. In contrast, consider the

method File#exists() that returns a boolean value indi-

cating whether or not the file on which the method was invoked

exists. This specification is not non-deterministic; while the

1 class Book {

2 String title;

3 String author;

4 String getStringRepresentation() { ... }

5 }

6 class BookTest {

7 @Test

8 public void testGetStringRepresentation() {

9 Book b = new Book("book", "name");

10 assertEquals("{\"title\":\"book\",\"author\":\"name\"}",

11 b.getStringRepresentation());

12 }

13 }

Fig. 1. Example flaky test simplified from student code

returned value depends on the input (the state of the file

system) and can be true or false on different machines,

when executed on the same input, any implementation that

conforms to the specification must return the same value.

A. An Example Flaky Test

Code that (transitively) calls methods with non-deterministic

specifications can be ADINS and lead to flaky tests. Figure 1

shows an example flaky test simplified from a student sub-

mission. The Book class has two fields, title and author.

The method under test, getStringRepresentation(), uses

a third-party JSON library that turns an object into a string.

The test asserts that the result equals a hard-coded string that

has the two fields in a particular order, first title and then

author. However, the library uses a HashMap to store the

mapping from fields to values, and iterates over this map to

produce the resulting string. The iteration order over elements

in a HashMap is not specified, so while this test can pass for

one implementation, it can fail for another implementation that

has author before title. NONDEX can detect such tests.

B. Levels of Non-determinism

Some non-deterministic specifications can allow for multi-

ple levels of non-determinism. Figure 2 presents an example:

the class HashSet has a non-deterministic specification that

can be (mis)interpreted in different ways. The JavaDoc speci-

fication [11] states “[HashSet] makes no guarantees as to the

iteration order of the set; in particular, it does not guarantee

that the order will remain constant over time.”. Hence, the el-

ements in the array returned by HashSet#toArray() can be

in any order. The code first constructs an Integer HashSet

object s with the elements 1 and 2 (lines 1–2). A deterministic

implementation could return either of the two orders shown in

the two assertions on lines 4 and 5, and one of the assertions

should pass, while the other should fail.

Whether the other assertions pass or fail is more open to

different interpretations of this non-deterministic specification.

First, one could assume that two iterations on the same un-

changed set object should yield the same order. However, the

specification states that the order can vary “over time”, which

could mean that the order in which elements are returned

can change from one invocation to another even for the same

set. Hence, the assertion on line 7 may get a different order

and fail. Second, one could assume that the order should not

change if the set is only read. Hence, the assertion on line 10



1 Set<Integer> s = new HashSet<Integer>();

2 s.add(1); s.add(2);

3 Integer[] a = s.toArray();

4 // assertArrayEquals(a, new Integer[]{1, 2});

5 // assertArrayEquals(a, new Integer[]{2, 1});

6

7 // assertArrayEquals(a, s.toArray()); // differ from "a"?

8

9 s.contains(1); // observer calls on "s" may matter

10 // assertArrayEquals(a, s.toArray());

11

12 s.add(3); s.remove(3); // "s" modified and restored

13 // assertArrayEquals(a, s.toArray()); // differ from "a"?

14

15 Set<Integer> t = new HashSet<Integer>();

16 t.add(1); t.add(2); // "t" constructed same way as "s"

17 // assertArrayEquals(a, t.toArray()); // differ from "a"?

18

19 Set<Integer> u = new HashSet<Integer>();

20 u.add(3); u.add(4); // "u" with different elements

21 Integer[] b = u.toArray();

22 // assertEquals(a[0] < a[1], b[0] < b[1]); // order?

Fig. 2. Different levels of non-determinism may fail different assertions

could fail or pass. Third, one could assume that if a set is

modified and then restored to its original state, the order in

which the elements are iterated can change from that before

the modification of the set. Hence, the assertion on line 13

could either pass or fail. Fourth, one could assume that two

sets constructed in exactly the same way would yield the

same order, but if that does not hold, the assertion on line 17

can pass or fail. Fifth, one could assume that elements are

iterated in the order of addition; line 21 creates a new set

using different elements but added in the same order as in

set s, by their natural ordering. One could assume that both

sets will be iterated in the same order—in which elements

are added, or the natural order; depending on whether this

assumption holds, the assertion on line 22 can pass or fail.

(This final assumption is not unrealistic; LinkedHashSet

indeed guarantees the iteration order over elements to be the

same as that in which the elements are added [24].)

III. TECHNIQUE

Our NONDEX technique detects flaky tests due to ADINS

code making deterministic assumptions on non-deterministic

specifications. Section III-A describes how we identified sev-

eral non-deterministic methods in the Java Standard Library.

Section III-B describes the models we developed for those

non-deterministic methods. Section III-C presents some im-

plementation details of NONDEX.

A. Identifying Non-deterministic Methods

Finding methods which have non-deterministic specifica-

tions is hard; in particular, one cannot easily look for non-

deterministic implementations as individual implementations

are deterministic most of the time. Rather, non-determinism

occurs when non-deterministic specifications allow multiple

implementations to behave differently from one another while

still meeting the specification, even if each implementation

is deterministic. For example, upgrading from Java 6 to

Java 7 changed the order in which the Java Reflection

API returned the list of methods in a class. JUnit uses the

Reflection API for obtaining the list of methods to run.

TABLE I
NON-DETERMINISTIC METHODS IDENTIFIED; METHODS MARKED ∗

RETURN A COLLECTION WITH A NON-DETERMINISTIC ITERATION ORDER

Class Kind
method(s)

java.lang.Object#hashCode random

java.util.HashMap#keySet∗ , values∗, entrySet∗ permute
java.util.concurrent.ConcurrentHashMap permute

keySet∗, values∗, entrySet∗, keys∗, elements∗

java.io.File#list, listFiles, listRoots permute

java.lang.Class permute
getClasses, getFields, getDeclaredFields
getConstructors, getAnnotations
getMethods, getDeclaredConstructors
getDeclaredMethods, getDeclaredClasses
getDeclaredAnnotations

java.lang.reflect.Method#getParameterAnnotations permute
java.lang.reflect.Field#getDeclaredAnnotations permute

java.text.DateFormatSymbols#getAvailableLocales permute
java.text.BreakIterator#getAvailableLocales permute
java.text.Collator#getAvailableLocales permute
java.text.DecimalFormatSymbols#getAvailableLocales permute
java.text.NumberFormat#getAvailableLocales permute

java.text.DateFormat#getAvailableLocales permute

java.text.DateFormatSymbols#getZoneStrings extend

Thus, when run on Java 6, methods were returned in one order,

but in a completely different order in Java 7. This seemingly

innocuous change caused tests run by JUnit to fail [21] due to

test-order dependencies [1], [2], [10], [14], [22], [38]. Finding

non-deterministic methods solely from the code is infeasible;

one must reason about the specification itself to find if a

method can be non-deterministic. This makes it inherently hard

for any static or dynamic analysis technique to find such non-

deterministic methods from one implementation.

