
c© 2020 August Shi

IMPROVING REGRESSION TESTING EFFICIENCY AND RELIABILITY
VIA TEST-SUITE TRANSFORMATIONS

BY

AUGUST SHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Darko Marinov, Chair
Professor Vikram Adve
Assistant Professor Sasa Misailovic
Professor Sarfraz Khurshid, The University of Texas at Austin

ABSTRACT

As software becomes more important and ubiquitous, high quality software also becomes cru-
cial. Developers constantly make changes to improve software, and they rely on regression testing—
the process of running tests after every change—to ensure that changes do not break existing func-
tionality. Regression testing is widely used both in industry and in open source, but it suffers from
two main challenges. (1) Regression testing is costly. Developers run a large number of tests
in the test suite after every change, and changes happen very frequently. The cost is both in the
time developers spend waiting for the tests to finish running so that developers know whether the
changes break existing functionality, and in the monetary cost of running the tests on machines.
(2) Regression test suites contain flaky tests, which nondeterministically pass or fail when run on
the same version of code, regardless of any changes. Flaky test failures can mislead developers
into believing that their changes break existing functionality, even though those tests can fail with-
out any changes. Developers will therefore waste time trying to debug non-existent faults in their
changes.

This dissertation proposes three lines of work that address these challenges of regression testing
through test-suite transformations that modify test suites to make them more efficient or more
reliable. Specifically, two lines of work explore how to reduce the cost of regression testing and
one line of work explores how to fix existing flaky tests.

First, this dissertation investigates the effectiveness of test-suite reduction (TSR), a traditional
test-suite transformation that removes tests deemed redundant with respect to other tests in the test
suite based on heuristics. TSR outputs a smaller, reduced test suite to be run in the future. However,
TSR risks removing tests that can potentially detect faults in future changes. While TSR was
proposed over two decades ago, it was always evaluated using program versions with seeded faults.
Such evaluations do not precisely predict the effectiveness of the reduced test suite on the future
changes. This dissertation evaluates TSR in a real-world setting using real software evolution with
real test failures. The results show that TSR techniques proposed in the past are not as effective
as suggested by traditional TSR metrics, and those same metrics do not predict how effective a
reduced test suite is in the future. Researchers need to either propose new TSR techniques that
produce more effective reduced test suites or better metrics for predicting the effectiveness of
reduced test suites.

Second, this dissertation proposes a new transformation to improve regression testing cost when
using a modern build system by optimizing the placement of tests, implemented in a technique
called TestOptimizer. Modern build systems treat a software project as a group of inter-dependent

ii

modules, including test modules that contain only tests. As such, when developers make a change,
the build system can use a developer-specified dependency graph among modules to determine
which test modules are affected by any changed modules and to run only tests in the affected
test modules. However, wasteful test executions are a problem when using build systems this
way. Suboptimal placements of tests, where developers may place some tests in a module that has
more dependencies than the test actually needs, lead to running more tests than necessary after a
change. TestOptimizer analyzes a project and proposes moving tests to reduce the number of test
executions that are triggered over time due to developer changes. Evaluation of TestOptimizer on
five large proprietary projects at Microsoft shows that the suggested test movements can reduce
21.7 million test executions (17.1%) across all evaluation projects. Developers accepted and intend
to implement 84.4% of the reported suggestions.

Third, to make regression testing more reliable, this dissertation proposes iFixFlakies, a frame-
work for fixing a prominent kind of flaky tests: order-dependent tests. Order-dependent tests pass
or fail depending on the order in which the tests are run. Intuitively, order-dependent tests fail
either because they need another test to set up the state for them to pass, or because some other test
pollutes the state before they are run, and the polluted state makes them fail. The key insight behind
iFixFlakies is that test suites often already have tests, which we call helpers, that contain the logic
for setting/resetting the state needed for order-dependent tests to pass. iFixFlakies searches a test
suite for these helpers and then recommends patches for order-dependent tests using code from the
helpers. Evaluation of iFixFlakies on 137 truly order-dependent tests from a public dataset shows
that 81 of them have helpers, and iFixFlakies can fix all 81. Furthermore, among our GitHub pull
requests for 78 of these order-dependent tests (3 of 81 had been already fixed), developers accepted
38; the remaining ones are still pending, and none are rejected so far.

iii

To my family, for their love and support.

iv

ACKNOWLEDGMENTS

It has been a long seven years of graduate school, culminating in this Ph.D. While these seven
years were challenging, they were also very rewarding and fun, in large part due to all the won-
derful people I met and interacted with. I am extremely grateful for all the support and help from
everyone, and I apologize in advance if I do not mention you here due to my own bad memory.
Nonetheless, you have my gratitude.

First, I would like to thank my advisor, Professor Darko Marinov, who took a chance on me and
accepted me as his Ph.D. student in 2013. Darko taught me everything I know about research, and
he was always there pushing me to do my best. Darko has been extremely supportive of everyone
in our group, spending countless hours with us discussing ideas, hacking code, writing papers late
into the night until the deadline, and just chatting about life in general. Darko brings an amazing
amount of excitement and passion to research and to advising students. I hope I can do the same
in the future.

I would also like to thank Professors Vikram Adve, Sarfraz Khurshid, and Sasa Misailovic
for serving on my thesis committee. They provided excellent feedback on how to improve the
presentation of the work in this dissertation. Beyond serving on the committee, I am grateful for
all the help and advice they provided with my job search. Although Professor Tao Xie could not
be on my thesis committee, I am very grateful that he served on my prelim committee and gave
me invaluable advice, both for how to best present my work and for my job search.

One of the fun parts of research is the opportunity to collaborate with others. I have had the
pleasure to work with a large number of wonderful people. I would like to thank all my col-
laborators: Mohammad Amin Alipour, Jonathan Bell, Adhithya Bhaskar, Nikolaj Bjørner, Rutvik
Choudhary, Hayes Converse, Jacek Czerwonka, Saikat Dutta, Michael D. Ernst, Vimuth Fernando,
Maria Garzaran, Milos Gligoric, Rahul Gopinath, Ruben Gran Tejero, Alex Groce, Alex Gyori,
Milica Hadzi-Tanovic, Farah Hariri, Josie Holmes, Aryaman Jain, Yanjie Jiang, Sarfraz Khurshid,
Matthew Krafczyk, Shuvendu Lahiri, Wing Lam, Ben Lambeth, Owolabi Legunsen, Yafeng Lu,
Suleman Mahmood, Sasa Misailovic, Reed Oei, Qianyang Peng, Victoria Stodden, Suresh Thum-
malapenta, Ehsan Totoni, Anjiang Wei, Tao Xie, Tifany Yung, Andrey Zaytsev, Lingming Zhang,
Peilun Zhang, Sai Zhang, Zhekun Zhang, Peiyuan Zhao, and Chenguang Zhu. There is no way I
could have done the work I did without the help of all these people, and I look forward to future
collaborations with them.

Lamyaa Eloussi, Alex Gyori, Farah Hariri, and Owolabi Legunsen were my lab mates from the
beginning. The five of us started graduate school and joined Darko’s research group in the same

v

semester, in Fall 2013. Maybe it was because we started at the same time that we developed a
strong sense of camaraderie with each other throughout our years in graduate school. Lamyaa was
the sole Master’s student among us, which we constantly ribbed her about, but that did not stop her
from making incredible accomplishments as a researcher in the two years before she graduated.
One of my biggest regrets is that I never managed to publish with Lamyaa. Alex and I worked
together almost constantly from the very beginning. The two of us published at least one paper
together every year until he graduated, and we certainly brainstormed many more ideas together.
Part of the work presented in this dissertation directly came from our collaborations. Farah was
my office mate for most of my time in graduate school, and it was always nice to have her around.
The arrangement also made it easier for us to work together, and I still remember how we would
work late into the night on a number of projects. Finally, Owolabi braved the academic job market
the year before I did, and he graciously provided me with an enormous wealth of knowledge about
the process. I am forever grateful for all the help Owolabi provided me during my own job search,
from sitting with me late into the night reviewing my job application all the way to how to write a
thank you email after an interview.

I could not have asked for a better mentor than Milos Gligoric when I started in graduate school.
Milos was deeply involved in my first research project and it was thanks to his guidance that I
first experienced what it was like to take a research idea all the way to a submitted paper. Indeed,
Milos was often like a second advisor whenever Darko was too busy, and I greatly appreciate his
mentorship and support.

The Software Engineering Seminar was a great place for everyone in our area to share ideas
and discuss research. I found this seminar to be a reliable place where I could get great feedback
on everything from conference talks to paper submissions. Thank you to all the people who have
joined this seminar throughout the years, making it as great of an experience as it was for me.

Part of the fun of going to the office every day is to chat with the folks around. Angello Astorga
became my office mate after Farah graduated. Although we never collaborated on a research
project, I really enjoyed all the discussion we had on our respective topics. Wing Lam sat in the
office next door, and we ended up collaborating a lot in the last few years, particularly on flaky
tests. I recall many afternoons where Wing, Angello, and I would sit in one of our offices and just
bounce ideas back and forth the whole time, and that would feel like a good day of work.

I had two wonderful summer internships, at Google and at Microsoft Research. At Google, I
worked with my mentors Teresa Johnson and Easwaran Raman on debugging performance prob-
lems in the compiler. I learned a lot during that summer about optimizations and performance
profiling as well as what software development looks like in a company. At Microsoft Research,
I worked with my mentors Shuvendu Lahiri and Suresh Thummalapenta on optimizing test place-
ments for more efficient builds. The work I did that summer forms a part of this dissertation.

vi

The Computer Science Department support staff are the unsung heroes who make our lives so
much easier. I would like to thank Elaine Wilson, Jen Dixson, and Kim Baker for all the help they
provided, from handling travel reimbursements to reserving conference rooms for events.

Several professors helped me when I was on the academic job market, from commenting on my
job talk to conducting mock interviews with me. I would like to thank Professors Sarita Adve,
Vikram Adve, Matthew Caesar, Brighten Godfrey, Sarfraz Khurshid, Andrew Miller, Sasa Mis-
ailovic, David Padua, Lawrence Rauchwerger, Victoria Stodden, Hari Sundaram, Matus Telgar-
sky, Josep Torrellas, Gang Wang, Tao Xie, and Tianyin Xu for all their help. Also, once again,
the amazing members of the Software Engineering Seminar were there to help as well. Thank you
everyone!

Parts of this dissertation were published at the International Symposium on Software Testing
and Analysis (ISSTA) 2018 [160] (Chapter 2), the International Conference on Software Engi-
neering (ICSE) 2017 [163] (Chapter 3), and the European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE) 2019 [162] (Chapter 4). I
would like to thank the anonymous reviewers of these papers for their comments and feedback
that helped improve the presentation of the work. I am also honored that the ICSE 2017 paper on
TestOptimizer won an Association for Computing Machinery Special Interest Group on Software
Engineering (ACM SIGSOFT) Distinguished Paper Award.

My research was funded by the National Science Foundation, Facebook, Futurewei, Google,
Microsoft, and Qualcomm. I was also supported by the Ray Ozzie Computer Science Fellowship
and the Mavis Future Faculty Fellowship

Finally, and certainly most importantly, I would like to express my deepest gratitude to my
family. I could certainly have never made it this far without their love and support. I am forever
grateful for my wife, Hang Yuan, for all the happiness she brings to my life. My brother, Justin
Shi, has been my best friend since childhood, and it has always been fun to swap stories about
our respective career paths (he is pursuing a medical degree, which I honestly believe is the harder
path between the two of us, so more power to him!). Lastly, I thank my parents, Hongchi Shi and
Hong Wang, for all their love, care, and encouragement throughout not just my time in graduate
school but my entire life.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Evaluating Test-Suite Reduction . 4
1.3 Optimizing Test Placement . 6
1.4 Automatically Fixing Order-Dependent Flaky Tests 7
1.5 Dissertation Organization . 9

CHAPTER 2 EVALUATING TEST-SUITE REDUCTION 11
2.1 Background . 11
2.2 Example . 13
2.3 Failed-Build Detection Loss (FBDL) . 15
2.4 Methodology . 18
2.5 Results and Analysis . 23
2.6 Threats to Validity . 32
2.7 Summary . 32

CHAPTER 3 OPTIMIZING TEST PLACEMENT . 34
3.1 Background . 34
3.2 Problem Statement . 37
3.3 TestOptimizer . 40
3.4 Implementation . 44
3.5 Evaluation . 46
3.6 Threats to Validity . 55
3.7 Summary . 55

CHAPTER 4 AUTOMATICALLY FIXING ORDER-DEPENDENT FLAKY TESTS . . . 57
4.1 Formalization of Order-Dependent Tests . 57
4.2 iFixFlakies . 61
4.3 Evaluation Setup . 68
4.4 Evaluation . 69
4.5 Threats to Validity . 77
4.6 Summary . 78

CHAPTER 5 RELATED WORK . 79
5.1 Regression Testing Techniques . 79
5.2 Continuous Integration (CI) . 82
5.3 Flaky Tests . 83
5.4 Mutation Testing . 84

viii

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 86
6.1 Future Work . 86

REFERENCES . 88

ix

CHAPTER 1: INTRODUCTION

Software has become an integral part of our daily lives. For example, we rely on the software
in the apps on our smart phones, the navigation systems in our vehicles, the medical devices
that save people’s lives, and much more. As software becomes more important and ubiquitous,
high quality software also becomes crucial. We depend on software developers who write the
software to also maintain and improve its quality. When developers make changes to software,
they rely on continuous integration and regression testing to check that changes do not break
existing functionality.

Continuous integration (CI) automates the process of building and testing software after every
change [100, 101]. Once a developer pushes a change to a version-control system, that push
triggers a CI build, which checks out the changed version of the code from the version-control
system onto a remote server, e.g., a server in the cloud provided by Travis CI, a popular cloud-
based CI platform [23]. The build involves both compiling the changed code and running tests. The
process of running tests on the code after every change is known as regression testing [183]. If the
tests fail after a change, yet they passed in the previous build, then the tests have ideally detected
a fault introduced by the change, and the developers can proceed to debug the change and fix that
fault. The process repeats as developers trigger more builds after their changes to fix the fault,
until all tests pass and developers can release the changed code. The goal of regression testing is
to allow developers to detect and fix faults early on, ideally the moment the faults are introduced.
Prior work found that detecting faults early is also critical to addressing them [91, 153, 154].
Regression testing is widely used in both industry and open source, but regression testing suffers
from two main challenges: (1) regression testing is costly, and (2) regression test suites often
contain flaky tests.

Regression testing is costly because many tests run on every code change, and changes occur
very frequently [134]. As such, a lot of human developer time can be spent waiting for test results
before they can decide what next steps to take. In addition to time, there is also a monetary cost
in utilizing machines to run the tests after every change [98]. To illustrate how much companies
spend on testing, Facebook reported that they make around 60K code changes per day [11], and
they run on the order of 10K tests per change [130]. Google also reported high costs of testing,
running on the order of 150 million tests per day [135].

Regression testing also suffers from the presence of flaky tests in the regression test suites. A
flaky test is a test that can nondeterministically pass or fail when run on the same code, without any
changes [128]. As such, flaky test failures can send misleading signals to developers concerning
the effects of their recent changes [91, 128], because failures do not necessarily indicate a fault

1

introduced by the change. Developers will waste time trying to debug a fault unrelated to recent
changes [50]. Flaky tests are also quite prevalent. For example, Labuschagne et al. [115] found that
13% of the failed builds they studied in open-source projects using Travis CI are due to flaky tests.
The software industry also widely reports major problems with flaky tests [76, 91, 99, 134, 193],
e.g., Luo et al. [128] reported that at one point 73K of 1.6M test failures per day at Google were
due to flaky tests.

This dissertation tackles these two challenges of high cost and unreliability of regression testing
through a common theme, which we call test-suite transformations. A test suite is a set of tests
in a project, and our test-suite transformations modify the code within the test suite to make it run
faster or more reliably. This dissertation presents three kinds of test-suite transformations that can
improve efficiency and reliability of regression testing.

Specifically, this dissertation investigates the effectiveness of test-suite reduction (TSR), a tra-
ditional transformation that removes likely redundant tests in the test suite to speed up regression
testing [92, 151, 176, 183]. While TSR was proposed in the past, we investigate TSR in a more
realistic setting than evaluated in prior work, where we use real-world software and real test fail-
ures. TSR is inherently unsafe, i.e., it may remove tests that are not redundant with respect to
future faults and therefore compromise the fault-detection effectiveness of the test suite on future
builds. Instead, we propose a novel, safe test-suite transformation that involves moving around
tests in the test suite. The insight is that we can take advantage of a modern, module-based build
system, which includes developer-specified information concerning the relationship between tests
and code, to run fewer tests after every change. However, we need to optimize the placement of
tests within modules to reduce the number of wasteful test executions in future builds. Finally, we
propose a technique to automatically fix a prominent kind of flaky tests, namely order-dependent
tests, by modifying existing test code using logic that already exists in the test suite.