To find non-deterministic methods in the Java Standard Li-

brary, we first searched for methods that may have such spec-

ifications and then carefully reasoned from their JavaDoc to

determine if their specifications are indeed non-deterministic.

We used two queries, based on (1) JavaDoc keywords and

(2) return types. Specifically, the first query searches through

JavaDoc for the following keywords that could indicate non-

deterministic specifications: “order”, “deterministic”, and

“not specified”. The second query searches for all public

methods that return arrays. These queries produced many

false positives, e.g., because not every method that mentions

“order” is non-deterministic, and some methods that return

arrays can return elements in a specified order. Our search is

definitely not complete, and we leave as future work to develop

better approaches to find non-deterministic specifications.

After inspection, we found the non-deterministic methods

summarized in Table I. We tabulate the class name, method

name(s), and the kind of specification non-determinism. We

found three kinds, which we call “random”, “permute”,

and “extend”. For random, the specific int returned by

Object#hashCode() is not specified, so relying on it to

return some specific value is ADINS. For permute, the spec-

ifications of some methods that return arrays or collections

can have an unspecified order of elements. For extend, the



specification of one method specifies just a lower bound on

the length of the returned array but not the precise length.

For class Object, it is well known that hashCode() is

non-deterministic. The inner class HashMap$HashIterator

does not have a specified iteration order and can return the

map’s elements in any order; this inner class is exposed

to the clients via some methods from Table I (keySet(),

entrySet() and values()), so code that calls these methods

can be ADINS. Moreover, HashMap is the underlying data

structure for many other data structures, e.g., HashSet; we

do not count separately the other non-deterministic methods,

e.g., HashSet#iterator(), that could lead to ADINS code.

However, changing one piece of code in HashMap can affect

many types of objects. The specification for iterating through

ConcurrentHashMap is similar to the specification for iter-

ating through HashMap. The File class has multiple list

methods that return an array of files in a given directory; the

specification allows these arrays to be in any order. The classes

Class, Method, and Field provide several reflection methods

that return arrays of elements, e.g., an array of all methods in a

class or an array of all annotations on a field; the specifications

for most of these methods allow these arrays to be in any

order. The classes in the package java.text return arrays

of available locales and zone strings which can be in any or-

der. Finally, the DateFormatSymbols#getZoneStrings()

method returns an array of arrays, each of which has length

at least five; these arrays are indeed of length five in Java 7

but of length seven in Java 8.

We also briefly explored an option of automatically finding

non-deterministic methods in the Java Standard Library. We

attempted to automatically generate tests that could show a

behavior difference between Java 7 and Java 8. To that end,

we used Randoop [28] to generate tests. We first instructed

Randoop to generate tests for a large number of classes

in the Java Standard Library on Java 8 and then ran the

generated tests (that still compile) on Java 7. However, the

tests (and assertions) that Randoop generated were unable to

detect any changes in the behavior of the two Java versions.

Even focusing Randoop on only one class, HashMap, did not

generate (after one hour) a single test for Java 8 that would

fail when run on Java 7. The reason is that the search space

for HashMap is large, with 29 methods, and only a tiny ratio

of method sequences in that space can show the difference

between the two Java versions. In the end, we were able to

generate tests that can reveal differences between Java 8 and

Java 7 only after manually focusing Randoop to only four

methods in the HashMap.

B. Non-deterministic Models

We developed models to explore potential non-determinism

allowed by the specifications of the identified methods. NON-

DEX has a model for each non-deterministic method, and

each model has up to four different levels of non-determinism:

FULL, ID, EQ, and ONE.

For non-deterministic methods of the permute kind, the

FULL level is the most non-deterministic and each different

TABLE II
LEVELS THAT CAN FAIL (X) ASSERTIONS FROM FIGURE 2

Levels
Assertion

4,5 7 10 13 17 22

FULL X X X X X X

ID X - - X X X

EQ X - - - - X

ONE X - - - - -

method invocation on an unchanged object will return a

different order. The ID level preserves the same order for

objects that have the same identity (unchanged objects) but

can return different orders for the same object if the object

is ever modified. The EQ level preserves the order for objects

that are equal (not necessarily the same object) but can change

the orders of non-equal objects. The ONE level changes the

order of an object only when it is first accessed (so it can have

a different order) but this order does not change in the rest of

the run. Table II shows which of the assertions in Figure 2

(referred to by line numbers in the column headers) can fail

under the four levels that NONDEX supports.

Either assertions 4 and 5 can fail on any of the levels,

because all levels explore different orderings of the elements in

the HashSet than the ones in the both assertions (recall that in

a deterministic JVM, one of the assertions will always pass and

one will always fail, whereas in our exploration the they can

both pass, both fail or swap the order of pass/fail). Assertions 7

and 10 can only fail in FULL since they will only fail in

levels that allow different orders on two successive invocations

(including observer methods). Assertions 13 and 17 can fail

in FULL and ID since these levels explore different orderings

of objects based on their identity. Assertion 22 can fail in all

levels except ID which would permute elements in the same

way for both objects.

For non-deterministic methods of the random kind, when

using the Object class, it should not be assumed that the

hashCode() method returns a specific integer value. In par-

ticular, it should not be expected to return the same value

across different runs. However, the returned value should

be unique for an object in the same run. We model these

potentially different values by randomizing the value returned

by hashCode() on the initial invocation and then cache this

value for future calls. For non-deterministic methods of the

extend kind, we model the possibility that the lengths of arrays

returned are increased non-deterministically on any invocation.

C. Implementations of Models

We implemented our NONDEX technique for the Java

programming language by modifying a regular Java Virtual

Machine, in particular, the OpenJDK JVM version b132,

which corresponds to Java 8. We downloaded the publicly

available OpenJDK code, which consists of the C/C++ code

that implements the core virtual machine, and the Java code

for the Java Standard Library. We changed the Java Standard

Library to add non-deterministic models for all methods listed

in Table I except for hashCode(), for which we modified the

C++ implementation to return different values. For each of the



1 class HashMap {

2 Node<K,V>[] table; // internal table of key-value pairs

3 int modCount = ... // stores modification count

4 class Node<K,V> { ... } // stores a key-value pair

5 ...

6 class HashIterator { // inner class of HashMap

7 Node<K,V> next; // next entry to return

8 Node<K,V> current; // current entry

9 int expectedModCount; // for fast-fail

10 int index; // current slot

11

12 final boolean original_hasNext() {

13 return next != null; // original code

14 }

15 final Node<K,V> original_nextNode() {

16 // original code, advances "index" and "next"

17 ...

18 }

19 final void original_remove() {

20 // original code, can modify the entire "table"

21 ...

22 }

23 HashIterator() {

24 expectedModCount = modCount;

25 Node<K,V>[] t = table;

26 current = next = null;

27 index = 0;

28 if (t != null && size > 0) { // advance to first entry

29 do {} while

30 (index < t.length && (next = t[index++]) == null);

31 }

32 /** all (and only) the code below is NonDex extension **/

33 List<Node<K, V>> original = new ArrayList<>();

34 while (original_hasNext())

35 original.add(original_nextNode());

36 NonDex.shuffle(original, (NonDex.level == ID)

37 ? System.identityHashCode(HashMap.this) + modCount :

38 (NonDex.level == EQ) ? HashMap.this.hashCode() : 0);

39 NonDex_iter = original.iterator();

40 }

41

42 Iterator<Node<K, V>> NonDex_iter;

43 public final boolean hasNext() {

44 return NonDex_iter.hasNext();

45 }

46 final Node<K, V> nextNode() {

47 if (modCount != expectedModCount)

48 throw new ConcurrentModificationException();

49 current = NonDex_iter.next();

50 return current;

51 }

52 public final void remove() {

53 original_remove();

54 }

55 }

56 }

Fig. 3. Non-deterministic model for HashMap

methods whose output permutes, we call NONDEX and shuffle

on the returned value in the library code.

Figure 3 shows the model we use for exploring different

orderings when iterating over a HashMap object. The itera-

tion is done using the inner class HashIterator. We kept

the original code and renamed its methods with the prefix

original_. The constructor, starting at line 33, computes

the order that the original code would have normally returned,

applies a shuffle depending on the NONDEX level, and stores

the resulting order in an Iterator object. The next method

returns the elements in the shuffled order. The hasNext

method is based on the new order and delegates to the new

Iterator object. The remove method just delegates to the

original method that changes the table.

Figure 4 shows how NONDEX performs shuffling depending

on the level. For FULL, NONDEX uses the same Random

1 class NonDex {

2 static int level; // FULL, ID, EQ, or ONE

3 int seed = ...;

4 static Random full = new Random(seed);

5

6 public static <T> List<T> shuffle(List<T> l, int v) {

7 int size = l.size();

8 Random rand = (level == FULL) ? full : // Full

9 (level == ID) ? new Random(seed + v) : // Same object

10 (level == EQ) ? new Random(seed + v) : // Equal object

11 (level == ONE) ? new Random(seed); // Once

12 for (int i = 0; i < size - 1; i++) {

13 int s = rand.getNext(i, size);

14 if (s == i) continue;

15 T obj = l.get(i);

16 l.set(i, l.get(s));

17 l.set(s, obj);

18 }

19 return l;

20 }

21 }

Fig. 4. Implementation of exploration

TABLE III
21 PROJECTS (OUT OF 195) WITH AT LEAST ONE FLAKY TEST

PID PROJECT SHA

P1 EsotericSoftware/reflectasm 455f612e
P2 EsotericSoftware/yamlbeans 2ccfbd9d
P3 JodaOrg/joda-time 07002501
P4 OryxProject/oryx 833c3fea
P5 Thomas-S-B/visualee 410a80f0
P6 apache/commons-cli a0dcd6a0
P7 apache/commons-lang fad946a1
P8 benas/easy-batch 4761ba5a
P9 bpsm/edn-java c1d891d6
P10 caelum/vraptor 443cf0ed
P11 fernandezpablo85/scribe-java 0311a435
P12 geosolutions-it/geoserver-manager a4268dda
P13 jknack/handlebars.java 83dd013a
P14 joel-costigliola/assertj-core e8a696e8
P15 jscep/jscep a224cc25
P16 junit-team/junit 1d63100e
P17 ning/org-json 9be37018
P18 qos-ch/slf4j 52fcbbe8
P19 sematext/ActionGenerator 10f4a3e6
P20 stickfigure/objectify 819eb72f
P21 versly/wsdoc 89480c5d

object to perform all shufflings, which means two consecutive

shufflings of the same object can yield different orders,. For

ID, NONDEX considers a value representing the identity of

the object; for HashMap, this value is the sum of the identity

hash code and the modCount field counting the number of

modifications, which means that for the same object with the

same modCount, NONDEX uses a fresh Random object with

the same seed. Similarly, for EQ, NONDEX considers the

value-based hash code of the object to produce a new Random

object. For ONE, NONDEX always creates a fresh Random

object using the same seed.

IV. EVALUATION

We evaluated our NONDEX technique on 195 open-

source projects and 72 student submissions from a software-

engineering course. Section IV-A describes our experiments

with the open-source projects, and Section IV-B describes our

experiments with the student code.