1.1 THESIS STATEMENT

The thesis statement of this dissertation is as follows:

Test-suite transformations can improve the efficiency and reliability of regression testing.

This dissertation makes the following contributions:

• This dissertation evaluates the effectiveness of test-suite reduction (TSR), which transforms
a test suite for faster regression testing in the future by removing redundant tests in the test
suite, creating a smaller reduced test suite to be run on future builds. However, TSR risks
removing tests that can help detect faults in the future, so a developer needs some way to

2

predict how well the reduced test suite will detect faults in the future compared to the original
test suite. While TSR was proposed over two decades ago, different TSR techniques were
evaluated using program versions with seeded faults, but such evaluations do not precisely
predict the effectiveness of the reduced test suite in future builds. This dissertation evaluates
TSR using real test failures in (failed) builds that occurred on real code changes. We analyze
1,478 failed builds from 32 GitHub projects that run their tests on Travis CI. Each failed build
can have multiple faults, so we propose a family of mappings from test failures to faults. We
use these mappings to compute Failed-Build Detection Loss (FBDL), the percentage of failed
builds where the reduced test suite misses to detect all the faults detected by the original test
suite. We find that FBDL can be up to 52.2%, which is higher than suggested by traditional
TSR metrics. Moreover, traditional TSR metrics are not good predictors of FBDL, making
it difficult for developers to decide whether to use a reduced test suite or not. Researchers
need to either propose new TSR techniques that produce more effective reduced test suites
or better metrics for predicting the effectiveness of reduced test suites.

• As an alternative to TSR (which can be unsafe due to removing tests that can help detect
faults in the future), this dissertation proposes a different test-suite transformation involving
the placement of tests by leveraging the underlying build system. Modern build systems help
increase developer productivity by performing incremental building and testing. These build
systems treat a software project as a group of inter-dependent modules and perform regres-
sion test selection at the module level [74, 150, 183]. However, many large software projects
have imprecise dependency graphs that lead to wasteful test executions. If tests are placed in
a module that has more dependencies than those the tests actually depend on, then the build
system can unnecessarily execute those tests even when none of their actual dependencies
are affected by a change. In this dissertation, we formulate the problem of wasteful test exe-
cutions due to suboptimal placement of tests in modules. We propose a greedy algorithm to
reduce the number of test executions by suggesting test movements while considering his-
torical build information and the actual dependencies of tests. We implement our technique,
called TestOptimizer, on top of CloudBuild, a build system developed at Microsoft. We eval-
uate TestOptimizer on five large proprietary Microsoft projects. Our results show that the
suggested test movements can lead to a reduction of 21.7 million test executions (17.1%) in
these evaluation projects. We received encouraging feedback from the developers of these
projects; they accepted and intend to implement 84.4% of our reported suggestions.

• Concerning flaky tests, this dissertation explores automatically transforming tests within the
test suite to fix a specific kind of flaky tests, namely order-dependent tests. Order-dependent
tests pass or fail depending on the order in which tests are run. We present iFixFlakies, a

3

framework for automatically fixing order-dependent tests. The key insight in iFixFlakies is
that test suites often already have tests, which we call helpers, whose logic resets or sets the
states for order-dependent tests to pass. iFixFlakies automatically searches a test suite for
helpers that make the order-dependent tests pass and then recommends patches for the order-
dependent tests using code from the helpers. Our evaluation on 137 truly order-dependent
tests from a public dataset shows that 81 of them have helpers, and iFixFlakies can fix all
81. We opened GitHub pull requests for 78 order-dependent tests (3 of 81 had been already
fixed), and developers accepted our pull requests for 38 of them, with all the remaining ones
still pending and none rejected so far.

The rest of this chapter describes these contributions in more detail.

1.2 EVALUATING TEST-SUITE REDUCTION

Researchers have proposed TSR as a way to speed up regression testing [53, 59, 61, 86, 92,
104, 125, 151, 183, 188, 191]. TSR identifies a subset of tests in the test suite that are redundant
with respect to the other tests. The redundant tests are then removed from the test suite. The
remaining, non-redundant tests form a reduced test suite, which is run instead of the original test
suite for future builds [151]. Running the smaller, reduced test suite instead of the original test
suite leads to faster regression testing in the future. However, there is a risk in using that reduced
test suite. TSR techniques determine redundancy based on heuristics, e.g., a test that covers the
same statements as another test is considered redundant with that other test and therefore should be
removed. These heuristics may not completely capture the true fault-detection capability of a test,
and a developer using TSR techniques runs the risk of removing a useful test that can detect faults
in future builds. In general, a reduced test suite should ideally detect all faults that the original,
non-reduced test suite detects in future builds, so developers can debug and fix all those faults
before moving on to making more changes. However, because TSR techniques cannot guarantee
that the reduced test suite achieves this ideal (the heuristics only operate on the current test suite
and do not “know” what will happen in the future), TSR is unsafe as it can lead to missing faults
in the future. Before using a TSR technique, the developer must decide whether the benefit from
using a reduced test suite is worth the cost of missed future faults [151].

Since over two decades ago, when Wong et al. [177] and Rothermel et al. [151] evaluated the
loss in fault-detection capability of TSR using program versions with seeded faults, all evaluations
of TSR [183] (1) used seeded faults or mutants, (2) used only one fault seeded for each faulty
version, and (3) ignored new tests added to the test suite during software evolution. It is unknown
how TSR performs for real software evolution. Developers have no practical guidance to make

4

cost-benefit decisions about TSR, and researchers have no real data for improving TSR.
This dissertation presents the first study of TSR on real software evolution. Our study (1) uses

real test failures from the Travis CI builds of open-source projects, (2) considers multiple faults per
failed build, and (3) accounts for new tests added during software evolution. More precisely, we
use the following experimental procedure to evaluate the cost and benefit of TSR. First, we collect
historical failed build logs for several open-source projects and determine which tests failed in
which build. We define a metric Failed-Build Detection Loss (FBDL) as the percentage of failed
builds where the reduced test suite misses to detect all the faults that the original test suite detects.
A lower FBDL means that a reduced test suite is better. For a reduced tests suite computed at an
earlier reduction point, we then measure FBDL using the future failed builds relative to that point.
Since we have only failures from historical build logs, we also need to map test failures to faults
detected, which can range from each test failure detecting a unique fault to all test failures detecting
the same single fault [151]. Prior studies obtained the failure-to-fault mapping precisely because
they created the faulty versions themselves. We further propose Failure-to-Fault Map (FFMap), a
family of mappings from test failures to faults.

Given that the goal of creating a reduced test suite is to use it for future builds, a developer
needs to predict a reduced test suite’s FBDL, so we also measure how well metrics collected
at the reduction point can predict the FBDL in future builds. We evaluate two traditional TSR
metrics [183] as predictors, size reduction and test-requirements loss. Past studies measured test-
requirements loss at the reduction point implicitly as a proxy for TSR effectiveness in the future.
We are the first to explicitly evaluate these metrics to predict the quality of a reduced test suite for
future failed builds.

In this dissertation, we evaluate (1) the FBDL of TSR in real-world software evolution and
(2) the power of various TSR metrics to predict the FBDL of TSR. An increasing number of open-
source projects on GitHub [28], the most popular hosting platform for open-source projects [43,
52, 54, 55], utilize Travis CI [23] to run tests. The usage of Travis CI [101] allows us to create
a dataset of historical build logs with test failures [51], similar to what some companies might
have [65, 168]. We analyze 1,478 failed builds (from a total of 27,461 builds) from Travis CI
for 32 GitHub projects that are written in Java and built using Maven [35]. The results show that
FBDL is quite high, up to 52.2%, using the most “pessimistic” mapping of failures to faults from
FFMap. Moreover, we find that the traditional metrics used to evaluate TSR are not good predictors
of FBDL; the low correlation between these metrics and FBDL suggests that a developer cannot
trust these metrics to predict FBDL. We propose a new predictor, historical FBDL computed on
historical failed build logs to predict the FBDL of future failed builds. While the historical FBDL
is a better predictor than the other predictors are, it is still not a good predictor.

In summary, our results confirm important concerns about TSR [151, 152, 183]. Developers

5

need to exercise great caution when deciding to use TSR, because the FBDL of reduced test suites
can be high, and the available predictors of FBDL are not very effective. While our proposed his-
torical FBDL predictor performs better than the others do, it is still not highly reliable. Researchers

considering TSR need to develop (1) TSR techniques that have lower FBDL, (2) TSR techniques
that result in reduced test suites that are more predictable, and/or (3) new predictors that can more
reliably predict the FBDL of the reduced test suites in future builds.

1.3 OPTIMIZING TEST PLACEMENT

Given that traditional TSR transforms the test suite (by removing tests) in an unsafe manner
that can potentially miss to detect faults in future builds, we explore a means to transform the test
suite through better placement of tests. In particular, we take advantage of existing infrastructure
developers are already using as part of the development process. Large-scale software develop-
ment projects use build systems to manage the process of building source code, applying static
analyzers, and executing tests as part of their CI process. Major companies, such as Facebook,
Google, and Microsoft, have made huge investments in developing efficient, incremental, parallel,
and distributed build systems, such as Buck [36], Bazel [9], and CloudBuild [67], respectively.
These build systems treat a software project as a group of inter-dependent modules and inherently
perform (safe) regression test selection [74, 150, 183] at the module level. Given a change, they
can use the build dependency graph to identify test modules (modules with only test code) that are
affected by the change and run only tests in those modules.

Despite the increasing sophistication of build systems, large software projects with many mod-
ules often have dependency graphs that make module-level test selection less efficient by executing
tests that are not affected by a change. This dissertation highlights a source of inefficiency in the
form of wasteful test executions due to test placement in test modules that have more dependencies
than the tests actually need. Therefore, tests that are not affected by a change often are executed
due to changes in the developer-specified dependencies of the module that contains the tests, even
though such changes cannot alter the behavior of these tests. From our experience with Cloud-
Build, the build system in use at Microsoft, the common reasons for such suboptimal placement of
tests include a lack of comprehensive knowledge of all test modules in the project and developers
making large refactorings to the code base. The goal of our work is to provide a practical solution
to reduce the number of wasteful test executions under the constraints imposed by the underlying
build systems.

In this dissertation, we focus on reducing wasteful test executions due to suboptimal placement
of tests within test modules. An ideal placement of tests to avoid wasteful test executions is to

6

place each test in a test module that shares exactly the same set of dependencies that are exercised
by the test during its execution. This placement ensures that only relevant tests are executed for a
given change. However, in large projects, moving thousands of tests to achieve the ideal placement
requires huge effort. Given that developers are always under pressure to meet customer require-
ments, they often have limited time to perform these activities. Therefore, it is not practical to
invest huge one-time effort to achieve the ideal placement. Furthermore, introducing a large num-
ber of modules can significantly increase the time to build all modules in the project. Our technique
addresses these issues by suggesting movements that reduce the number of test executions while
minimizing the number of suggestions to give to developers.

Our technique, called TestOptimizer, accepts the following inputs: dependency graph, actual
dependencies for tests, and number of times modules have been built over a given range of time.
TestOptimizer formulates the problem as a decision problem, asking if there is a way to split
test modules to reduce the overall number of wasteful test executions. TestOptimizer also uses
a heuristic, called affinity, which is the set of dependencies the tests in a test module should be
testing. Affinity helps determine the tests that need not be moved, i.e., tests that execute the
affinity of its test module are not amenable to movement. TestOptimizer uses a greedy algorithm
to iteratively suggest test movements that lead to reductions in the number of test executions.
These suggestions involve moving tests into a newly created test module or to an existing test
module that shares the exact same dependencies as the tests. Furthermore, TestOptimizer suggests
the test movements ranked in the order of highest reduction in the number of test executions first.
We envision that developers can use TestOptimizer once to get the correct placement of all tests.
After developers implement the suggestions, they can run TestOptimizer on only added tests.

We implement TestOptimizer in a tool on top of CloudBuild. To evaluate TestOptimizer, we
apply it on five large proprietary projects in Microsoft. Our results show that the suggested move-
ments can result in a reduction of 21.7 million test executions (17.1%) across all our evaluation
projects. We received positive feedback from the developers of these projects at Microsoft, who
also accepted and intend to implement 84.4% of our suggestions.

1.4 AUTOMATICALLY FIXING ORDER-DEPENDENT FLAKY TESTS

An important kind of flaky tests are order-dependent tests, which pass or fail based solely on
the order of the sequence in which the tests run [118, 190]. Each order-dependent test has at least
one test order (a sequence of tests in the test suite) where the order-dependent test passes, and at
least one other different test order where the order-dependent test fails; if the two test orders do
not differ, the test is not flaky solely due to the ordering. Prior work [128] showed that order-

7

dependent tests are among the top three most common kinds of flaky tests. As an example, a
widely reported case happened when Java projects updated from Java 6 to Java 7. Java 7 changed
the implementation of reflection, which JUnit uses to determine the test order in which to run
tests. Many tests failed due to the tests being run in a different test order from before, requiring
developers to manually fix their test suites [1, 3, 114]. Prior work developed automated techniques
for detecting order-dependent tests in test suites [69, 118, 190]. We recently released a dataset of
flaky tests, where about half are order-dependent [29, 118].

In this dissertation, we describe a framework, iFixFlakies, which can automatically fix many
order-dependent tests. The key insight is that test suites often (but not always) already have tests,
which we call helpers, whose logic (re)sets the state required for order-dependent tests to pass.
We first identify that an order-dependent test can be classified into one of two types based on the
result of running the test in isolation from the other tests. One type is a victim, an order-dependent
test that passes when run in isolation but fails when run with some other tests. The other type is
a brittle1, an order-dependent test that fails when run in isolation but passes when run with some
other test(s).

Given these types of order-dependent tests, our insight for iFixFlakies is that running some
helper(s) directly before victims and brittles makes these order-dependent tests pass. Therefore,
we can use the code from these helpers to fix order-dependent tests so that they pass even if helpers
are not run (directly) before the order-dependent tests. iFixFlakies searches for helpers and, when
it can find them, uses them to automatically recommend patches for order-dependent tests. As
inputs, iFixFlakies takes an order-dependent test, a test order where the test passes, and a test
order where the test fails. iFixFlakies outputs a patch that can be applied to the order-dependent
test to make it pass even when run in the test order where it was failing before. The code in
the patch comes from a helper. Although simply using all the code from the helper can create
a patch to make the order-dependent test pass, such a patch would be complex and undesirable,
because helpers typically contain many statements irrelevant to why the tests are order-dependent.
iFixFlakies produces effective patches by applying delta debugging [184] on the helpers to produce
the minimal patch for order-dependent tests.

We evaluate iFixFlakies on all 137 truly order-dependent tests from a public dataset [118] that
includes the order-dependent tests and their corresponding passing and failing test orders2. We find
that 120 tests are victims and 17 are brittles. We also find that 81 of these 137 order-dependent tests
have helpers, allowing iFixFlakies to propose patches for all 81 of these tests (64 victims and 17
brittles). These patches have, on average, only 30.2% of the statements of the original helper, and

1The word “brittle” is commonly used as an adjective but can also be used as a noun.
2This dissertation describes results for additional order-dependent tests not described in our original paper on

iFixFlakies [162].

8

65.1% of these patches consist of only one statement. The overall time that iFixFlakies takes to
find the first helper and to produce a patch using that helper is only 207 seconds on average. When
an order-dependent test has no helper, iFixFlakies takes 325 seconds on average to determine that
it cannot produce a patch. These timing results show that iFixFlakies is efficient.

We opened GitHub pull requests for 78 order-dependent tests with helpers (3 of 81 had been
already fixed in the latest version of the code). While all patches generated by iFixFlakies seman-
tically fixed the flaky test, not all patches were syntactically the most appropriate, e.g., matched
the formatting style for the project. For 33 tests, we created the pull requests using exactly the
patch recommended by iFixFlakies, while the remaining 45 involved some manual changes, mostly
refactorings to make the code more similar to the style of the project. Developers accepted our pull
requests fixing 38 order-dependent tests; the pull requests for the remaining 40 order-dependent
tests are still under consideration, but none have been rejected so far. We describe the pull requests
in more detail on our website [30].

1.5 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows:

Chapter 2: Evaluating Test-Suite Reduction

This chapter presents our work on evaluating traditional test-suite reduction tech-
niques on real-world, open-source projects with real software evolution and test fail-
ures [160].

Chapter 3: Optimizing Test Placement

This chapter presents our technique TestOptimizer, which suggests test placements for
reducing the number of test executions in module-level regression testing [163].

Chapter 4: Automatically Fixing Order-Dependent Flaky Tests

This chapter presents our technique iFixFlakies, which automatically proposes fixes
for order-dependent flaky tests, such that these tests do not fail regardless of the order
in which the tests are run [162].