TABLE IV
FLAKY TESTS DETECTED IN OPEN-SOURCE PROJECTS

PID TESTCLASS#TESTNAME FULL ID EQ ONE CAUSE

P1 FieldAccessTest#testIndexSetAndGet 48 0 0 0 Class#getDeclaredFields
P2 GenericTest#testWrite 73 75 54 53 HashMap#entrySet
P3 TestDateTimeZone#testGetShortName 35 53 53 53 DateFormatSymbols#getZoneStrings
P4 TextUtilsTest#testJSONMap 51 52 60 53 HashMap#entrySet
P5 JPAExaminerTest#testFindAndSetAttributesManyT... 8 5 5 6 Class#getDeclaredMethods
P5 JavaSourceTest#testGetDependenciesOfType 12 12 12 4 Class#getDeclaredMethods
P6 OptionGroupTest#testToString 42 0 0 0 HashMap#values
P6 BugCLI162Test#testPrintHelpLongLines 51 55 55 53 HashMap#values
P7 MultilineRecursiveToStringStyleTest#boolArray 100 100 100 100 Class#getDeclaredFields
P7 ...other 14 similar tests, total failures... 1296 1216 1215 1138 Class#getDeclaredFields
P7 FieldUtilsTest#testGetAllFields 100 0 0 0 Class#getDeclaredFields
P7 FieldUtilsTest#testGetAllFieldsList 100 0 0 0 Class#getDeclaredFields
P7 FieldUtilsTest#testGetFieldsWithAnnotation 56 51 53 45 Class#getDeclaredFields
P8 GsonRecordMarshallerTest#marshal 86 77 77 84 Class#getDeclaredFields
P8 JacksonRecordMarshallerTest#marshal 87 81 81 84 Class#getDeclaredFields
P8 XstreamRecordMarshallerTest#marshal 96 94 94 97 Class#getDeclaredFields
P9 PrinterTest#testPrettyPrinting 69 73 54 53 HashMap#entrySet
P10 XStreamSerializerTest#shouldSerializeCollection 41 48 45 52 Class#getDeclaredFields
P10 ...other 13 similar tests, total failures... 736 709 737 764 Class#getDeclaredFields
P11 MapUtilsTest#shouldPrettyPrintMap 97 94 97 97 HashMap#entrySet
P12 GSLayerEncoder21Test#testMetadata 84 81 71 100 HashMap#entrySet
P13 TagTypeTest#collectSectionAndVars 100 100 100 100 HashMap#keySet
P14 Maps format Test#should format Map containing... 76 50 62 53 HashMap#entrySet
P15 DefaultCertStoreInspectorTest#example 92 94 59 53 HashMap#keySet
P15 HarmonyCertStoreInspectorTest#example 95 96 59 53 HashMap#keySet
P16 MethodSorterTest#testJvmMethodSorter 100 0 0 0 Class#getDeclaredMethods
P17 TestSuite#testJSONStringerObject 79 77 83 84 Class#getFields
P18 EventLoggerTest#testEventLogger 100 0 0 0 Class#getDeclaredMethods
P19 BulkJSONDataESSinkTest#testGetBulkData 49 37 47 43 HashMap#entrySet
P19 JSONUtilsTest#testGetElasticSearchAddDocument 35 35 43 47 HashMap#entrySet
P19 XMLUtilsTest#testGetSolrAddDocument 36 43 43 47 HashMap#entrySet
P20 CollectionTests#testBasicSets 100 96 91 84 HashMap#keySet
P20 CollectionTests#testCustomSet 85 79 91 84 HashMap#keySet
P21 JaxRSRestAnnotationProcessorTest#stabilitySet... 71 86 51 53 HashMap#keySet
P21 SpringMVCRestAnnotationProcessorTest#stabilit... 76 75 51 53 HashMap#keySet

Flaky Tests Found 60 54 54 54
Total Failures 4362 3744 3643 3590
Min Failures 8 0 0 0
Max Failures 100 100 100 100

A. Experiments on Open-Source Projects

We evaluated NONDEX on 195 open-source projects. We

selected these projects and their specific revisions from our

previous studies with open-source projects [4], [23], [33]. All

these projects are from GitHub [8], use Maven to build [26],

and compile successfully using Java 8. For each project, we

first ran NONDEX with 10 randomly generated seeds, using

the FULL level. If any test failed with these 10 seeds, we

examined it to determine what caused the failure. (As a side

note, we found that manually inspecting these failures was

rather challenging, and we leave it as future work to automate

debugging test failures due to ADINS code.)

We detected 60 flaky tests in the 21 projects listed in

Table III. We tabulate a short ID for ease of reference, the

project name, and the project revision on which we ran

NONDEX. For each project with a flaky test, we then reran that

project’s tests using NONDEX with 100 randomly generated

seeds, using all non-deterministic levels. We obtained the

number of times each flaky test fails out of the 100 seeds.

Table IV shows a partial list of the 60 tests that we

examined. We tabulate the PID (from Table III), the name

of the test class and its flaky test method, the number of

failures detected for the each of the four levels, and the

most likely non-deterministic method that causes the fail-

ures. The apache/commons-lang project has 14 tests sim-

ilar to MultilineRecursiveToStringStyleTest#boolArray, and

the caelum/vraptor project has 13 tests similar to XStream-

SerializerTest#shouldSerializeCollection, so the two table rows

show the total number of failures for each level across all

14 and 13 tests, respectively. Our evaluation started on older

revisions of these projects, and three tests (GenericTest#test-

Write, TestDateTimeZone#testGetShortName, and TagType-

Test#collectSectionAndVars) are already fixed on the current

revisions of their respective projects.

Running NONDEX using the FULL level may introduce too

much non-determinism, and one might initially consider some

detected flaky tests to be false alarms. However, Table IV

shows that only six flaky tests (FieldAccessTest#testIndexSet-



1 public class OptionGroupTest {

2 public void testToString() {

3 OptionGroup g1 = new OptionGroup();

4 g1.addOption(new Option(null, "foo", false, "Foo"));

5 g1.addOption(new Option(null, "bar", false, "Bar"));

6 if (!"[--bar Bar, --foo Foo]".equals(g1.toString())) {

7 assertEquals("[--foo Foo, --bar Bar]", g1.toString());

8 }

9 ...

10 }

11 }

12

13 public class OptionGroup ... {

14 Map<String, Option> om = new HashMap<String, Option>();

15 public OptionGroup addOption(Option option) {

16 om.put(option.getKey(), option);

17 return this;

18 }

19 public String toString() {

20 StringBuilder buff = new StringBuilder();

21 Iterator<Option> iter = getOptions().iterator();

22 buff.append("[");

23 while (iter.hasNext()) {

24 /* ... populate buff with the values in iter ... */

25 return buff.toString();

26 }

27 }

28 }

Fig. 5. Flaky test from apache/commons-cli

AndGet, OptionGroupTest#testToString, FieldUtilsTest#test-

GetAllFields, FieldUtilsTest#testGetAllFieldsList, Method-

SorterTest#testJvmMethodSorter, and EventLoggerTest#test-

EventLogger) fail sometimes for the FULL level but not fail

at all for any of the 100 randomly generated seeds for any of

the other levels. The remaining 54 flaky tests are also detected

by the other levels, suggesting that these are not false alarms.

For each flaky test, the table shows the number of seeds/runs

on which it fails. For most flaky tests, the number of seeds

is fairly high, with only 8–14 flaky tests failing for less than

50 seeds for each level (not counting flaky tests that have

0 failures for a given level), and only two of those tests

fail less than 30 times for each level. These high numbers

suggest that it is likely that a flaky test can be detected by

running NONDEX with just a few seeds. Assume that the

actual probability of a flaky test failing for a seed is equal to

the percentage of seeds that fail out of the 100 seeds that were

run. For example, if the probability of a flaky test failing for a

seed is 30%, then the probability of the flaky test not failing for

10 different, independent seeds is (1−0.3)10 = 0.028; in other

words, there is a less than 3% chance of NONDEX missing

to detect that flaky test running with 10 seeds. In the most

extreme case we detected, in the Thomas-S-B/visualee project,

the expected probability of a flaky test failing for a seed in the

FULL level is only 8%, so the chance of NONDEX missing

this flaky test running with 10 seeds is (1− 0.08)10 = 0.434.

Even in this case, there is more than 50% chance of detecting

such a flaky test with 10 seeds, despite the chance of it failing

for any one seed being rather low.

In summary, a developer using NONDEX to detect flaky

tests may not need to run with many seeds and can still

have some confidence that NONDEX does not miss to detect

any flaky tests. Therefore, we recommend that NONDEX by

default be run for 10 seeds while increasing the level of

1 public class MapUtilsTest {

2 @Test public void shouldPrettyPrintMap() {

3 Map<Integer, String> map = new HashMap<>();

4 map.put(1, "one"); map.put(2, "two");

5 map.put(3, "three"); map.put(4, "four");

6 assertEquals(

7 "{ 1 -> one , 2 -> two , 3 -> three , 4 -> four }",

8 MapUtils.toString(map));

9 }

10 }

11

12 public class MapUtils {

13 public static <K,V> String toString(Map<K,V> map) {

14 ...

15 StringBuilder result = new StringBuilder();

16 for(Map.Entry<K,V> entry : map.entrySet()) {

17 result.append(String.format(", %s -> %s ",

18 entry.getKey().toString(),

19 entry.getValue().toString()));

20 }

21 return "{" + result.substring(1) + "}";

22 }

23 }

Fig. 6. Flaky test from fernandezpablo85/scribe-java

non-determinism, from ONE to FULL. Because the common

threats to validity apply to our study, our results may not

generalize to other projects or flaky tests. Of particular concern

is that our experiments could have missed some flaky tests

even in the projects that we ran with 10 seeds. If some test

fails infrequently, it may be missed; there might be many such

tests that NONDEX missed, so we could not have even studied

them in more detail. In the future, we plan to evaluate more

systematic exploration to check whether this is indeed the case.

We next discuss in more detail three flaky tests detected by

NONDEX in open-source projects.

1) Overly Non-deterministic Level: A case where the

FULL level detects a flaky test that is never detected for

any other level is OptionGroupTest#testToString from the

apache/commons-cli project. Figure 5 shows that flaky test.

Lines 4 and 5 add some options to the OptionGroup g1.

OptionGroup stores options in a HashMap (line 16), and its

toString() method (lines 19–27) iterates over this map. The

developer realized that the iteration order over the HashMap

is not guaranteed, so lines 6 and 7 check that the result of

calling toString() on g1 is either of the two hard-coded

strings. However, toString() is invoked twice, and in the

FULL level, NONDEX can reshuffle the order differently for

the two invocations, causing the assertion to potentially fail.

The developer made a reasonable assumption that calling

toString() on the same, unchanged object twice returns

the same string both times; we see that the other levels of

NONDEX never flag this test as flaky. Nevertheless, the test

could be still changed to call toString() only once and then

to assert that it returns one of the two possible values.

2) Example New Flaky Test: We detected 57 flaky

tests that are not fixed on the current revision of the

projects, and Figure 6 shows one such flaky test, MapUtils-

Test#shouldPrettyPrintMap from the fernandezpablo85/scribe-

java project. The test (lines 3–5) makes and populates

a HashMap and then compares the result of calling

MapUtils#toString() with a hard-coded string (lines 6–

8). However, MapUtils#toString() calls entrySet() on



1 public class DefaultNameProvider implements NameProvider {

2 public String getName(...) {

3 String[] nameSet = getNameSet(...);

4 return nameSet[0];

5 }

6 private synchronized String[] getNameSet(...) {

7 String[][] z = DateTimeUtils.getDateFormatSymbols(...).

getZoneStrings();

8 String[] setEn = null;

9 ...

10 for (String[] s : z) {

11 if (s != null && s.length == 5 && id.equals(s[0])) {

12 setEn = s;

13 break;

14 }

15 }

16 ...

17 }

18 }

19

20 public class TestDateTimeZone extends TestCase {

21 public void testGetShortName() {

22 DateTimeZone zone = DateTimeZone.forID(...);

23 assertEquals("BST", zone.getShortName(...));

24 ...

25 }

26 }

27

28 public abstract class DateTimeZone ... {

29 public String getShortName(...) {

30 String name;

31 NameProvider np = getNameProvider();

32 if (np instanceof DefaultNameProvider) {

33 name = ((DefaultNameProvider) np).getShortName(...);

34 }

35 ...

36 return name;

37 }

38 private static NameProvider getDefaultNameProvider() {

39 NameProvider nameProvider = null;

40 ...