Chapter 5: Related Work

This chapter presents an overview of other research related to the topics presented in
this dissertation.

9

Chapter 6: Conclusions and Future Work

This chapter concludes the dissertation and describes future work that can extend the
work presented already in this dissertation.

10

CHAPTER 2: EVALUATING TEST-SUITE REDUCTION

This chapter presents our evaluation of test-suite reduction (TSR) during real software evolution
using real test failures. Section 2.1 provides some background on TSR. Section 2.2 shows an
illustrative example of how we evaluate TSR given real software evolution. Section 2.3 presents
the new metric that we introduce for evaluating the effectiveness of TSR. Section 2.4 describes the
methodology for our evaluation. Section 2.5 presents the results. Section 2.6 presents threats to
validity. Finally, Section 2.7 concludes and summarizes the chapter.

2.1 BACKGROUND

We first describe traditional TSR and commonly used TSR algorithms. The goal of TSR is to
take an existing original test suite (a set of tests that developers run on their code under test) and
create an ideally smaller, reduced test suite from that original test suite.

Definition 2.1. Traditionally [183], a TSR algorithm Algo takes two inputs: (1) a function ρ that
returns the set of satisfied test-requirements for a given test suite and (2) the original test suite O
to be reduced. It returns a reduced test suite R ⊆ O that satisfies the same test-requirements as
the original test suite:

Algo(ρ,O) = R, such thatR ⊆ O ∧ ρ(O) = ρ(R) (2.1)

2.1.1 Test-requirements

Code coverage is widely used for measuring the quality of test suites. As such, tests may be
considered redundant w.r.t. the coverage each test achieves, e.g., two tests that cover the same
statements can be considered redundant w.r.t. statement coverage. We use TSR criterion to refer
to the type of test-requirements used to guide TSR in creating the reduced test suite, i.e., what
the function ρ is. In the remaining text, we use the term TSR technique to refer to an algorithm
instantiated with a specific TSR criterion.

Previous research on TSR has often used statement coverage as the TSR criterion [53, 60, 61, 86,
188], Other TSR criteria were also used, e.g., block coverage [176, 177], branch coverage [104,
151], and def-use coverage [92, 104]. For such techniques that use code coverage as the TSR
criterion, we say they use the function cov in place of ρ, where cov returns the set of covered
elements by the test suite. Later in this chapter for our evaluation, we use statement/line coverage
for guiding TSR (i.e., the set of elements returned by cov are lines covered).

11

2.1.2 TSR Algorithms

The most popular traditional TSR algorithms create reduced test suites that satisfy the same
test-requirements as the original test suite, i.e., ρ(O) = ρ(R). We thus call them adequate TSR
algorithms. Some of our prior work has also evaluated inadequate TSR algorithms [158], but in
this dissertation we focus on just the adequate TSR algorithms.

The most widely used algorithms for TSR include Greedy [61, 108], GRE [61], and HGS [92];
their details are available elsewhere, e.g., in the regression-testing survey [183]. Conceptually,
they all work by starting with an empty test suite and iteratively adding tests from the original test
suite until all test-requirements are satisfied, resulting in the reduced test suite.

2.1.3 Evaluating TSR Algorithms

Studies [53, 86, 104, 109, 125, 151, 152, 176, 177, 188] that evaluated TSR algorithms used
mainly two metrics—size of the reduced test-suite relative to original test suite and loss in fault-

detection capability—to measure the quality of the reduced test suites on the one software version

on which the reduction is performed, which we call the reduction point. For both these metrics,
the smaller the better. The size reduction is measured as the ratio of tests kept in the reduced test
suite from the original test suite over the number of tests in the original test suite:

SizeKept = |R|/|O| × 100% (2.2)

The loss in fault-detection capability is measured as the ratio of the number of faults missed by
the reduced test suite over the number of faults detected by the original test suite. However,
due to the challenges in collecting a large number of known real faults per project, researchers
most commonly evaluate through a proxy of faults, typically by some other test-requirements that
approximate fault-detection capability (but not the TSR criterion used to create the reduced test
suite, as that would by definition lead to no loss).

ReqLoss = (|ρ′(O)| − |ρ′(R)|)/|ρ′(O)| × 100% (2.3)

where ρ′ is a function that returns the set of satisfied test-requirements different from the TSR
criterion used to create the reduced test suiteR.

As prior studies on TSR would commonly use code coverage as the TSR criterion, they would
in turn evaluate ReqLoss based on mutants from mutation testing. Mutation testing [46, 62, 85,
86, 89, 105, 187, 188, 189] systematically inserts syntactic changes, called mutants, in code and
measures how many of these mutants are killed by a given test suite; a mutant is considered killed

12

if at least one of the tests fails (and the same test passes in the non-mutated run). The quality
of a test suite is measured as the ratio of the number of killed mutants over the total number of
systematically inserted mutants; this ratio is called the mutation score. Previous research on TSR
measured the effectiveness of TSR algorithms by comparing the mutation score of the reduced test
suite to the mutation score of the original test suite [86, 188], i.e., use function mut that returns set
of mutants killed by the test suite in place of ρ′ in the equation for ReqLoss. When ReqLoss uses
mut, we call it MutLoss.

Interestingly, previous studies on TSR reported conflicting findings in terms of the loss of fault-
detection capability measured through loss in mutants killed: reduced test suites sometimes had
low loss [158, 176, 177, 188] and sometimes had high loss [86, 104, 125, 151, 152].

Note that mutants can also be used as the TSR criterion to create the reduced test suite [158]. If
so, then the reduced test suite cannot be evaluated using mutants again, but another test-requirement
must be used. For mutant-based TSR, we can then use code coverage to measure any loss in fault-
detection capability, i.e., use function cov as ρ′ for computing ReqLoss. When ReqLoss uses cov,
we call it CovLoss.

2.2 EXAMPLE

We present one example that illustrates how developers would apply TSR in their project and
how to evaluate the effectiveness of the reduced test suite. Consider the caelum/vraptor4 GitHub
project, “A web MVC action-based framework [. . .] for fast and maintainable Java develop-
ment” [25]. This project uses Travis CI, a cloud-based continuous-integration platform, to build
and run tests for every push [25]. Through our large-scale study, we identify 1,939 build logs
for this project from Travis CI, and 124 of those are failed builds. Intuitively, when developers
of caelum/vraptor4 consider whether to apply TSR, they would need to consider the trade-off
between the benefit of removing some number of tests and the cost of missing future faults due to
removing the tests.

Assume the developer chooses the commit b2437ab1 [6] as the reduction point for performing
TSR. At this reduction point, the original test suite had 753 test units1. Coverage-based TSR (we
also evaluate mutant-based TSR) using the Greedy algorithm [61, 108] (we also evaluate three
more algorithms) finds that 419 of those test units are redundant and can be removed, so only 334
are kept in the reduced test suite, giving a SizeKept of 44.4%.

Given a reduced test suite and its corresponding original test suite, we categorize each failed
test unit in a future failed build based on its presence or not in the reduced test suite. The failed

1The term test unit refers to either a test method or a test class; we discuss later how the PIT tool that we use to
collect test coverage and mutation results produces information at the level of test methods or classes.

13

1 request.setParameter(name, URLDecoder.decode(m.group(i),
2- "UTF-8"));
3+ encodingHandler.getEncoding()));

Figure 2.1: Relevant part of a commit that failed a build

test can be removed from the reduced test suite, kept in the reduced test suite, or a new test that
was added between the reduction point and the failed build (not in the corresponding original test
suite). Failed tests that were removed can lead to missed faults. For example, the failed build
for the commit f810dd0d has only one failed test unit, but this failed test unit would have been
removed had TSR been applied on the earlier commit b2437ab1, and thus the build would have not
failed; in this case, using TSR would have definitely lead to a miss-build, because the developer
would not see any failure that indicates a fault. As another example, the failed build for the commit
10668287 has five failed test units, but all five failed test units would have been kept had TSR been
applied, and thus the build not only would have still failed but also would have reported the same
failed test units as when the original test suite had been run; in this case, using TSR would have
definitely revealed the fault(s).

In general, however, checking whether the failures from a reduced test suite miss a fault in a
failed build is challenging because failed builds can have a mix of failed test units that are removed
or kept. For example, the build number 303 [7] for the commit 021d10b7 [4] has nine failed test
units, one kept and eight removed by TSR. Because one of the failed test units would have been
kept, this build would have failed even if TSR had been applied. While it is positive that the build
would have failed, it can be negative that the build would have had only one failed test unit rather
than nine. In general, two or more dynamic test failures may map to either one, same static fault in
the code, or they may map to several different faults. Ideally, we would like to determine whether
the developers applying TSR and seeing only a subset of failures would still be able to find all

the faults. However, it is rather challenging to determine whether multiple test failures map to the
same fault: given only a subset of failures, the developers may fix the code such that the other
failures get fixed anyhow, or the developers may fix only the given failures while the others would
still remain as failures (with the developers applying TSR unaware of that).

In this particular example, our manual inspection shows that all nine failures are actually due to
the same fault. Figure 2.1 shows the relevant part of commit 021d10b7 [4] that failed the build [7].
The code had some encoding hard-coded to UTF-8, and the commit 021d10b7 [4] changed the
code to get the encoding from the web.xml configuration file. This change broke all nine test units
with a NullPointerException; had the developers seen any of the nine failures, they would have
likely fixed their code to correct all failures. In fact, all nine test units stopped failing after just a

14

one-line change [5].
Manual inspection of failures is extremely costly and error-prone, so we use automated heuris-

tics to categorize failed builds based on how likely developers would have fixed the code even
without seeing the failures from the removed test units. We propose FFMap, a family of mappings
from test failures to faults, based on the proximity of removed and kept failed tests. We describe
these mappings in more detail in Section 2.3. For example, one of the mappings maps test failures
in the same test class to the same fault. In our example, all nine test methods are from the same
test class, DefaultParametersControlTest, and indeed fail due to the same fault. With such a
mapping, we say that using TSR would not miss any fault for that failed build.

2.3 FAILED-BUILD DETECTION LOSS (FBDL)

We describe how we measure Failed-Build Detection Loss (FBDL) for a reduced test suite.
Given a reduced test suite from some reduction point, the goal is to find the percentage of future
failed builds where the reduced test suite does not detect all the faults that the original test suite
would detect; the reduced test suite cannot detect more faults than the original test suite detects,
and we do not assume that the original test suite detects all faults in the code. We call a failed build
a miss-build if the reduced test suite does not detect all the faults the original test suite detects. If
F is the set of all future failed builds after a reduction point, and Fr is the subset of F where the
reduced test suite detects all the faults that the original test suite detects, then we define FBDL as:

FBDL = (|F | − |Fr|)/|F | ∗ 100. (2.4)

Similar to the other TSR metrics (Section 2.1.3), the smaller the FBDL, the better.
Given a reduced test suite, we want to find which of the future failed builds are in Fr, using test

failures from historical build logs. Wong et al. [176] and Rothermel et al. [151] defined a similar
metric, but their experiments constructed faulty versions of the program, each seeded with one
fault. The set of all such faulty versions is the set F , and having one fault per version makes it easy
to map test failures to the faults (all test failures map to the same fault). However, in real-world
evolution, a program version can have multiple faults, and mapping test failures to faults is much
harder, which in turn makes defining Fr harder as well.

2.3.1 Failure-to-Fault Map

We develop a family of mappings from test failures to faults, called Failure-to-Fault Map

(FFMap). The different mappings are based on heuristics for how likely certain groupings of

15

failed tests are due to the same fault. Our heuristics are based on the groupings of tests defined by
developers. The first mapping, FFMapS , is the most “optimistic” and maps every test failure to the
same fault, so any test failure detects all the faults2. This mapping is the same one used in seminal
experiments of TSR [151, 176]. The second mapping, FFMapP , maps failed tests from the same
(Java) package to the same fault(s). The third mapping, FFMapC , maps failed tests from the same
class to the same fault(s). The final mapping, FFMapU , is the most “pessimistic” mapping and
maps each test failure to its own unique fault, so all test failures are needed to detect all faults.
Rothermel et al. [151] also mention potentially using this latter mapping for TSR evaluations, but
they ultimately did not use it as their experiments are such that there was one seeded fault per
program version, so using FFMapS made more sense.

2.3.2 Classifying Failed Builds

Using the different FFMap mappings, we define which failed builds are considered a miss-build.
Given a reduced test suite from some reduction point, we find every failed build after that point,
classify its failed tests, and finally classify the entire failed build based on its failed tests. We
assume that whenever the original test suite passed, then the reduced test suite would have also
passed. This assumption can break due to test-order dependencies [49, 179] or other causes of
flakiness [128, 134], but it does hold in a majority of cases [179].

With respect to a reduced test suite (and its corresponding original test suite) from an early,
passed commit, we give a classification for each failed test from a future failed build had the
developer used with the reduced test suite. Each failed test is classified as: (1) REMOVED: the test
existed in the original test suite on which TSR was performed but the test was removed and was not
in the reduced test suite—this test would have not failed if using the reduced test suite; (2) KEPT:
the test existed in the original test suite on which TSR was performed and the test was kept in the
reduced test suite—this test would have still failed if using the reduced test suite; (3) NEW: the
test did not exist in the original test suite and is newly added between the reduction point and the
failed build—this test could have influenced the reduced test suite (e.g., a re-reduction could have
been performed if there are many new tests), but the simplest assumption is to consider that the
new tests would just be added to the reduced test suite. We assume the test suite evolves by adding
all new tests into the reduced test suite, and we consider such new test failures.

Based on the classification of failed tests in a failed build, we classify the failed build into
one of the six classifications: DEFMISS, LIKELYMISS, SAMEPACKAGE, SAMECLASS, HIT, and
NEWONLY (listed in order of “badness”). Table 2.1 shows how we classify entire builds based on

2When a failed build is due to only one fault, as evaluated in prior TSR studies that used one seeded fault per
version, FFMapS is the correct mapping, but in real evolution a failed build may be due to multiple regression faults.

16

Table 2.1: Build classification based on failed tests

Failed Tests
Build

DEFMISS In-between HIT NEWONLY

#REMOVED >0 >0 0 0
#KEPT 0 >0 0 >0 >0 0
#NEW 0 0 >0 >0 0 >0 >0

the number of REMOVED, KEPT, and NEW test units. We present the build classifications in the
order that is the easiest to understand.

DEFMISS Builds. A DEFMISS build is one in which the reduced test suite definitely cannot
detect all the fault(s) that the original test suite would detect, no matter what FFMap mapping is
used. We classify a build as DEFMISS if all of the failed tests are REMOVED, i.e., the only tests
that fail are tests that would have been removed from the reduced test suite, so the build would
have not even failed if using the reduced test suite.

HIT Builds. In contrast to a DEFMISS build where the reduced test suite fails to detect any
fault, a HIT build is one where the reduced test suite detects all the faults that the original test
suite would detect, no matter what FFMap mapping is used. We classify a build as HIT if none of
the failed tests are classified as REMOVED and at least one failed test is classified as KEPT. The
number of NEW tests does not matter.

NEWONLY Builds. We classify a build as NEWONLY if all the failed tests are classified as
NEW. In these builds, neither the reduced test suite nor the original test suite detect any fault. If
the reduced test suite is modified such that all new tests are added into the reduced test suite, a
NEWONLY build would not be a miss-build.

“In Between” Builds. When a build has a mix of REMOVED and KEPT/NEW tests, it is less
clear if the failed build is a miss-build or not. While the reduced test suite would have failed on
the build (because at least one failed test is included in the reduced test suite), at least one failed
test would have been removed, so we cannot easily establish whether the reduced test suite would
have detected all the faults. These builds can be miss-builds based on which FFMap mapping is
used. We classify such builds into three separate (sub)classifications. A build is SAMECLASS if
each REMOVED test is from the same class as some KEPT/NEW test. The intuition is that failed
tests from the same class likely detect the same fault (as illustrated in Section 2.2). A build is
SAMEPACKAGE if it is not SAMECLASS but each REMOVED test is from the same package as
some KEPT/NEW test. The reasoning is similar as for SAMECLASS. All remaining builds are
LIKELYMISS, i.e., at least one failed REMOVED test does not share the same package (thus not
the same class) as any KEPT/NEW test. Because the REMOVED tests are rather different from all

17

KEPT/NEW tests, it is unlikely (though not impossible) that they failed due to the same fault(s).

2.3.3 Computing FBDL

With the failed builds classified, we compute which of those failed builds are miss-builds based
on the FFMap mapping used. FBDL values for mappings FFMapS , FFMapP , FFMapC , and
FFMapU are called FBDLS , FBDLP , FBDLC , and FBDLU , respectively.

For FBDLS , a miss-build is only a failed build classified as DEFMISS, because the reduced test
suite does not contain any of the failed tests in that build. For FBDLP , a miss-build is a failed
build classified as DEFMISS or LIKELYMISS, because the reduced test suite removed failed tests
from different packages. For FBDLC , a miss-build is a failed build classified as DEFMISS, LIKE-
LYMISS, or SAMEPACKAGE, because the reduced test suite removed failed tests from different
classes. Finally, for FBDLU , a miss-build is a failed build classified as DEFMISS, LIKELYMISS,
SAMEPACKAGE, or SAMECLASS (i.e., only failed builds classified as HIT or NEWONLY are not
miss-builds), because at least one failed test is in the reduced test suite.

2.4 METHODOLOGY

For our evaluation of TSR, we need to obtain a dataset of projects, passed builds where we can
apply TSR, and failed builds that we can use to compute the FBDL of the reduced test suites. We
then evaluate if there are good predictors of FBDL. We model our experimental setup for evaluating
TSR in a manner that simulates the approach by which developers could use TSR (Section 2.2).

2.4.1 Projects and Failures

To determine what projects to use for our experimental evaluation, we start with the dataset
provided by TravisTorrent [51]. This dataset includes a large number of build logs harvested from
Travis CI for a variety of projects from GitHub. We filter the TravisTorrent dataset to obtain a
set of Java projects that use Maven. We focus on projects that use Maven because we rely on the
PIT mutation testing tool [19] (Section 2.4.3) to obtain code coverage and mutation results. As
in previous research for coverage-based TSR, we use mutants to measure the loss of reduced test
suites as a part of our evaluation. We also use mutants as a different test-requirement for mutant-
based TSR. We choose to use PIT because it is robust and increasingly used in research [57, 77,
79, 126, 157, 158, 164].

We aim to analyze projects with a non-trivial number of failed builds, because we want a repre-
sentative sample of failed builds per project. A small number of failed builds would lead to only

18

a few possible values for FBDL (e.g., if a project has only one failed build, then the FBDL is ei-
ther 0% or 100%). We find projects that have over 20 failed builds that Travis CI marks as either
“failed” or “errored” (because both kinds can have failed tests) and at least one passed build. We
consider only the builds that are either a pull request for the master branch or a direct push into
that branch. We focused on the master branch because (1) missing failures on it is the most prob-
lematic for the project, (2) the master branch has a linear history, so we can precisely determine
whether a reduced test suite from some reduction point could have been propagated to a build at
another point, and (3) the master branch is more likely to have commits available for reproducing
runs. We obtain 144 projects that satisfy these requirements.

2.4.2 Reduction Points

We attempt to rerun old builds, going back to commits from 2013. While we need not rerun the
failed builds (because TSR can be evaluated from failed tests, which can be determined from logs
as described in Section 2.4.4), we do need to rerun some passed builds to collect code coverage and
killed mutants, which are not available from the Travis CI logs, to perform TSR and evaluate test-
requirements loss. However, reproducing old builds (even just compiling the code) is challenging

for many reasons (e.g., changing Java version, missing dependencies, different environment). We
create a Docker [14] image similar to the one used by Travis CI [24]. (Travis CI does not make
public their actual Docker image.) We aim for multiple reduction points for each project so we
can study (1) the effects of newly added tests on the results and (2) whether the distance from the
reduction point to the failed build affects the FBDL.

We first try to reproduce a very early passed build for each project. Specifically, for each of the
initially selected 144 projects, we find from the TravisTorrent dataset the earliest 10 passed builds
whose commits could still be checked out from the GitHub repository. We check out these com-
mits and try to reproduce the passed build by building the project in our Docker image using the
commands specified in the project’s .travis.yml file (e.g., mvn install -DskipTests followed
by mvn test). We use the earliest passed build of those 10 builds as a candidate point for TSR. If
none of those 10 builds pass, we exclude that project. We are left with 51 projects.

For each of these 51 projects, we further search for more commits on which we can reproduce
passed builds to use as candidate points for TSR. Travis CI has many passed builds for each project.
Ideally, we would evaluate TSR using all the passed builds, but given limited time and resources,
we do not try them all. We search for the builds that ran right before a failed build. Selecting these
builds as reduction points and then evaluating FBDL on all the failed builds after each point gives
us (1) a diverse range of commit distances from the reduction point to the failed build and (2) a
diverse number of newly added tests. Specifically, for each failed build, we take up to 3 passed

19

builds (whose commits can be checked out) right before that failed build. Each reproducible passed
build provides a candidate point.

We aim to analyze TSR for test suites with a non-trivial number of tests. We use 10 test meth-
ods (as reported by Surefire) as the threshold. We exclude the reduction points with fewer tests,
obtaining 875 candidate reduction points for 51 projects.

2.4.3 Test-Suite Reduction

For each commit that is a candidate reduction point, we attempt to perform TSR. We use
PIT [19] to obtain coverage matrices that map individual tests to lines they cover. PIT most often
reports this mapping from test methods to lines covered, but in some cases (e.g., when a test class
has a @BeforeClass annotation), PIT can only map the test classes to lines covered (e.g., for the
test class GraphHopperServletIT in graphhopper/graphhopper). We can detect when PIT re-
ports coverage for a test class because it repeats the fully-qualified name for the test class in place
of the test method. In the rest of this chapter, when we refer to a test unit in a test suite, we mean
either the test method or the test class that PIT reports as test units. For each project, we count the
number of these test units reported by PIT.

For some commits, PIT fails to collect coverage, either crashing altogether or having some test
fail while collecting coverage even though it passed without collecting coverage (e.g., the test may
be flaky [128, 134]). We filter such commits from further analysis. Moreover, if PIT reports fewer
than 10 test units in the original test suite for some commit, we filter out those commits, again
because we need commits with sufficient number of test units such that performing TSR on that
commit makes sense.

For the remaining commits, we first perform coverage-based TSR. We implement four different
TSR algorithms: Greedy, GE, GRE, and HGS (Section 2.1.2). We apply each algorithm with the
line-coverage information on each reduction point to create coverage-based reduced test suites.
We exclude any reduced test suite that is the same as the original test suite, as they would behave
the same. If we end up excluding all reduction points for a project, then we remove the project.
We obtain 32 projects with 321 reduction points.

We also use PIT to collect what tests kill which mutants. We used all 16 mutation operators
available in PIT, including the experimental ones [18]. Because mutation testing can be expensive,
we limit PIT to run mutation testing up to 12 hours per reduction point. PIT times out or crashes
on 95 reduction points, and we exclude them from any further analysis that involves mutants,
which can result in excluding even entire projects from some analyses. We compute MutLoss at
the reduction point (Section 2.1.3). Moreover, we apply mutant-based TSR [140, 158] to construct
reduced test suites that kill all mutants as the original test suites. We perform mutant-based TSR

20

also using the same four TSR algorithms. For test suites reduced using mutant-based TSR, we
measure CovLoss at the reduction point.

2.4.4 Extracting Failed Tests

We do not collect test failures by rerunning failed builds because rerunning old builds is chal-
lenging, as mentioned for passed builds. From the logs of failed builds, we need to extract the
names of the failed tests. For each build, the TravisTorrent dataset already provides the names of
some failed tests extracted from the build logs. However, our sampling finds that the test names in
TravisTorrent were often not properly extracted; the names only included the test method names
but not the (fully qualified) test class names, and some failed tests were omitted altogether. We
patch the TravisTorrent analyzer for finding failed tests to extract the fully qualified test names
more correctly. This extraction requires the complete textual logs for each build, and we harvest
these build logs ourselves from Travis CI. We harvest all the logs since the first build of each
project on Travis CI up until April 1, 2017. Sometimes the build failed such that no failed test is
reported in the log, e.g., the build failed in the compilation phase. For our further analysis, we only
consider the failed builds where the failed test names are in the log. As a result, the analysis for
some projects includes fewer than 20 failed builds.

A seemingly trivial but actually tricky aspect when extracting failed test names for use in classi-
fying failed builds is to match the names of test units from the reduction point and the failed build.
PIT provides test units that are sometimes test methods and sometimes test classes. Likewise, the
reported failed tests from the Travis CI build logs are sometimes test methods and sometimes test
classes. Our matching is as follows. If the failed test unit is a test method, then it matches either the
exact same name or the test class of the test method in the original test suite. If the failed test unit
is a test class, then it matches either the exact same name or any test method from the same class
in the original test suite. If the matching finds the name, the test is REMOVED or KEPT; otherwise,
it is NEW. We do not consider test renames as they are not frequent in test evolution [144], and
method renames are hard to track in general [145, 167]. Note that when a failed test in a future
build has the same name as a test at the reduction point, the developer may have actually modified
the test body between the reduction point and the failed build.

2.4.5 Predicting FBDL

We want to evaluate the predictive power of traditional TSR metrics that can be generated at
the reduction point (Section 2.1.3). We utilize a linear regression model to see if there is a linear
correlation between the predictor and FBDL. The linear regression model outputs an R2 value,

21

Table 2.2: Statistics about our evaluation projects; µ± σ values are across all algorithms (Greedy,
GE, GRE, HGS)

ID Project slug #Builds Avg #Failed #Red. Orig. Coverage-Based Mutant-Based
Total Failed Test Units Points Size SizeKept MutLoss SizeKept CovLoss

P1 addthis/stream-lib 184 11 1.5 8 106.6 48.1%± 1.6% 3.1%± 0.3% 61.9%± 1.0% 0.3%± 0.0%
P2 azagniotov/stubby4j 886 13 3.0 9 50.1 45.2%± 3.2% 2.8%± 1.3% 49.2%± 2.7% 2.5%± 2.4%
P3 caelum/vraptor4 1,939 124 4.4 7 770.6 44.1%± 0.4% 6.5%± 0.8% 51.1%± 1.0% 7.1%± 2.1%
P4 dynjs/dynjs 383 18 264.0 10 798.3 34.6%± 0.8% t/o t/o t/o
P5 FasterXML/jackson-core 580 23 2.3 20 274.4 67.5%± 3.1% 1.8%± 0.3% 76.9%± 2.3% 0.3%± 0.1%
P6 google/auto 595 33 2.8 3 27.3 65.3%± 2.1% 0.6%± 0.4% 63.2%± 5.1% 8.2%± 5.5%
P7 google/truth 419 34 10.4 3 222.7 53.3%± 3.1% 3.3%± 0.6% 57.0%± 3.3% 1.6%± 1.8%
P8 graphhopper/graphhopper 2,269 117 18.3 33 686.0 23.7%± 1.7% t/o t/o t/o
P9 HubSpot/jinjava 398 6 1.7 16 307.1 41.2%± 0.5% 4.9%± 1.1% 53.4%± 0.7% 1.0%± 1.0%
P10 iluwatar/java-desig... [13] 1,537 16 2.2 1 52.0 96.2%± 0.0% 0.8%± 0.0% 96.2%± 0.0% 0.9%± 0.0%
P11 jOOQ/jOOQ 1,993 88 5.8 34 29.2 69.0%± 2.4% 0.0%± 0.0% 69.1%± 2.5% 0.0%± 0.0%
P12 jsonld-java/jsonld-... [15] 290 17 2.1 3 45.7 21.4%± 7.9% t/o t/o t/o
P13 kongchen/swagger-ma... [22] 511 87 3.0 2 22.0 31.8%± 0.0% 3.0%± 0.3% 47.7%± 2.4% 0.0%± 0.0%
P14 ktoso/maven-git-com... [16] 349 34 7.5 8 39.0 42.7%± 4.3% 4.2%± 1.3% 49.9%± 5.3% 6.6%± 1.7%
P15 larsga/Duke 146 15 2.6 8 640.4 34.1%± 1.2% 6.9%± 0.5% 48.3%± 0.6% 0.4%± 0.1%
P16 lviggiano/owner 582 19 4.8 25 216.7 34.5%± 1.0% 4.5%± 1.0% 38.0%± 1.4% 7.0%± 5.4%
P17 mgodave/barge 184 40 3.1 4 27.5 42.6%± 3.4% 1.7%± 0.2% 55.4%± 2.5% 0.3%± 0.6%
P18 myui/hivemall 671 50 6.9 9 85.2 57.7%± 2.5% t/o t/o t/o
P19 notnoop/java-apns 229 75 8.5 5 99.8 33.5%± 1.0% 6.2%± 2.1% 39.3%± 0.6% 9.8%± 1.8%
P20 nurkiewicz/spring-d... [21] 101 13 53.5 1 34.0 30.9%± 1.7% 1.4%± 1.2% 32.4%± 0.0% 0.0%± 0.0%
P21 perwendel/spark 862 55 11.9 13 16.5 82.1%± 2.5% 0.0%± 0.0% 75.5%± 2.0% 0.3%± 0.1%
P22 rackerlabs/blueflood 2,296 300 4.7 3 121.0 54.8%± 1.0% 4.7%± 0.5% 62.6%± 0.9% 1.0%± 0.4%
P23 redline-smalltalk/r... [20] 228 19 2.4 3 112.3 74.5%± 1.5% 2.9%± 1.7% 76.8%± 4.2% 2.2%± 1.1%
P24 relayrides/pushy 738 30 5.6 4 47.2 66.7%± 2.8% 0.8%± 0.6% 68.6%± 3.9% 0.3%± 0.1%
P25 sanity/quickml 643 52 1.5 14 37.1 63.0%± 6.4% 4.5%± 2.4% 83.3%± 2.2% 2.4%± 1.8%
P26 scobal/seyren 453 21 13.4 3 23.3 41.0%± 5.6% 0.9%± 0.5% 37.5%± 5.5% 3.4%± 1.3%
P27 spotify/cassandra-reaper 382 21 3.7 5 20.8 68.9%± 3.0% 0.7%± 0.5% 77.4%± 3.3% 0.1%± 0.2%
P28 square/dagger 758 13 31.7 7 116.7 38.5%± 2.3% 3.5%± 0.7% 49.3%± 1.9% 1.6%± 0.6%
P29 square/wire 1404 32 11.5 2 73.0 52.5%± 5.4% 1.1%± 0.3% 62.0%± 11.3% 1.4%± 1.6%
P30 tananaev/traccar 2,960 44 2.8 36 131.5 93.7%± 2.5% 0.7%± 0.6% 96.0%± 1.1% 0.2%± 0.2%
P31 twilio/twilio-java 431 13 1.5 6 88.5 73.6%± 4.3% 0.7%± 0.5% 72.7%± 4.3% 1.7%± 1.1%
P32 weld/core 2,060 45 4.8 16 280.6 35.6%± 2.2% t/o t/o t/o

Overall (Sum or Average) 27,461 1,478 504.2 321 175.1 51.9% 2.7% 61.1% 2.2%

ranging from 0 to 1, and we are looking for an R2 value larger than 0.7, showing strong linear
correlation [81]. The p-value then shows statistical significance (the lower the better).

In case the predictor is not linearly correlated with FBDL, we also evaluate using Kendall-τb
rank correlation. Kendall-τb rank correlation does not assume the two are linearly correlated,
and instead measures if the predictor and FBDL both go up or both go down. Kendall-τb rank
correlation outputs a τb value ranging from -1 to 1, where a negative value indicates negative
correlation and a positive value indicates positive correlation. The higher the absolute value, the
better the correlation, and we are again looking for an absolute value greater than 0.7, showing
strong correlation [81]. There is also a p-value for statistical significance.

2.4.6 Summary of Analyzed Projects

Table 2.2 shows a summary of the final 32 evaluation projects: the short ID to be used later,
the GitHub user/repo slug for the evaluation project, the total number of builds, the number of
failed builds, the average number of failed test units per failed build, the number of reduction
points, the average size (i.e., the number of test units) of the test suite at the reduction points,
the SizeKept for coverage-based TSR using four TSR algorithms, the MutLoss of the coverage-

22

based reduced test suites, the SizeKept for mutant-based TSR using four TSR algorithms, and the
CovLoss of the mutant-based reduced test suites. The tabulated mean±std.dev. values are across
all reduction points and all four algorithms. The cells with “t/o” mark the cases where PIT does not
complete mutation testing. The overall summary numbers are: (1) SizeKept, 51.9% and 61.1% for
coverage- and mutant-based TSR, respectively, indicate that almost half of the tests are redundant

with respect to those TSR criteria; and (2) the average MutLoss, 2.7%, shows that, at the reduction
points, coverage-based TSR results in only slightly fewer mutants killed than the original test suite;
likewise, the average CovLoss, 2.2%, shows that mutant-based TSR results in very little coverage
loss compared to the original test suite.

2.5 RESULTS AND ANALYSIS

Our evaluation aims to answer the following research questions:

RQ1 What is the FBDL of TSR in real software evolution?

RQ2 How well can the FBDL of TSR be predicted?

RQ3 How does distance from TSR reduction point affect FBDL?