41 if (nameProvider == null) {

42 nameProvider = new DefaultNameProvider();

43 }

44 return nameProvider;

45 }

46 }

Fig. 7. Flaky test from JodaOrg/joda-time

its input Map, and the order of iteration is not fixed, so the

assertion on lines 6–8 can sometimes fail. More precisely, it

fails in all but one of the 4! orderings, i.e., in about 96% of

cases, as also obtained in our experiments.

3) Example Fixed Flaky Test: We next describe a flaky

test that NONDEX detected when run on an older revision

of the JodaOrg/joda-time project; the test has been fixed

since then. Figure 7 shows TestDateTimeZone#testGetShort-

Name and the relevant portions of the code under test.

The call to getShortName() on line 23 eventually leads

to a call to the DefaultNameProvider#getNameSet()

method defined on lines 6–17. The problem is the guard

condition, s.length == 5 on line 11. In Java 7, the call

to DateFormatSymbols#getZoneStrings() on line 7 re-

turned each array element of z of exactly length five. However,

the specification of that method only guarantees that each

element of z has length of at least five. In fact, in Java 8,

the implementation changed such that each array element has

length exactly seven, which still satisfies the specification but

is different from what was the case in Java 7. This change

in the implementation revealed the developer’s reliance on the

length of the elements of z. NONDEX was able to detect this

on an older revision of the code, and the developers have since

fixed this problem by changing checks such as the one shown

on line 11 to be s.length >= 5 instead.

B. Experiments on Student Code

We also evaluated NONDEX on 72 student submissions for

a programming assignment. We first describe the assignment

that the students were supposed to do. We then describe how

we set up our experiments for the student submissions. We

finally describe high-level results concerning our findings of

running NONDEX on the student submissions.

1) Assignment: The assignment asked the students to cre-

ate a simple library-management application1. The students

were expected to write both code that implements such an

application and unit tests using JUnit [20] to test the different

components of the application.

The teaching staff provided the students some skeleton code

outlining the basic expected components of the application.

The application should represent a library containing books

which can be organized into collections. The Book class

represents a book and has only two fields, a title and an author,

both represented by String objects. This Book class extends

the abstract class Element. The Collection class represents

a collection of such Elements that are stored in a List.

Furthermore, the Collection class also extends Element,

so a Collection is allowed to contain other Collection

objects, creating a hierarchy that illustrates the composite

design pattern [7]. Finally, at the top level, there is a Library

class that can hold a List of Collection objects.

Students were expected to implement several methods

and constructors for each of these classes. We discuss

those that are most relevant for this study. For both

Book and Collection, students must implement a method

getStringRepresentation() that returns String repre-

sentations of objects of those classes. Given such a string rep-

resentations, students must implement a constructor for Book

that takes the string representation and constructs the corre-

sponding Book object. For Collection, students must sim-

ilarly implement a static method restoreCollection that

takes a string representation of a Collection and constructs

the corresponding Collection object. For Library, students

must implement (1) the constructor that takes a file containing

string representations of a sequence of Collection objects

and constructs the corresponding Library and (2) the method

saveLibraryToFile() that writes out the Library to a file.

Along with the skeleton code and implementation require-

ments, the teaching staff made further restrictions and sug-

gestions. First, the students’ code must build successfully on

a common platform used by the entire class. This platform

uses OpenJDK Java 7, so students’ code must also compile

to Java 7 bytecode and run successfully using the OpenJDK

Java 7 JVM. Students must also write tests for each of the

1This library-management assignment was first created three years ago and
has been minimally updated by different teaching staff members over the
years; this year’s iteration of the assignment was updated by two teaching
assistants who were not involved in this study.



TABLE V
FLAKY TESTS DETECTED IN STUDENT SUBMISSIONS

FULL ID EQ ONE

Flaky Tests Found 110 88 34 34
Total Failures 8159 6785 2031 1827
Min Failures 37 0 0 0
Max Failures 100 100 81 78

three classes they implement, with at least nine tests for the

entire application. Finally, the staff strongly encouraged the

students to use some third-party library to handle the pretty-

printing/parsing of objects to/from strings, as the Library can

potentially have complex structures involving deeply nested

Collection objects. However, the staff did not restrict the

students to a specific third-party library, so the students chose

whatever library they felt comfortable with. Many used various

libraries for JSON or XML.

2) Experimental Setup: For our evaluation on student code,

we started from the 89 submissions that built successfully

(both compiled and had all tests pass) on the common platform

that uses OpenJDK Java 7. With these 89 submissions, we ran

the tests on another platform that is exactly the same as the

platform provided to the students, except this other platform

uses OpenJDK Java 8 instead. By running the students’ tests

against their own code on a platform using Java 8, we already

detected some students’ tests to be flaky as they assumed

specific behavior of the libraries (either the Java Standard

Library or the third-party libraries used), and most likely

failing due to the presence of ADINS code.

Running the students’ tests in this Java 8 environment, we

found 17 submissions that fail. In fact, in the past, running in

multiple environments (e.g., on Linux virtual machines and on

Mac and Windows laptops from teaching assistants) was the

only approach that we could use to detect (some) flaky tests.

Using NONDEX, we can have a more thorough detection of

flaky tests; even if some tests pass on both Java 7 and Java 8,

it does not imply they do not contain any ADINS code that

could fail on some future Java 9 (or even on Java 8 on another

OS or by another JVM provider, say, IBM). We therefore focus

the rest of our evaluation on the remaining 72 submissions.

3) Results: We ran the student submissions using our NON-

DEX tool in all four non-deterministic levels and for 100 ran-

domly generated seeds. (The tests from students submissions

run much faster than the open-source projects, so we could

immediately use 100 seeds.) NONDEX detected 34 student

submissions with at least one flaky test. In total, NONDEX

detected 110 flaky tests. Table V summarizes the results. We

tabulate the number of flaky tests detected in each level (up to

110), and the total, minimum, and maximum number of the

100 seeds that cause a failure for one of those flaky tests in

each level. We elide detailed results for each individual test

as in Table IV because there are too many tests.

From the table, we see that the FULL level detects the

most flaky tests, followed by ID, and then by EQ and ONE,

which both detect the same number of flaky tests. Unlike for

open-source projects where all three partial levels behaved the

same (either all three had at least one failure or all three had

no failure), for student submissions, ID detected more flaky

tests than either EQ or ONE that detected exactly the same

flaky tests. Considering the total number of failures, like for

open-source projects, we see that the FULL level detects more

failures than the ID level, followed by the EQ level and finally

by the ONE level.