The goal of RQ1 is to measure the FBDL of TSR, which has not been done before for real-
world software evolution. The goal of RQ2 is to see whether FBDL can be predicted well: if the
FBDL is high but can be predicted, the developer can still make a cost-benefit analysis about using
the reduced test suite. The goal of RQ3 is also related to prediction: if a longer distance from a
reduction point leads to worse FBDL, the developer can make an informed decision to stop using
the reduced test suite.

2.5.1 RQ1: FBDL

Figures 2.2 and 2.3 show FBDLS , FBDLP , FBDLC , and FBDLU for each evaluation project
using coverage-based Greedy TSR and mutant-based HGS TSR, respectively. For each evaluation
project, we compute each metric for each reduction point and then average (using arithmetic mean)
across all reduction points; the Avg bar shows the averages across all evaluation projects. The bars
overlap the metric values for each evaluation project, as FBDL cannot decrease going from FBDLS

to FBDLU . The top, respectively bottom, half of each figure shows FBDL computed including,
respectively excluding, NEWONLY builds.

For example, for P3 (caelum/vraptor4) in Figure 2.2, the FBDL percentages of FBDLS , FBDLP ,
FBDLC , and FBDLU are 1.4%, 1.4%, 1.4%, and 50.5%, respectively. Excluding the NEWONLY

23

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L FBDLS FBDLP FBDLC FBDLU

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

P
2
8

P
2
9

P
3
0

P
3
1

P
3
2

A
v
g

Project ID

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

Figure 2.2: Average FBDL when including (top) and excluding (bottom) NEWONLY (Coverage-
based Greedy)

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

FBDLS FBDLP FBDLC FBDLU

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

P
2
8

P
2
9

P
3
0

P
3
1

P
3
2

A
v
g

Project ID

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

Figure 2.3: Average FBDL when including (top) and excluding (bottom) NEWONLY (Mutant-
based HGS)

builds, the percentages are 2.2%, 2.2%, 2.2%, and 75.2%, respectively. For this case, SizeKept
(average of 44.2% kept; Table 2.2 shows 44.1% average over all four algorithms) may be worth it
as FBDLS , FBDLP , and FBDLC are rather low. However, if the developer believes that each test
failure detects a unique fault, then based on FBDLU , the reduction may not be worth it.

Figure 2.3 shows the breakdown per evaluation project for mutant-based TSR and has no data for
five evaluation projects because PIT could not collect mutation testing results for those evaluation
projects (Section 2.4.3). For the same P3, the percentages of FBDLS , FBDLP , FBDLC , and FBDLU

are 0.5%, 2.0%, 2.6%, and 49.7%, respectively. Excluding NEWONLY, the percentages are 0.7%,
2.9%, 3.8%, and 73.9%, respectively. The developer may reach similar conclusions on whether or
not to use the mutant-based reduced test suite for P3 as with the coverage-based one.

The two figures show the results for only one of four TSR algorithms for each TSR criterion,
coverage- and mutant-based. The distributions are visually similar for the same TSR criterion
for the other three TSR algorithms. Table 2.3 shows the overall averages for each FBDL for all
TSR algorithms, computed excluding NEWONLY builds. This table allows comparing percentages

24

Table 2.3: Averages of FBDL for different TSR techniques

Technique FBDLS FBDLP FBDLC FBDLU

C
ov

Greedy 26.1% 27.4% 28.9% 52.2%
GE 21.3% 22.8% 29.1% 45.2%
GRE 23.6% 24.8% 30.6% 47.2%
HGS 22.6% 23.6% 29.1% 48.5%

M
ut

Greedy 13.1% 14.7% 15.5% 36.2%
GE 10.5% 12.0% 12.8% 34.3%
GRE 12.2% 13.7% 14.8% 36.0%
HGS 12.1% 13.2% 14.3% 35.5%

across the two TSR criteria, as the percentages are averaged across the builds that are in common

between coverage- and mutant-based TSR techniques. (Recall from Section 2.4.3 that PIT fails to
produce mutation testing results for 95 reduction points.)

We use a statistical analysis to compare each pair of algorithms for the same TSR criterion,
e.g., comparing coverage-based Greedy and coverage-based HGS. Because different FBDL are
computed based on the classification of individual failed builds, we focus on comparing those
classifications. Specifically, we use the Student’s paired t-test to compare the ratio of builds clas-
sified in the same category, e.g., DEFMISS. We find that the p-value ranges from 0.12 to 0.99
for coverage-based TSR, and from 0.25 to 0.94 for mutant-based TSR. Such high p-values fail to
reject the null hypothesis that the reduced test suites from any pair of algorithms for the same TSR
criterion are from the same distribution for any failed build classification. While failing to reject
the null hypothesis does not imply accepting it, all four algorithms likely behave the same for the

same TSR criterion.
We further compare the four TSR algorithms by viewing the classification of failed builds as a

multiclass classification [17] and computing the accuracy/overlap of classifications for each pair
of algorithms for each evaluation project. The average overlap across all evaluation projects and
all pairs of algorithms ranges from 0.87 to 0.94 for coverage-based TSR and from 0.95 to 0.98
for mutant-based TSR. Because the overlap of failed builds that are classified the same between
algorithms using the same TSR criterion is so high, we show detailed classification results for
only one representative TSR algorithm, Greedy for coverage (Figure 2.2) and HGS for mutants
(Figure 2.3). The analyses we show later in this chapter are only for those two TSR techniques.

We finally evaluate the correlation between pairs of FBDL variants (for the same TSR technique)
using Kendall-τb rank correlation for each reduced test suite. The correlation among FBDLS ,
FBDLP , and FBDLC is rather high, with τb ranging from 0.69 to 0.98, all with p < 0.0001.
However, FBDLU is not as correlated with the other FBDL values, with τb ranging from 0.29

25

20 40 60 80 100

SizeKept

0

20

40

60

80

100

F
B
D
L
U

Figure 2.4: SizeKept vs. FBDLU (Coverage-based Greedy)

to 0.80, with most less than 0.6, all with p < 0.0001.
A1: In sum, the FBDL cost of TSR is rather high, with a lower bound of 9.5% (based on FBDLS)

and an upper bound of 52.2% (based on FBDLU and excluding NEWONLY builds).

2.5.2 RQ2: Predicting FBDL

We evaluate the predictive power of three metrics that can be measured on the reduced test suite
when it is created: the two traditional metrics as described in Section 2.1.3 and one new metric we
propose based on historical FBDL. To focus evaluation on predicting FBDL due to tests removed

from the original test suite, we exclude NEWONLY builds; their failed tests did not exist at the
reduction point and could not have been removed.

SizeKept Intuitively, the more tests are kept in the reduced test suite, the less likely the reduced
test suite results in a miss-build. We expect a negative correlation between SizeKept and FBDL.

Figure 2.4 shows a scatter plot relating SizeKept and the FBDLU for each coverage-based
Greedy reduced test suite. We show the prediction for FBDLU because SizeKept predicts FBDLU
the best among all four FBDL variants. The plot includes the linear regression line. R2 = 0.45,
with p < 0.0001, suggests a weak linear fit; τb = −0.41, with p < 0.0001, suggests a weak nega-
tive correlation. For the other FBDL variants, R2 ranges from 0.04 to 0.23, all with p < 0.001, and
τb ranges from -0.23 to -0.34, all with p < 0.0001.

Figure 2.5 shows the same kind of plot as Figure 2.4, but for mutant-based HGS reduced test
suites. There are similar trends for mutant-based TSR. For mutant-based HGS reduced test suites,
we see SizeKept predicts FBDLU the best; R2 = 0.26, with p < 0.0001, suggests a weak linear fit;

26

40 50 60 70 80 90 100

SizeKept

0

20

40

60

80

100

F
B
D
L
U

Figure 2.5: SizeKept vs. FBDLU (Mutant-based HGS)

τb = −0.40, with p < 0.0001, suggests a weak negative correlation. For the other FBDL variants,
the R2 values are the same, 0.00, but with very high p-values. The τb values range from -0.10 to
-0.14, all with rather high p-values. Overall, these results show that SizeKept at the reduction point
does not correlate well with future FBDL and cannot well predict FBDL.

We also compare SizeKept and FBDL within individual evaluation projects that have more than
5 reduced test suites (to ensure enough data points to draw any conclusions on correlations). We
check if any evaluation project results in strong correlations, i.e., R2 value or τb value greater than
0.7 [81]. For all coverage-based TSR, only one evaluation project, P18, results in R2 > 0.7, with
p = 0.0030, for predicting both FBDLS and FBDLP . For mutant-based TSR, only one evaluation
project, P5, results in R2 > 0.7, with p = 0.0002, for predicting FBDLS , FBDLP , and FBDLC . For
τb values, no evaluation project results in an absolute value greater than 0.7, for either coverage-
or mutant-based TSR. Even per evaluation project, SizeKept and FBDL do not strongly correlate.

ReqLoss We evaluate ReqLoss as a predictor of FBDL. We use MutLoss for coverage-based TSR
and CovLoss for mutant-based TSR. We expect a positive correlation between ReqLoss and FBDL.

Our experiments show rather low ReqLoss, with average 2.7% MutLoss across all projects for
coverage-based TSR and 2.2% CovLoss for mutant-based TSR; similar low percentages were re-
ported in recent TSR studies [57, 158, 188]. Such low percentages suggest that the reduced test
suites may not miss many faults. However, we find the average FBDLS , the most “optimistic”
FBDL metric (Section 2.3.3) to be much higher than the average ReqLoss. While the ReqLoss is
not equal to FBDL, it may still be a good predictor. Intuitively, the higher the ReqLoss, the more
likely the reduced test suite results in a miss-build.

Figure 2.6 shows a scatter plot relating MutLoss and FBDLU for each coverage-based Greedy

27

0 1 2 3 4 5 6 7 8

MutLoss

0

20

40

60

80

100

F
B

D
L
U

Figure 2.6: MutLoss vs. FBDLU (Coverage-based Greedy)

reduced test suite where we could measure mutation score. We show the prediction for FBDLU
because MutLoss predicts FBDLU the best. The plot includes the linear regression line. R2 = 0.25,
with p < 0.0001, suggests a weak linear fit; τb = 0.28, with p < 0.0001, suggests a weak positive
correlation. For the other FBDL variants, R2 ranges from 0.02 to 0.03. For τb, the values are all
the same, -0.04. For other variants, the p-values are all rather high.

Figure 2.7 shows a similar scatter plot, but relating CovLoss of mutant-based HGS reduced test
suites. There are similar trends for mutant-based TSR. For mutant-based HGS reduced test suites,
we see CovLoss predicts FBDLU the best. R2 = 0.14, with p < 0.0001, suggests a weak linear
correlation; τb = 0.18, with p < 0.001, suggests a weak positive correlation. For the other FBDL
variants, the R2 values are the same, 0.00, but with very high p-values. The τb values range from
0.11 to 0.19 (where correlating with FBDLP has a higher τb value than with FBDLU , but has lower
R2 value); the highest p-value is 0.0687.

We also analyze if ReqLoss is a good predictor on a per-project basis, considering only evalu-
ation projects with more than 5 reduced test suites. When correlating MutLoss with FBDL, only
one project, P14, hasR2 > 0.7, but only for predicting FBDLP and FBDLC , with p = 0.0207. Two
projects have τb > 0.7, with the highest p-value being 0.0207. When correlating CovLoss with
FBDL, two projects result in R2 > 0.7, with the highest p-value being 0.0570. Unfortunately, no
project has a good τb.

Overall, ReqLoss is not a good predictor of FBDL for either coverage- or mutant-based TSR.

Combining Both Traditional Metrics ReqLoss controlled for SizeKept might result in a good
predictor of FBDL. We create a linear model to correlate FBDL with a linear combination of
ReqLoss and SizeKept. For coverage-based Greedy reduced test suites, MutLoss and SizeKept

28

0 2 4 6 8 10 12

CovLoss

0

20

40

60

80

100

F
B

D
L
U

Figure 2.7: CovLoss vs. FBDLU (Mutant-based HGS)

together predict FBDLU the best; R2 = 0.42 (higher than before), with p < 0.0001. For mutant-
based HGS reduced test suites, CovLoss and SizeKept together predict FBDLU the best; R2 = 0.27

(higher than before), with p < 0.0001. The correlations are still not strong. Even a more complex
model that accounts for interaction of ReqLoss and SizeKept does not predict FBDL well.

Historical FBDL We propose to use historical FBDL to predict the future FBDL. The scenario is
that a developer applies TSR at a past point and measures the FBDL that would have been obtained
from that point until the current version; the developer then uses this historical FBDL to predict the
FBDL of the same reduced test suite for future builds. (Note that this scenario does not re-reduce
the test suite at the current point but reuses the exact same test suite from the past.) We simulate
this scenario in our evaluation for each reduced test suite. We first find all the failed builds after
the reduction point, then find the middle build among those failed builds, and finally compute the
historical FBDL before the middle build and future FBDL after the middle build. We then compute
correlation between historical and future FBDL.

Figure 2.8 shows a scatter plot relating the historical FBDLC and the future FBDLC for each
coverage-based Greedy reduced test suite. We show the prediction for FBDLC because it is pre-
dicted the best. The plot includes the linear regression line. R2 = 0.57, with p < 0.0001, suggests
a weak linear fit; τb = 0.64, with p < 0.0001, suggests a weak positive correlation. For the other
FBDL variants, R2 ranges from 0.42 to 0.56, all with p < 0.0001, and τb ranges from 0.40 to 0.62,
all with p < 0.0001. For coverage-based TSR, historical FBDL is a stronger predictor than other
metrics. However these values still do not indicate a very strong correlation.

Figure 2.9 shows a similar scatter plot as Figure 2.8, but for mutant-based, HGS reduced test
suites and with FBDLS . There are similar trends for mutant-based TSR. For mutant-based HGS

29

0 20 40 60 80 100

Historical FBDLC

0

20

40

60

80

100

F
u
tu

re
 F

B
D

L
C

Figure 2.8: Historical vs. future FBDLC (Coverage-based Greedy)

reduced test suites, R2 = 0.55, with p < 0.001, suggests a weak linear fit; τb = 0.65, with
p < 0.001, suggests a weak positive correlation. For the other FBDL variants, the R2 ranges from
0.48 to 0.50, all with p < 0.0001, and τb range from 0.59 to 0.67, all with p < 0.0001. FBDLP

and FBDLC are predicted with better τb values than FBDLS , but have smaller R2 values. For
mutant-based TSR, historical FBDL is again a stronger predictor than other metrics, but like for
coverage-based TSR, it is still not a very strong correlation.

Per evaluation project, coverage-based reduced test suites for six projects achieve R2 > 0.7,
with the highest p-value being 0.0073; 5 projects achieve an absolute τb greater than 0.7, with
the highest p-value being 0.0042. However, two of these projects have a negative correlation, i.e.,
τb < −0.7. Mutant-based reduced test suites for four projects have R2 > 0.7, with the highest
p-value 0.0038; 2 projects achieve τb > 0.7, with the highest p-value being 0.0565. Overall, per
evaluation project, historical FBDL is a better predictor of future FBDL than other metrics, though
still for only a subset of evaluation projects.

A2: In sum, we find that the two traditionally used metrics (size reduction and test-requirements
loss) are not good predictors of FBDL. Historical FBDL is a much better predictor of future FBDL
but still not strong in most cases.

2.5.3 RQ3: Impact of Evolution

Although we find no good predictor for FBDL at the reduction point, some correlation may still
exist between FBDL and the distance, e.g., measured in terms of the number of builds from the
reduction point to the failed builds. Intuitively, a reduced test suite may result in more miss-builds
at a larger distance from the reduction point; if so, that observation could lead to some actionable

30

0 20 40 60 80 100
Historical FBDLS

0

20

40

60

80

100

Fu
tu
re
 F
BD

L S

Figure 2.9: Historical vs. future FBDL (Mutant-based HGS)

insight, e.g., the developers can switch back to the original test suite after some time or re-perform
TSR to obtain an updated reduced test suite.

We analyze the relationship between the number of builds since reduction and FBDL. We ana-
lyze each evaluation project separately. All builds for an evaluation project are split into 10 bins
with about the same number of builds per bin. (Evaluation projects that have a different number
of builds end up with different bin sizes.) For each bin, we calculate the ratio of miss-builds out of
failed builds in that bin, excluding NEWONLY builds. We also compute a best fit line through the
10 points given by the ratios. The slope of this line represents a simple measure of trend in FBDL

with the number of builds since reduction. A positive slope is increasing FBDL, and a negative
slope is decreasing FBDL.

One may expect the slope to be positive for most of the projects, i.e., the farther the builds are
from the reduction point, the more likely to have miss-builds. However, the results do not show
this to be the case. For example, evaluating FBDLU (which is the best predicted out of all the FBDL
variants) using coverage-based Greedy TSR has 9 projects with negative slopes, 8 with slope 0,
and 11 with positive slopes. (4 projects do not have enough failed builds to calculate a slope.) For
the projects that have a non-zero slope, we also calculate R2 and p-values. The R2 values have a
median of 0.28 and p-values have a median of 0.1421. The generally low R2 values and high p-
values suggest that the increasing and decreasing patterns are not strong for individual projects as
well. Visual inspection also showed that plots have varying patterns, not only for coverage-based
Greedy TSR but for all other techniques.

A3: FBDL does not correlate well with the distances from the reduction point, showing yet
again that TSR is quite unpredictable.

31

2.6 THREATS TO VALIDITY

Our study on TSR has internal, external, and construct threats to the validity of our results,
as any other empirical study. Our results may not generalize beyond the evaluation projects we
evaluate. To reduce this risk, we use a diverse set of evaluation projects. Our results are based
on our choice of reduction points for TSR, so a different choice of reduction points may lead to
different FBDL values. We reduce this risk by choosing reduction points diverse in both commit
distances to failed builds and numbers of newly added tests. Different TSR algorithms guided by
different TSR criteria may result in different reduced test suites. We evaluate four widely-used
TSR algorithms with two widely-used TSR criteria.

We introduce a new metric FBDL based on mapping test failures to faults. Some of our evalua-
tion projects have a small number of flaky tests [128], which may affect our study by introducing
false failures; we believe that they do not affect our key findings. We have spent substantial en-
gineering effort trying to make the runs more reproducible using Docker, starting from the Travis
CI Docker image [24]. Test suites may have test-order dependencies [49, 84, 118, 120, 179, 190].
TSR inherently assumes that test suites do not have test-order dependencies [120], and our exper-
iments assume the same.

A specific question concerning our study is whether the software project history when using TSR
would look as it does when project developers likely did not use TSR. (Only 8 of 321 reduction
points had original test suites that were smaller than those in the prior reduction point, likely
because developers manually removed some tests.) If developers actually kept only the reduced
test suite at some point, their behavior in the future could differ from what we see in the code
repository and the build logs that used the original test suite. In theory, developers could have
a completely different behavior, e.g., making different code changes or testing those changes at
different times. More likely, the developers could have modified the test suites differently. For
example, the developers may have added more or fewer new tests than we see currently; in the
limit, a novice developer may be unaware that TSR was performed and could manually write tests
similar to those that were removed. As another example, even if some build has no test failure due
to a fault because a test was removed due to reduction, a developer may learn about the fault in
another way (e.g., by getting a report from a user), and then the developer could manually add a
new test (or reintroduce that originally removed test) to detect that regression fault.

2.7 SUMMARY

Automated TSR is more risky than suggested by prior research. TSR was proposed over two
decades ago, but since its inception it was evaluated primarily with mutants or seeded faults. We

32

present the first study that evaluates the cost of TSR using real test failures. Our analysis shows
that FBDL can go up to 52.2%, much higher than the mutant-detection loss. Moreover, FBDL
is difficult to predict using traditional TSR metrics. Developers who are considering current TSR
techniques should use FBDL to weigh whether the reduced test-suite size warrants the risk of miss-
ing faults. Real builds, however, do have potential for safe(r) TSR, so researchers could develop
novel TSR techniques that either miss fewer failed builds or at least provide more predictable
FBDL. Researchers should use FBDL to evaluate the quality of newly proposed TSR techniques.

33

CHAPTER 3: OPTIMIZING TEST PLACEMENT

This chapter presents TestOptimizer, a technique for optimizing the placement of tests to reduce
the number of test executions over time for module-level regression testing. Section 3.1 provides
some background on modern build systems and module-level regression testing. Section 3.2 for-
malizes the problem that we address with TestOptimizer. Section 3.3 presents the TestOptimizer
technique itself. Section 3.4 describes details of implementing TestOptimizer on top of Microsoft’s
internal build system CloudBuild. Section 3.5 presents the evaluation results. Section 3.6 presents
threats to validity. Finally, Section 3.7 concludes and summarizes the chapter.

3.1 BACKGROUND

Large-scale software development projects use build systems to manage the process of building
source code, applying static analyzers, and executing tests. Any inefficiencies in the underlying
build system directly impact developer productivity [64]. Given the significance of build systems,
all major companies have made huge investments in developing efficient, incremental, parallel,
and distributed cloud-based build systems. Example build systems include Bazel [9], Buck [36],
CloudBuild [67, 156], and FASTBuild [10].

3.1.1 CloudBuild

CloudBuild [67] is a distributed, cloud-based, build system widely used internally at Microsoft.
CloudBuild handles thousands of builds and executes millions of tests each day. Other companies
such as Google also have similar distributed cloud-based build systems to build their large code
bases (e.g., Bazel [9] for Google). The high-level principles behind CloudBuild are the same with
these other build systems. We focus on CloudBuild because of our own experiences with this
build system1, and we implement our technique specifically on top of CloudBuild (the ideas are
applicable to other similar build systems).

CloudBuild views a software project as a group of inter-dependent modules to perform incre-
mental builds after developer changes. Each module is a grouping of related code, and building a
module results in a binary, e.g., a DLL file. Developers specify a build dependency graph where
a module depends on another module if the former module uses the API from the binary built in
the latter module. When a developer makes changes, CloudBuild can determine which modules
are affected by the changes, i.e., (1) the modules whose code the developers directly changed and

1The author of this dissertation did an internship at Microsoft working with the team that develops CloudBuild.

34

(2) the modules that transitively depend on the changed modules based on the dependency graph.
CloudBuild then only builds the affected modules, i.e., it performs incremental builds. After a
change, CloudBuild does not build any unaffected modules, but if an unaffected module is needed
as a dependency for another affected module, CloudBuild uses a previously cached binary for that
unaffected module for building affected ones. When building a module, CloudBuild allocates a
clean server from the cloud just to build that module. CloudBuild then copies in all the necessary
dependency binaries based on the dependency graph. This setup ensures that the server contains
only the necessary dependencies for building the module and nothing else. The output of building
a module is a binary. If there are tests in the module, CloudBuild also runs those tests. After
building, CloudBuild caches the output binary for future builds.

Based on the nature of its incremental builds, CloudBuild inherently performs (safe) regres-
sion test selection (RTS) [74, 150, 183] at the module level. More specifically, whenever any
dependency of a test module is affected by the given change, all tests in that module are executed;
otherwise, the module is skipped, and no tests in the module are executed. The major advan-
tage of module-level RTS is that it does not require any additional metadata (such as fine-grained
dependencies like exercised statements for each test) beyond what is available in the build specifi-
cation, namely static, compile-time module dependencies. Especially in the case of large software
projects that execute millions of tests each day, storage and maintenance of the metadata would
add non-trivial overhead. Therefore, module-level RTS is currently the most practical option for
performing RTS at this scale.

3.1.2 Running Example

To illustrate how a CloudBuild performs RTS at the module level and the problem we address in
this chapter, consider an example dependency graph shown in Figure 3.1 for a hypothetical project.
The example project includes four application modules (A, B, C, and D), and three test modules (X,
Y, and Z). An application module contains all the code needed to create a binary but does not
contain any tests. A test module on the other hand contains only test code, so test modules are not
part of the final software released to customers. In the rest of this chapter, we use the terms build

node to represent an application module and test node to represent a test module, as we view them
as nodes in a dependency graph.

In the figure, a directed edge from one node to another indicates that the former node depends
on the latter node. For example, the directed edge from C to A indicates that C is dependent on A.
Similarly, directed edges can exist between test nodes and build nodes, e.g., Y depends on D. In
this case, either tests in Y directly test code from D, or tests in Y utilize helper utility functions from
D. We do not allow build nodes to depend on test nodes. The dashed line from a test node to the

35

A

C B D

Z X Y

t8: C
t9: A

t1: A,B,C
t2: B
t3: C

t4: B,D
t5: B
t6: D
t7: A

Build Count
{A,B,C}: 10
{B,C}: 50
{B,D}: 20
{B}: 40
{C}: 70

{D}: 1,000

Figure 3.1: An example dependency graph with build nodes A, B, C, and D; test nodes X, Y, and Z,
actual dependencies for tests t1 through t9, and the build count (number of times built) for sets of
build nodes

box with test names indicates that the test node contains those tests. For example, the dashed line
from X to the box with tests t1, t2, and t3 means X contains those three tests. Furthermore, within
the box, the listed nodes after the “:” for each test are the actual dependencies the test needs when
executing, e.g., t1 uses build nodes A, B, and C.

When a change happens to the code in a build node, the build node is built, and all build nodes
and test nodes transitively dependent on that build node are built as well. Whenever a test node is
built, all the tests inside it are also executed. For example, when test node Z is built, tests t8 and t9
are executed. The dependencies in a project’s dependency graph control the order in which nodes
are built. For example, X cannot be built before nodes A, B, and C are built.

Suppose that a developer makes a change to code in build node D. As such, D is built, and test
node Y, which depends on D, is built as well, and all the tests in Y are executed. However, as shown

36

in Figure 3.1, tests t5 and t7 do not actually depend on D, and they need not be executed when D

changes. These two tests are executed because they happen to be placed in Y. This inefficiency
is even worse if the dependencies change more frequently. The table “Build Count” in Figure 3.1
shows the number of times the exact set of build nodes are built together, e.g., the set of build
nodes {A,B,C} are built 10 times together. We see that, in this example, build node D by itself is
built 1,000 times. As Y depends on D, it is built at least 1,000 times, hence all tests in test node Y

are executed at least 1,000 times. To be more precise, the tests are executed 1,120 times, because
these tests also need to be executed when D is built in combination with other build nodes and when
B is built as well, resulting in additional 120 times (i.e., the tests are executed when sets {A,B,C},
{B,C}, {B,D}, and {B} are built).

3.2 PROBLEM STATEMENT

Let B be the set of all build nodes for the project. Let N be the set of all test nodes for the
project. Let T be the set of all the tests for the project, contained in the set of test nodes. Let Π be
a partitioning of T , and for a test node n, let Π(n) ⊆ T be the set of tests contained in n. Given
that Π is a partitioning of T , Π(n1) ∩ Π(n2) = ∅ for distinct test nodes n1 and n2. For each test t,
let TDeps(t) ⊆ B be all the build nodes that t depends on – these are the build nodes t needs to
both compile and to execute. Whenever a test node n is built, all the tests in Π(n) are executed.

Consider a sequence of builds during a given range of time R (say, over a six-month period).
There are two factors that influence the total number of test executions for a project during R:
(1) the count of the number of times test nodes are built over R (given the incremental nature of a
build, not every test node in a project is built in a given build), and (2) the number of tests executed
when building a test node.

Our solution changes the partitioning Π of tests by moving tests from existing test nodes to other
(possibly new) test nodes. To compute the reduction in the number of test executions, we first need
to compute the number of times test nodes are built (the test nodes’ build counts) after a change in
partitioning Π without actually replaying the builds during R.

3.2.1 Computing Build Count for a Test Node

Let us assume we have collected the build count for all the build nodes and test nodes during
a past range of time R. To determine the build count of a test node n after moving tests across
test nodes, one possibility is to simply reuse the build count of n collected in that range of time R.
However, simply reusing the build count is inaccurate for two main reasons. First, after moving

37

tests between test nodes, there can be changes to the dependencies of each existing test node. Sec-
ond, new test nodes can be added, which do not have any existing build count information. Recall
the example in Figure 3.1. If test t8 is moved out of Z, that movement removes the dependency
that test node Z has on C. This modified test node cannot be expected to have the same build count
as before, since a test node is built when at least one of its dependencies change. Similarly, if t7
is moved out of Y and into a brand new test node that depends only on A, we would not have any
collected build count for this new test node.

However, in most cases we can accurately compute the build count of a given test node entirely
in terms of the build count of the build nodes in B and the dependencies of the tests within the
given test node. We make the following assumptions during the range of time R:

1. The dependencies of individual tests themselves do not change.

2. Tests are changed, added or removed to the test nodes only in conjunction with another
change to a dependent build node, i.e., a change does not affect test nodes only.

From our experience with CloudBuild, we believe these assumptions hold for most test nodes. For
the first assumption, given that the dependencies in question are modules in the project as opposed
to finer-grained dependencies such as lines or files, it is unlikely that there are drastic changes that
lead to changes in dependencies at the level of modules. For the second assumption, we find that
it is very rare for developers to be only changing test code; they change code in build nodes much
more frequently and changes made to test nodes are in response to those build node changes. As
we explain below, given these assumptions, we can compute precisely when a test node n will be
built, namely whenever at least one dependency in TDeps(t) for any test t in n is built. Although
these assumptions may not hold for a very small fraction of test nodes during the time frame R,
their effect is negligible when R is sufficiently large (e.g., a few months).

We define the dependencies of a test node n as the union of the dependencies of the tests con-
tained in n given a partitioning Π.

Definition 3.1. For a given test node n, the set of build nodes that n depends on under Π is defined
as:

NDeps(n,Π)
.
= {b ∈ B | ∃t ∈ Π(n) such that b ∈ TDeps(t)} (3.1)

Given our assumptions about test nodes, a test node n is built if and only if a build node in
NDeps(n,Π) is built.

For a subset B′ ⊆ B, let BC R(B′) denote the number of builds where only the build nodes in
B′ are built together. The box in Figure 3.1 titled “Build Count” shows the number of times each

38

subset of build nodes is built, e.g., the exact subset {A, B, C} was built 10 times in the range of
time. Given our assumptions of test nodes not changing, a test node n is built in a build iff any
of its dependencies is built. We can thus compute the number of times a test node n is built by
summing up the build counts of BC R(B′) where B′ intersects with NDeps(n,Π).

Definition 3.2. For a given test node n, the computed number of times the nodeis built during a
range of time R is defined as:

NodeCountR(n,Π)
.
=

∑
{B′⊆B | B′∩NDeps(n,Π)6=∅}

BC R(B′) (3.2)

Since the set of all builds in R can be partitioned by using the distinct subsets B′ as identifiers,
we count each build exactly once in the above equation.

3.2.2 Number of Test Executions in a Project

Our metric for the cost of testing is the number of tests that are executed over R. As such, our
definition of the testing cost for a test node is related to the number of tests in the test node and the
number of times the test node would be built:

Definition 3.3. The number of test executions for a test node n within a range of time R is the
product of the number of tests in n and the build count of n within R:

NodeCostR(n,Π)
.
= |Π (n)| × NodeCountR(n,Π) (3.3)

The total number of test executions for testing the entire project would then be the sum of the
number of test executions for each test node.

Definition 3.4. The number of test executions CostR(N ,Π) needed for building all test nodes N
in a project within a range of time R is defined as:

CostR(N ,Π)
.
=

∑
n∈N

NodeCostR(n,Π) (3.4)

3.2.3 Reducing Test Executions

Our goal is to reduce the number of test executions in a project. While we could formulate
the problem to allow placement of tests to any test node irrespective of the initial placement Π,
the resulting ideal placement of tests could be very different from the original placement of tests.

39

Such a placement would then result in too many suggested test movements for the developers to
implement, and it is not practical to invest huge effort (although one-time) in achieving this ideal
placement of tests.

We consider the option of splitting a test node n into two test nodes {n, n′} (n′ 6∈ N) where
a subset of tests from n are moved to n′. As such, we can constrain the number of suggested
test movements to report to developers. We define Πn (over N ∪ {n′}) to be identical to Π at
N \{n, n′}, and the disjoint union Πn(n)]Πn(n′) = Π(n), meaning that Πn only moves a subset
of tests (possibly empty) from n to n′.

Our test placement problem can now be restated as the following decision problem:

Does there exist n ∈ N such that CostR(N ,Π) > CostR(N ∪ {n ′},Π n) + c? (3.5)

where c is a constant value representing the minimal number of test executions to reduce.
The threshold c acts as a knob for controlling suggestions, where a split is suggested only when

the reduction in number of test executions is worth the overhead of the developer implementing
the suggestion. Essentially, c represents the minimal return-on-investment that can be expected by
a developer to implement the suggested split. With multiple such n that reduce the number of test
executions by at least c, the one that provides the highest reduction can be chosen first.

3.3 TESTOPTIMIZER

Our technique, called TestOptimizer, provides a practical solution to reduce the number of
wasteful test executions. More specifically, TestOptimizer produces a ranked list of suggestions for
moving tests that help reduce a large number of wasteful test executions with minimal test move-
ments. Our technique also allows developers to specify a threshold c in terms of the number of test
executions that should be reduced for a suggestion. Using our suggestions, developers can also
incrementally address the problem, thereby avoid investing a one-time huge effort. The sugges-
tions also include additional recommendations where tests can be moved into existing test nodes,
in case such test nodes already exist in the dependency graph. We first present how TestOptimizer
splits a single test node into two test nodes and then explain how to use the single-split algorithm
to deal with all test nodes in a given project.