Running NONDEX even with 100 different seeds may not

detect all flaky tests, as the random choices explored can miss

some cases that would cause a test to fail. To more systemati-

cally explore these tests, we used Java PathFinder (JPF) [17],

[34]. JPF provides a specialized JVM, implemented in Java,

that can explore all non-deterministic choices. However, JPF

cannot handle all Java code out-of-the-box. In particular, it

cannot handle code that depends on native methods, such as

those in Gson or XStream that students used.

To use JPF, we changed our model for HashMap to not make

some random choices but rather systematically explore all

choices; specifically, considering Figure 4, on line 13, we re-

placed rand.getNext(i, size) with Verify.getInt(i,

size - 1), where the JPF method Verify.getInt explores

all possible values between the bounds i and size - 1,

inclusive. Hence, JPF shuffles each List to explore all per-

mutations. Because JPF can systematically explore all choices

until either the test fails or all possible permutations execute

and the test does not fail, JPF will not miss any test that

depends on some ordering for the elements in a HashMap.

Because JPF cannot handle most file system operations, we

could not run the tests for the Library class which need

to read/write some file from/to disk. Even without running

the tests for Library, there were still many cases where JPF

throws some internal exception because of functionality that

is not yet implemented in JPF. As a result, we ignored the 22

submissions that do not work with JPF and only ran the tests

for Book and Collection.

Using JPF, we detected 22 submissions where exploring

permutations on HashMap iterator order causes a test to fail.

In total, JPF detected 51 flaky tests. We compared these results

with those obtained from running NONDEX on our modified

JVM, using only the non-deterministic methods in HashMap,

and running only tests for Book and Collection. We found

that NONDEX detected all tests detected by JPF, increasing

confidence that 100 seeds suffice for student submissions.

4) Discussion: In the 17 cases where the students’ tests

fail just by switching from Java 7 to Java 8, the flaky tests

check the functionality of the methods that get the string

representation of a Book or a Collection object. The tests

generally construct some Book or Collection objects and

assert that the return of the method that gets the string

representation matches some hard-coded string value. In all

but one of these submissions, students either directly use a

Java HashMap as part of their implementation for constructing

a string representation, or they use a third-party library (e.g.,

JSON in Java [18] or JSON.Simple [19]) where the serial-

ization is backed by a Java HashMap. The assertions against

the hard-coded strings succeed in Java 7 because the order



remains consistent across different runs of the JVM, but in

Java 8, the underlying implementation of HashMap changed

such that the iteration order can differ from that of Java 7. The

one remaining failing submission uses an XML serialization

library (XStream [37]) to construct a string representation of

a Collection object, but the order of the declared fields for

a class is also not guaranteed, so the comparison with a hard-

coded string value here once again fails in this later version

of Java. In summary, all these 17 submissions have ADINS

code and fail due to relying on some assumed order that is

not guaranteed to hold.

In the student submissions that do not fail on Java 8,

NONDEX detected more flaky tests that fail due to the non-

determinism in the ordering provided by the iterator for a

HashMap. As with the tests that fail on Java 8, these flaky

tests generally construct Book and Collection objects and

assert their string representation to be equal to a hard-coded

string. Similar to some cases in the open-source projects, some

failures are due to “too much” non-determinism in the order-

ings, e.g., when a test calls getStringRepresentation()

on an object and then compares the string against another

call of getStringRepresentation() of an equal object

rather than asserting the string to be the same as a hard-coded

string. In such a case, the FULL or ID level would shuffle both

calls to getStringRepresentation() and potentially end

up failing the assertion where the other two levels do not fail.

Moreover, the FULL level also detects as flaky some cases that

depend on the field ordering, which other levels never detect.

V. RELATED WORK

Detecting problems due to wrong assumptions that de-

velopers make about specifications and implementations has

been explored in other domains. For example, Jin et al. [15]

reported how wrong assumptions about code can lead to

performance bugs, in particular, they find the second most

common reason for the introduction of performance bugs to

be that “developers misunderstand the performance feature

of certain functions”. NONDEX does not target performance

bugs but helps detect another class of bugs that are due to

specification misunderstanding. As another example, from a

security perspective, Wang et al. [35] propose a technique

to analyze implicit assumptions that are necessary for the

secure use of libraries. Their work involves building models

of methods which are then used to find bugs in software

that fail to meet these implicit assumptions, finding serious

security vulnerabilities in the process. Their techniques are

mostly static, while NONDEX uses a dynamic, randomized

exploration of methods with non-deterministic specifications.

Randomness has been applied in different contexts to detect

bugs, with many of these applications for concurrent code.

For example, Eytani et al. [5] developed a tool that monitors

shared variable accesses and applies random context switching

when shared variables are accessed in order to trigger bugs in

concurrent code; Parizek and Kalibera [29] used an abstract

environment in software model checkers that randomly selects

sequence of method calls in each thread to detect bugs in

concurrent programs; and Joshi et al. [16] applied randomness

in thread scheduling to create resource deadlocks in multi-

threaded programs. Moreover, JPF can also control thread

schedules to potentially explore all paths in the code [34]. In

contrast, NONDEX focuses on sequential code and exploration

of non-deterministic specifications.

Non-determinism has been also studied for various other

domains. For example, for map-reduce programs, Xiao et

al. [36] studied non-determinism that arises due to non-

commutative reducers and found many bugs due to non-

commutative reducers that make assumptions on the order

of input data rows. For GUI code, Memon and Cohen [27]

showed various factors that may cause non-determinism and

hence impact the results of analyses and experiments based

on GUI software. For state machines, testing conformance of

deterministic implementations against non-deterministic spec-

ifications has a long history [13], [30]–[32]. More recently,

Cook and Koskinen [3] aim to find restrictions on non-

deterministic value-choices using a CEGAR loop; they apply

their technique to examples drawn from real code. NONDEX

explores non-determinism in the context of abstract data-type

specifications using concrete exploration of real code.