3.3.1 Splitting a Test Node

Given a test node, we seek to find a subset of tests that can be moved to a new test node, resulting
in the highest reduction in number of test executions. We use an iterative greedy algorithm to find

40

Algorithm 3.1: Splitting a test node
Input: Test node n
Input: Partitioning Π

Input: Range of time R

Output: New partitioning of tests Πn

Output: New test node n′

1 groups ← NewMap();
2 for each t ∈ Π(n) do
3 deps ← TDeps(t);
4 if ¬groups .ContainsKey(deps) then
5 groups [deps]← ∅;
6 end
7 groups [deps]← groups [deps] ∪ {t};
8 end
9 n′ ← NewNode();

10 Πn ← NewPartition(Π, n′);
11 repeat
12 tests← ∅;
13 maxCost← CostR({n, n ′},Π n);
14 for each deps ∈ groups .Keys do
15 Π′ ← Πn;
16 RemoveTests(Π′, n, groups[deps]);
17 AddTests(Π′, n′, groups[deps]);
18 newCost← CostR({n, n ′},Π ′);
19 if newCost < maxCost then
20 tests← groups[deps];
21 maxCost← newCost;

22 end
23 end
24 if tests 6= ∅ then
25 RemoveTests(Πn, n, tests);
26 AddTests(Πn, n′, tests);

27 end
28 until tests = ∅;
29 return Πn, n′

41

such subset of tests that can be moved from the given test node.
Algorithm 3.1 shows the individual steps. Given a test node n, the loop in lines 2 to 8 iterates

over the individual tests in that test node. For each test t, our algorithm gets the build nodes the
test depends on using TDeps(t). If an existing group of tests already shares the same set of build
nodes as dependencies, the test is added to that group; otherwise, a new group is created.

Next, the algorithm simulates moving groups of tests into another (initially empty) test node so
as to identify the group that results in the highest reduction. At line 9, the algorithm makes a new
test node n′, and at line 10, the algorithm makes a new partitioning Πn that includes n′. The loop
in lines 14 to 23 iterates through the groups and simulates moving each group of tests from n to
n′. The simulation is done by using a temporary partitioning Π′ that starts as Πn but is modified
by using RemoveTests to remove a group of tests from n and then using AddTests to add the
same group of tests to n′. The algorithm chooses the group of tests whose movement results in the
highest reduction in the number of test executions. The outer loop (lines 11 to 28) greedily chooses
to move that group of tests from n into n′ (lines 24 to 27) by modifying that new partitioning Πn.
The outer loop iterates until there are no groups that help reduce the number of test executions.
When the loop terminates, the algorithm returns the new partitioning Πn and the new test node
n′. In case n cannot be split, Πn will map n′ to an empty set. Our algorithm moves groups of
tests instead of individual tests in each iteration due to two reasons. First, moving groups of tests
instead of individual tests can make the search faster. Second, since the group of tests all share the
same dependencies, these tests are likely related to each other and so the algorithm should place
them in the same test node.

In the example dependency graph shown in Figure 3.1, consider the given test node n as Y.
Table 3.1 shows the result after each iteration of the outer loop (lines 11 to 28). Initially, the first
loop (lines 2 to 8) identifies four groups of tests, shown as g1 to g4. The initial number of test
executions computed using the CostR function is 4, 480. At the end of the first iteration of the
outer loop, group g4 is selected as the group that results in the highest reduction in the number of
test executions, resulting in 3, 370 test executions. Note that g4 includes the test t7 that depends
only on A, which is the root node of the dependency graph. Therefore, it is clearly evident that
a large number of wasteful test executions is due to the test t7. After one more iteration, the
algorithm returns the partitioning that maps test node n to tests in groups g1 and g3 and maps new
test node n′ to tests in groups g2 and g4; this results in a final 2, 480 test executions.

3.3.2 Handling all Test Nodes

Given a set of test nodes, TestOptimizer applies Algorithm 3.1 to each test node to find a split
that results in the highest reduction. In case the algorithm returns a partitioning where the new

42

Table 3.1: Steps in splitting test node Y

Iteration Node Y Node Y1 # Test Execs
1 g1 : {t4} 4,480

g2 : {t5}
g3 : {t6}
g4 : {t7}

2 g1 : {t4} g4 : {t7} 3,370
g2 : {t5}
g3 : {t6}

3 g1 : {t4} g4 : {t7} 2,480
g3 : {t6} g2 : {t5}

test node is mapped to no tests, TestOptimizer considers that the test node under analysis cannot
be split further. In each iteration, TestOptimizer finds the test node that has the best split, i.e.,
producing the highest reduction in the number of test executions. TestOptimizer then updates the
overall partitioning with the returned partitioning for that best split and adds the new test node into
the set of all test nodes. TestOptimizer repeats these steps until there exists no test node that can
be split any further. At the end, TestOptimizer returns all suggestions ranked in descending order
based on their reductions in number of test executions. If there are any new test nodes that share
the exact same dependencies as another test node (new or existing), TestOptimizer also makes the
suggestion to combine the two test nodes into one.

TestOptimizer also allows developers to specify thresholds for a split. From Section 3.2.3, this
threshold value is c, representing the minimal number of test executions by which a split must
reduce. The threshold is implemented by adding a condition to line 19 in Algorithm 3.1. This
condition can help eliminate trivial suggestions that may not be worthwhile of the effort required
to implement the suggestion.

Returning to our running example, consider the threshold c as 100 test executions. TestOpti-
mizer first splits Y, creating new test node Y1, following the steps as shown in Table 3.1. TestOp-
timizer next splits Z, creating new test node Z1, where Z now only includes t8, and Z1 includes t9.
TestOptimizer finally splits Y1, creating new test node Y2; Y1 now includes t5, and Y2 includes t7.
TestOptimizer then terminates, because it cannot split any test node that reduces the number of test
executions by at least the threshold value 100. TestOptimizer also suggests the two test nodes Y2
and Z1, which contain tests t7 and t9, respectively, can be combined into one test node A1, because
both the tests share exactly the same dependency. Figure 3.2 shows the final dependency graph
after applying our suggestions, Overall, for this example, TestOptimizer reduces the number of
test executions to 2, 250.

43

A

C B D

A1

X

t7: A
t9: A

t1: A,B,C
t2: B
t3: C

t4: B,D
t6: D

Z

t8: C

Y1

t5: B

Y

Figure 3.2: Final dependency graph after applying our suggestions

3.4 IMPLEMENTATION

We implement TestOptimizer as a prototype on top of CloudBuild [67].

3.4.1 Code Coverage

For our implementation, we target tests written using the Visual Studio Team Test (VsTest)
framework [2], as the majority of tests in CloudBuild are executed using VsTest. Since TestOp-
timizer requires actual dependencies of each individual test, we use the Magellan code coverage
tool [8] to collect those dependencies. In particular, we first instrument the binaries in a project,
where a binary corresponds to a build node, using Magellan. We then execute the tests on the in-
strumented binaries and save a coverage trace for each test. The coverage trace includes all blocks
that are executed by the test. We map these blocks to their original binaries and therefore to the
build nodes to construct the set of actual dependencies for each test. Our implementation also han-
dles the special constructs such as AssemblyInitialize and ClassInitialize that have specific
semantics in VsTest. For example, AssemblyInitialize is executed only once when running all
the tests in a test node, but the binaries exercised should be propagated as dependencies to all the
tests in that test node.

3.4.2 Test Node Affinity

We use affinity to refer to the set of build nodes that are intended to be tested by a test node.
Affinity helps avoid suggesting moving tests that are already in the right test node and also helps

44

improve the scalability of our technique. Ideally, one would ask the developers to provide the set of
build nodes that each test node is intended to test. However, as it is infeasible to ask the developers
to spend time labeling every single test node, we instead develop a heuristic to automatically
compute the affinity for any given test node n.

First, we compute the dependencies NDeps(n,Π) of the test node. Next, we compute Γ(b, n)

of each b ∈ NDeps(n,Π) as the number of tests in n that covers b during their execution.

Γ(b, n) = |{t ∈ Π(n) | b ∈ TDeps(t)}| (3.6)

Finally, let ΓMax(n) = max{b∈NDeps(n,Π)} Γ(b, n), the maximum Γ value among all build nodes in
n. We compute the affinity as:

Affinity(n) = {b ∈ NDeps(n,Π) | Γ(b, n) = ΓMax(n)} (3.7)

Once the affinity is computed, any test that does not exercise all dependencies in Affinity(n) is
considered to be amenable for movement, called an amenable test. In the context of Algorithm 3.1,
affinity can be implemented by modifying line 2 to skip tests that exercise at least all dependencies
in Affinity(n). Our experimental results show that affinity helps exclude a large number of tests
from our analysis, and it also provides more suggestions that are more likely to be accepted by
developers. Furthermore, we find that developers tend to agree with the affinity computed for each
test node (Section 3.5.4), as our heuristic identifies the affinity correctly for≈99% of the test nodes
in our evaluation projects.

3.4.3 Output

TestOptimizer generates an HTML report with all suggestions for test movements. The report
displays metrics concerning the number of test executions with the current placement of tests and
the build count for the current test nodes. For each test node with amenable tests, the report
suggests how to split the test node to reduce the number of test executions. Furthermore, the report
also suggests any existing test nodes where the tests can be moved into, where these existing test
nodes share the exact same dependencies as the tests to be moved. The report ranks the suggestions
starting with the test nodes that achieve the highest reductions. This ranked list can help developers
in prioritizing their effort. The report also includes the test nodes that were found to not contain
any tests amenable for movements as to give the developer a more complete picture. Anonymized
reports for all evaluation projects (including the running example) are publicly available2.

2http://mir.cs.illinois.edu/awshi2/testoptimizer

45

Table 3.2: Statistics of evaluation projects used in our evaluation

Build # Test # Build Count
Evaluation project KLOC Nodes Nodes # Tests Entries
ProjA 468 431 135 7,228 297,370
ProjB 926 416 90 5,870 127,030
ProjC 1,437 574 111 7,667 810,030
ProjD 3,366 1,268 184 12,918 6,522,056
ProjE 29,058 8,540 173 17,110 34,486,308
Overall 35,255 11,229 693 50,793 42,242,794
Average 7,051 2,245 138 10,158 8,448,558

3.5 EVALUATION

In our evaluation, we address the following three research questions:

RQ1 How many test executions can be saved by applying TestOptimizer suggestions?

RQ2 How much time does TestOptimizer take to run?

RQ3 What is the developer feedback for the suggestions of TestOptimizer?

The goal of RQ1 is to evaluate how effective TestOptimizer suggestions are at saving test exe-
cutions. The goal of RQ2 is to evaluate how scalable TestOptimizer is when run on large projects,
particularly at the size of projects in Microsoft. The goal of RQ3 is to evaluate whether TestOpti-
mizer suggestions are actually acceptable for developers and to better understand reasons for why
the suggestions were needed in the first place.

3.5.1 Experimental Setup

We apply our technique on five medium to large proprietary projects that use CloudBuild as the
underlying build system. Table 3.2 shows the statistics of our evaluation projects. For confidential-
ity reasons, we refer to our evaluation projects as ProjA, ProjB, ProjC, ProjD, and ProjE. The row
“Overall” is the sum of all the values in each column. The row “Average” is the arithmetic mean of
all the values in each column. All evaluation projects primarily use C# as the main programming
language, but also include some code in other languages such as C++ or Powershell. Column 2
shows the size of C# code in each evaluation project. As shown in the table, our evaluation projects
range from medium-scale (468 KLOC) to large-scale projects (29,058 KLOC). Column 3 shows
the number of build nodes, and Column 4 shows the number of test nodes. Column 5 shows the
number of (manually written) tests in each evaluation project.

46

Table 3.3: Results of applying TestOptimizer on our evaluation projects

Orig Reduced Test Execs
Amenable # Amenable # Moved # New Test Execs All Amenable Time to

Project Test Nodes Tests Tests Test Nodes (millions) # % % Analyze (min)
ProjA 20 1,343 1,047 25 9.9 635,815 6.4 10.6 12.9
ProjB 5 328 291 4 2.4 46,393 2.0 5.5 0.4
ProjC 15 364 333 12 17.1 779,523 4.6 13.9 11.9
ProjD 15 358 312 13 63.6 2,377,208 3.7 7.8 315.4
ProjE 30 1,553 1,250 28 18.3 1,498,045 8.2 16.5 994.3

Overall 85 3,946 3,233 82 111.2 5,336,984 4.8 10.2 1,335.0
Average 17 789 646 16 22.2 1,067,396 5.0 10.9 267.0

For each evaluation project, we collect historical data about the number of times sets of build
nodes are built in a previous range of time. CloudBuild maintains this information about each build
(including the details of build nodes and test nodes that are scheduled) in a SQL Server database.
Using this database, we compute the “Build Count” information for sets of build nodes during
the time period of 180 days starting from Feb 1st, 2016. Column 6 shows the number of table
entries in the database for each evaluation project, where each entry is a set of build nodes for the
evaluation project and the number of times those build nodes were built together. From Figure 3.1,
this number would correspond to the number of entries in the box titled “Build Count” for each
evaluation project. The historical data is over a period of 180 days for all evaluation projects, except
ProjE. We could not collect 180 days worth of historical data for ProjE, our largest evaluation
project, due to out-of-memory errors, since our tool performs all computations in memory. For
ProjE, we use 30 days worth of historical data (from the same start date).

We configure TestOptimizer to split a test node only if the reduction is at least 2, 000 test execu-
tions (setting the threshold value c to be 2, 000). We use this value based on our discussions with
the developers of some of our evaluation projects. Finally, although we compute the reduction
based on the historical data over a range of time R in the past, we present to developers the results
as potential savings for a future range of time R (as future savings matter more to developers),
under the assumption that the past is a good indicator for the future.

3.5.2 RQ1: Savings in Test Executions

Table 3.3 presents the results showing the reduction in terms of number of test executions after
applying TestOptimizer. Once again, the row “Overall” is the sum of all the values in each column,
and the row “Average” is the arithmetic mean of all the values in each column.

Column 2 shows the number of test nodes where TestOptimizer finds amenable tests, based on
affinity (Section 3.4.2). Test nodes with amenable tests are amenable test nodes. Column 3 shows
the number of amenable tests. The percentage of amenable test nodes range from 5.6% (5 / 90 in
ProjB) to 17.3% (30 / 173 in ProjE). These results indicate that developers often ensure that tests

47

Table 3.4: Results when considering spurious dependencies

Spurious Deps # Test Reduced
Execs Test Execs

Project Test Nodes Deps (millions) # %
ProjA 8 12 10.0 796,250 7.9
ProjB 35 44 2.4 82,498 3.4
ProjC 36 43 20.4 4,842,269 20.0
ProjD 68 116 69.7 8,497,928 12.2
ProjE 115 190 24.2 7,445,681 30.8
Overall 262 405 126.7 21,664,626 17.1
Average 52 81 25.3 4,332,925 14.9

are placed in the correct test node. However, the fact that there are tests in incorrect test nodes
suggests that developers can still make mistakes as to where the tests belong to, especially if they
lack a global view of the project, so there is still room for improvement. Up to 3,946 tests across
all evaluation projects can be moved as to reduce the number of test executions.

Column 4 shows the number of tests TestOptimizer suggests to move, meaning their movement
can provide a substantial reduction in the number of test executions. Column 5 shows the number
of new test nodes that need to be created for the tests to be moved into (not including any existing
test nodes that already exactly share the dependencies of the tests to be moved). Column 6 shows
the number of test executions (in millions) for the original placement of tests based on historical
data. Columns 7-9 show the reductions in number of test executions if developers implement the
suggestions. Column 7 shows the reduction in terms of number of test executions, while Column 8
shows the percentage of reduction when compared against the original number of test executions
(Column 6 from Table 3.2). However, these columns show the reduction relative to the num-
ber of test executions of all test nodes in the evaluation project; there are many test nodes that
TestOptimizer finds as non-amenable test nodes. Column 9 also shows percentages but compared
against the number of test executions concerning only the amenable test nodes, essentially com-
pared against only the test nodes that TestOptimizer can actually suggest movements from. When
considering only the amenable test nodes, we see the percentage of reduction in number of test
executions is higher compared with the reductions based on all the test nodes. In the case of these
percentages, the row “Overall” is computed as the total reduction in number of test executions
across all evaluation projects over the total number of original test executions. As such, the overall
percentage reduction in number of test executions for amenable tests is 10.2%.