VI. CONCLUSIONS AND FUTURE WORK

Non-deterministic specifications are good because they al-

low implementers to provide various implementations. How-

ever, non-deterministic specifications are bad because they can

result in seemingly random failures. In particular, ADINS

code that assumes a deterministic implementation of non-

deterministic specification is susceptible to failures that

arise from changing implementations. Tests that depend on

ADINS code can become flaky tests that seemingly non-

deterministically pass or fail. We proposed a novel NONDEX

technique to detect flaky tests due to ADINS code. NONDEX

detected many flaky tests in both larger, open-source projects

and small-sized student code submissions.

In the future, we plan to investigate how to automate debug-

ging of failures that NONDEX reports. While it is good that

NONDEX detected many flaky tests, manually investigating

them turned out to be hard. Interestingly, we found that only

7 of the 31 non-deterministic models were the likely causes for

all detected flaky tests. Considering our experience with Java 7

and Java 8, we also plan to study advanced approaches to find

behavior differences between different JVM implementations,

e.g., using automated test generation that previously revealed

differences in IDEs, Java compilers, and JPF [9]. Finally, to

help developers avoid misunderstandings of non-determinism,

we envision that code could have some determinism anno-

tations, e.g., @Unordered to specify methods that provide

no guarantee on the order of elements. Overall, ADINS code

seems to open an interesting new line of research.

Acknowledgments: We thank Lamyaa Eloussi, Wajih Ul

Hassan, Nicholas Lu, Xinyue Xu, and Tifany Yung for help in

this project. This research was partially supported by the NSF

Grant Nos. CCF-1012759, CCF-1409423, CCF-1421503, and

CCF-1439957.



REFERENCES

[1] J. Bell and G. Kaiser, “Unit test virtualization with VMVM,” in ICSE,
2014.

[2] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe Java test acceleration,” in ESEC/FSE, 2015.

[3] B. Cook and E. Koskinen, “Reasoning about nondeterminism in pro-
grams,” in PLDI, 2013.

[4] L. Eloussi, “Detecting flaky tests from test failures,” Master’s thesis,
UIUC, 2015.

[5] Y. Eytani, E. Farchi, and Y. Ben-Asher, “Heuristics for finding concur-
rent bugs,” in IPDPS, 2003.

[6] “File - list JavaDoc,” http://docs.oracle.com/javase/8/docs/api/java/io/
File.html#list-- .

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software. Pearson Education, 1994.
[8] “GitHub,” https://github.com/.
[9] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and

D. Marinov, “Test generation through programming in UDITA,” in ICSE,
2010.

[10] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting
state-polluting tests to prevent test dependency,” in ISSTA, 2015.

[11] “HashSet JavaDoc,” https://docs.oracle.com/javase/8/docs/api/java/util/
HashSet.html.

[12] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in ICSE SEIP, 2015.

[13] R. Hierons and M. Harman, “Testing conformance of a deterministic
implementation against a non-deterministic stream X-machine,” Theo-

retical Computer Science, 2004.
[14] C. Huo and J. Clause, “Improving oracle quality by detecting brittle

assertions and unused inputs in tests,” in FSE, 2014.
[15] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and

detecting real-world performance bugs,” in PLDI, 2012.
[16] P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized dynamic

program analysis technique for detecting real deadlocks,” in PLDI, 2009.
[17] “JPF home page,” http://babelfish.arc.nasa.gov/trac/jpf/.
[18] “JSON in Java,” http://www.json.org/java/.
[19] “JSON-Simple,” https://code.google.com/p/json-simple/.
[20] “JUnit,” http://junit.org/.
[21] “JUnit 4.11 - What’s new? Test execution order,” http://randomallsorts.

blogspot.com/2012/12/junit-411-whats-new-test-execution-order.html.

[22] W. Lam, S. Zhang, and M. D. Ernst, “When tests collide: Evaluating and
coping with the impact of test dependence,” University of Washington
Department of Computer Science and Engineering, Tech. Rep., 2015.

[23] O. Legunsen, D. Marinov, and G. Rosu, “Evolution-aware monitoring-
oriented programming,” in ICSE NIER, 2015.

[24] “LinkedHashSet JavaDoc,” http://docs.oracle.com/javase/8/docs/api/
java/util/LinkedHashSet.html.

[25] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014.

[26] “Maven Surefire plugin,” http://maven.apache.org/surefire/index.html.

[27] A. M. Memon and M. B. Cohen, “Automated testing of GUI applica-
tions: Models, tools, and controlling flakiness,” in ICSE, 2013.

[28] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed random
test generation,” in ICSE, 2007.

[29] P. Parizek and T. Kalibera, “Efficient detection of errors in Java
components using random environment and restarts,” in TACAS, 2010.

[30] A. Petrenko, N. Yevtushenko, and G. V. Bochmann, “Testing deter-
ministic implementations from nondeterministic FSM specifications,” in
IWTCS, 1996.

[31] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, “Nondetermin-
istic state machines in protocol conformance testing,” in IWPTS, 1994.

[32] T. Savor and R. E. Seviora, “Supervisors for testing non-deterministically
specified systems,” in ITC, 1997.

[33] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in FSE, 2015.

[34] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” ASE Journal, 2003.

[35] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering assumptions underlying secure authen-
tication and authorization,” in USENIX, 2013.

[36] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen,
and L. Zhou, “Nondeterminism in MapReduce considered harmful?
An empirical study on non-commutative aggregators in MapReduce
programs,” in ICSE SEIP, 2014.

[37] “XStream,” http://x-stream.github.io/.

[38] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, M. Ernst, and D. Notkin,
“Empirically revisiting the test independence assumption,” in ISSTA,

2014.

http://docs.oracle.com/javase/8/docs/api/java/io/File.html#list--
http://docs.oracle.com/javase/8/docs/api/java/io/File.html#list--
https://github.com/
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://babelfish.arc.nasa.gov/trac/jpf/
http://www.json.org/java/
https://code.google.com/p/json-simple/
http://junit.org/
http://randomallsorts.blogspot.com/2012/12/junit-411-whats-new-test-execution-order.html
http://randomallsorts.blogspot.com/2012/12/junit-411-whats-new-test-execution-order.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://maven.apache.org/surefire/index.html
http://x-stream.github.io/