Spurious Dependencies In our results, we find that some of the test nodes have additional
developer-specified dependencies that are not required by any tests inside that test node. We refer

48

to such dependencies as spurious dependencies. The primary reason for spurious dependencies
could be due to the evolution of the application code. More specifically, developers could have
originally specified a test node to have some dependencies, but after code changes the tests were
moved around so that the test node no longer depends on some of those developer-specified de-
pendencies. When a spurious dependency is built, the dependent test node is built unnecessarily,
causing a number of wasteful test executions. A spurious dependency can be simply removed and
all the tests within the test node will still run properly. Given TestOptimizer, spurious dependen-
cies are the build nodes declared as dependencies in the build specification for a test node but are
not covered by the test node’s tests. Table 3.4 shows the number of test nodes that have spuri-
ous dependencies in each evaluation project (Column 2) along with the total number of spurious
dependencies those test nodes depended on (Column 3).

Although detecting spurious dependencies is not a core contribution, it is an additional advan-
tage of our technique. The reduction in the number of test executions after both moving tests
and removing spurious dependencies is the reduction developers would actually obtain. Table 3.4
shows the effects of having spurious dependencies and the reduction in the number of test execu-
tions for each evaluation project. Column 4 shows the number of test executions (in millions) for
each evaluation project using developer-specified dependencies for each test node. The number of
test executions is higher than the values shown in Table 3.3, as they include the effects of these
spurious dependencies. Columns 5 and 6 show the reduction in number of test executions for each
evaluation project after the suggested test movements from TestOptimizer relative to the number
of test executions obtained using the developer-specified dependencies. We also see cases where
spurious dependencies seem to be a big problem.

To give an estimate of how the reduction in the number of test executions maps to savings in
terms of machine time, we calculate the average time (154 ms) across all the tests of the five
evaluation projects. Using this average test execution time and the reduction of number of test
executions, our results show that TestOptimizer can help save 38.6 days of machine time.

A1: TestOptimizer can help reduce millions of test executions (up to 2,377,208) among our
evaluation projects. By considering only the amenable test nodes, these reductions range from
5.5% to 16.5% among our evaluation projects, overall 10.2% across all evaluation projects. How-
ever, when we consider the effects of spurious dependencies, TestOptimizer can reduce the number
of test executions by 21.7 million (17.1%) across all evaluation projects.

3.5.3 RQ2: Time to Run

In Table 3.3, Column 10 shows the time (in minutes) taken by TestOptimizer to analyze the
historical data and to run through its algorithm to suggest movements for each evaluation project.

49

Table 3.5: Feedback from developers of four evaluation projects

Accepted Valid/Rejected Invalid
Project Sugg. Sugg. Sugg. Sugg.
ProjA 20 16 3 1
ProjB 5 4 1 0
ProjC 5 5 0 0
ProjD 15 13 0 2
Overall 45 38 4 3
Average 11 9 1 1

Our results show that the analysis time ranges from 0.4 minutes up to 994.3 minutes (≈16 hours).
TestOptimizer takes on average 267.0 minutes per evaluation project, while overall 1,335.0 min-
utes across all evaluation projects. TestOptimizer’s running time seems to be a factor of the number
of build nodes, test nodes, tests, and the amount of historical data available. We find this time can
still be reasonable as we envision our technique to be run infrequently. We also envision TestOp-
timizer can be run incrementally by only analyzing newly added tests as to suggest to developers
the best test node to place new tests; TestOptimizer can work quickly when analyzing only a small
number of tests. Furthermore, TestOptimizer is still a prototype, and it can be improved by imple-
menting lazy loading of data and caching previous computations to avoid repeated calculations of
build count.

A2: TestOptimizer takes on average 267.0 minutes (4.5 hours) per evaluation project, and over-
all 1,335.0 minutes (22.3 hours) across all evaluation projects. Such times are reasonable consid-
ering our intent is to run TestOptimizer infrequently, suggesting one-time test movements.

3.5.4 RQ3: Developer Feedback

Regarding RQ3, we approached the developers of our evaluation projects to receive their feed-
back on suggested test movements. We received feedback from the developers of four of our
evaluation projects: ProjA, ProjB, ProjC, and ProjD. Table 3.5 presents the results for each of
these four evaluation projects. Column 2 shows the number of test movement suggestions reported
by our tool, which is counted by the number of test nodes where our tool found tests amenable for
movement. Column 3 shows the number of suggestions accepted by developers, and they intend to
implement the suggestions. Column 4 shows the number of suggestions that the developers con-
sidered as valid, but they do not intend to implement the suggestions. Finally, Column 5 shows the
number of suggestions that the developers considered as invalid. As shown in our results, 84.4%
of the suggestions were indeed accepted by the developers. Furthermore, among the 16 accepted

50

suggestions in ProjA, developers already implemented six of the suggestions.
Overall, the developer feedback is highly encouraging. The feedback also helps us understand

how code evolution resulted in wasteful test executions in the case of some of the test nodes where
TestOptimizer suggests test movements. For example, a developer informed us that some appli-
cation code was moved from one build node to a new build node as a part of a major refactoring.
However, the related test code was not moved into the relevant test node. Since the original test
node still had a dependency on the new build node, tests continued to execute properly, but the tests
would also execute when the build system builds any other dependency the original test node had.
After analyzing our suggestions, the developer felt that our technique could also be quite helpful
finding a better organization of the tests. This response is encouraging, because it demonstrates
TestOptimizer’s ability in addressing issues beyond wasteful test executions. Another feedback
was that developers may not be aware of an existing test node better suited for their tests, espe-
cially with many developers and many test nodes in the project. Therefore, developers tend to
place tests in some test node they are familiar with; they later add more dependencies to that test
node, eventually leading to wasteful test executions. Developers also appreciate the idea that our
suggestions can help break edges from test nodes to build nodes in the dependency graph, thereby
reducing the build time along with the test execution time (breaking edges prevents test nodes from
being built, which itself takes some time in the build system). The developers we approached also
asked that we provide these reports at regular intervals (e.g., once per week), so they can monitor
and improve the health of their project.

Accepted We present the two common scenarios under which developers tend to accept our
suggestions (Column 3 in Table 3.5). We use the dependency graph shown in Figure 3.3 as an
illustrative example. In the figure, test node X is dependent on build nodes B and C. The figure also
shows the build counts of B and C, where the build count of C is much greater than the build count
of B. The figure shows that the test node X includes 100 tests, where most of them are dependent
on B and only a few (just one in this example) depend on C. The primary issue is that most of the
tests in X are wastefully executed due to the high build count of C. In this scenario, our technique
typically suggests to move the tests from X into a test node that is dependent only on B. We notice
that developers tend to accept our suggestions in these scenarios, since they help reduce a large
number of test executions in test nodes such as X.

Another common scenario where developers often accepted our suggestion is when there already
exist a test node with the exact same set of dependencies where the tests can be moved. In this
scenario, the effort involved in implementing the suggestion is minimal, i.e., developers just need
to copy-paste the tests into the existing test node.

51

A

B

C

X

t1: B
….

t99: B
t100: C

Build Count
{A,B,C}: 5

{B}: 10
{C}: 100

Y

t101: C
….

t199: C
t200: B

Figure 3.3: An example dependency graph illustrating the scenario where developers tend to accept
our suggested movements

Valid/Rejected We present the common scenario under which developers considered that the
suggestions are valid, but not willing to implement those suggestions (Column 4 of Table 3.5).
We use the same dependency graph in Figure 3.3 as an illustrative example, this time focusing on
test node Y instead. In Y, the majority of the tests have a dependency on C instead of B. Although
this scenario could result in wasteful test executions with respect to tests such as t200, it is not as
substantial (since only a few tests are affected) compared to what occurs for tests in X. Due to the
lower benefit in implementing the suggestion, developers seemed reluctant in moving such tests,
especially when there is no existing test node the tests can simply be moved into.

Invalid Regarding the suggestions that are considered as invalid (Column 5 of Table 3.5), we
find that they are primarily due to implementation issues. TestOptimizer relies on code coverage
to collect test traces, in this case using Magellan. In case a test exercises a binary via only a
constant or refers to a class using constructs such as typeof, we notice that Magellan does not
collect the necessary dependency, a limitation in the code coverage tool. Due to such missing
dependencies, our tool suggests invalid movements that were rejected by the developers. In the
future, we plan to explore further how to collect dependencies in these scenarios.

52

Component1 Component2

B

X Y

Component1 Component2

B1

X Y

B2

Figure 3.4: An example scenario where our suggestion leads to a higher-level refactoring of a build
node

Interesting Scenario We finally present an interesting scenario where our suggestion led to a
higher-level refactoring of a build node. Figure 3.4 shows two major components in a project,
where each component contains several build nodes. There are two test nodes X and Y, which are
intended to test build nodes in Component1 and Component2, respectively. However, due to the
build node B, changes in Component1 can trigger tests in Y, and similarly changes in Component2
can trigger tests in X. In an attempt to implement our suggestion in X, instead of splitting X, the
developer split the build node B into two build nodes B1 and B2. The resulting dependency graph
is shown in the figure, where the split helped remove dependencies between the build nodes and
test nodes. This feedback is very encouraging, because our suggestions are able to help developers
make insightful decisions in removing major unnecessary dependencies in the project.

A3: Developers generally approved of TestOptimizer’s suggestions, accepting 84.4% of the
suggestions; developers already implemented six of the 16 accepted suggestions in ProjA.

3.5.5 Discussion

Formulation Given that our formulation of the problem of reducing the number of test execu-
tions over a range of time involves defining cost metrics for a given dependency graph, we could
have formulated the problem instead as an optimization problem instead of a decision problem
(i.e., does there exist a test node to split that achieves substantial reduction). The goal of the op-
timization problem would then be to determine an optimal placement of tests within test nodes as
to achieve a minimal cost.

We initially experimented with such a formulation, encoding the entire problem into a set of
SMT equations and then using Z3 [12], a state-of-the-art constraint solver, to solve for an optimal
solution. However, in our initial experiments with such a formulation, we faced some challenges
that lead to our eventual decision to change the formulation and use a greedy algorithm instead.

First, we encountered scalability issues with using Z3. While Z3 could very quickly output the

53

solution for an optimal placement of tests for our small, toy examples, Z3 could not operate at
the scale of the dependency graphs we eventually need for our evaluation on Microsoft evaluation
projects. Running Z3 on the dependency graphs from our evaluation projects would take several
hours and often would time out, leading to no results3. While TestOptimizer can be run infre-
quently and offline, the time to run using Z3 was still too long, especially when a time out occurs
and Z3 cannot output any intermediate results to at least reduce some number of test executions
(not necessarily the most optimal). Z3 is one of the most effective constraint solvers available, so
we believe any other solver would lead to the same issues.

Second, we find that developers really appreciate a technique that can give them intermediate
steps to take that make progress towards an optimal solution. Developers do not have time to
perform all the necessary movements to achieve the minimal number of test executions, and they
would prefer to make some changes incrementally, whenever they have time. As such, a model
using a constraint solver to output the optimal solution at once does not give them any feedback
on which tests to move first as to achieve the best reduction. The iterative greedy algorithm does
provide this information. Furthermore, when we presented final optimal placements to developers,
they were rather confused for certain placements; they would spend time trying to reason why

TestOptimizer would suggest those movements. As such, we found they preferred a step-by-step
process that shows them more information as to why TestOptimizer would suggest tests to move.

Cost Metric Instead of using the number of test executions as the cost metric to reduce, we could
use overall time. Such a cost metric per test node would involve the expected running time for all
tests contained in a test node plus a fixed time per test node to represent the overhead in setting up
a test node (so such a constant can limit the creation of too many new test nodes).

We initially experimented with using such a cost metric, but we encountered misunderstandings
concerning what the results actually entail when we approached developers. By telling developers
about the time savings the suggestions would provide, they assumed that the time savings are end-

to-end time savings. In CloudBuild, the nodes are not built sequentially but rather in parallel,
so the moment an affected node’s dependencies are available (and cloud resources are available),
that node can be built. The end-to-end time is not the sum of the time to build all the affected
nodes but rather the time for the longest path through the affected nodes in the dependency graph.
Developers assumed this end-to-end time, but TestOptimizer actually aims to reduce the total time
to build all affected nodes. This time to build all affected nodes represents the total machine time,
which is effectively the monetary cost for building and testing. Given this clash in expectations

3In the process, our experiments actually served as benchmarks that helped the Z3 developers implement new
strategies for improving the performance of Z3. Unfortunately, those improvements still were not enough to get Z3 to
scale to our evaluation projects.

54

involving time, we find that presenting cost in terms of number of test executions is a good balance
in the goal TestOptimizer aims to achieve and what developers would also want to reduce.

Comparison against Finer-Grained RTS A build system such as CloudBuild essentially per-
forms RTS at a coarser granularity level of modules using dependency graphs. Although previous
finer-grained RTS techniques can further reduce the number of test executions by doing the se-
lection on tests in each test node, such finer-grained techniques are not as practical due to the
following reasons. First, existing techniques assume that tests are executed at the end of the build.
Therefore, even if there exists a single test (in a test node) that is affected by the change, the entire
test node still needs to be built. In contrast to that, TestOptimizer can give suggestions that help
entirely skip the build of that test node as well, if TestOptimizer can suggest some test movements
that remove dependencies from the test node. Second, existing techniques require storage and
maintenance of metadata, such as code coverage per individual test, which needs to be contin-
uously updated along with the changes in the underlying modules. This aspect adds non-trivial
overhead in the case of millions of test executions. Instead, TestOptimizer does not require any
additional information beyond what the build system already saves.

3.6 THREATS TO VALIDITY

Our evaluation of TestOptimizer is on five Microsoft projects, so the results may not generalize
to other projects. TestOptimizer explicitly works only for projects that use a build system like
CloudBuild, where code and tests are divided into modules, and each is built separately on their
own machine with only the developer-specified module-level dependencies. However, we see sev-
eral companies other than Microsoft using a similar build system, such as in Facebook Buck [36]
or Google Bazel [9], so TestOptimizer is applicable in those settings as well.

We compute the actual dependencies for each individual test dynamically using code coverage.
While code coverage can get us exactly what each test executes and therefore needs at runtime,
it may miss some dependencies if the test execution itself is nondeterministic. However, as we
collect code coverage at the module level, even if some tests are nondeterministic, it is rather
unlikely the tests are nondeterministic to the point that the code coverage tool misses to collect an
entire module dependency for a test.

3.7 SUMMARY

In this chapter, we present TestOptimizer, a technique that helps reduce wasteful test executions

55

due to suboptimal placement of tests. We formulate the problem of wasteful test executions and
develop an algorithm for reducing the number of wasteful test executions. We implement our
technique in a prototype tool on top of Microsoft’s CloudBuild. We evaluate the effectiveness of
TestOptimizer on five proprietary projects from Microsoft. The results show that TestOptimizer
can reduce 21.7 million test executions (17.1%) across all our evaluation projects. Furthermore,
developers of four of our evaluation projects accepted and intend to implement 84.4% of our
suggestions; developers have already implemented some of these suggestions as well. Beyond
saving machine resources, the reduction in test executions can also help reduce the developer
effort in triaging the test failures, if these irrelevant tests are flaky.

56

CHAPTER 4: AUTOMATICALLY FIXING ORDER-DEPENDENT FLAKY TESTS

Aside from the cost of regression testing, another challenge facing regression testing is the
presence of flaky tests. This chapter presents a framework for fixing order-dependent flaky tests,
which were found to be a prominent type of flaky tests in open-source projects [128]. Section 4.1
formalizes the problem of order-dependent tests. Section 4.2 presents the iFixFlakies framework
for automatically fixing order-dependent tests. Section 4.3 presents our experimental setup for
evaluating iFixFlakies. Section 4.4 presents our evaluation results. Section 4.5 presents threats to
validity. Finally, Section 4.6 concludes and summarizes the chapter.

4.1 FORMALIZATION OF ORDER-DEPENDENT TESTS

Order-dependent tests are flaky tests whose results can differ depending on the order in which the
tests run. An order-dependent test consistently passes when run in one order but then consistently
fails when run in a different order [118, 190].

Let T be the set of all tests1 in the test suite. A test order is a sequence of a subset of tests
from T . For a test order O that has a test t ∈ T , let runt(O) be the result of the test t when run
in the test order O; the result can be either PASS or FAIL consistently. We ignore other flaky
tests that have results PASS and FAIL when rerun in the same test order due to other sources of
nondeterminism. We use run(O) to refer to the result of the last test in O. We use [t] to denote
a test order consisting of just one test t, and use O + O′ to denote the concatenation of two test
orders O and O′ in a new test order consisting of the tests in O followed by the tests in O′.

Definition 4.1. A test t ∈ T has a passing test order or a failing test orderO if runt(O) = PASS

or runt(O) = FAIL, respectively.

Definition 4.2. An order-dependent test t ∈ T has a passing test order O and a failing test order
O′ 6= O.

We classify an order-dependent test into one of two types: victim or brittle. We also classify
other tests related to order-dependent tests into three different roles: polluter, cleaner, and state-
setter.

4.1.1 Victim

A victim is an order-dependent test that consistently passes when run by itself in isolation from
1When we say test, for Java we mean test method as defined in JUnit.

57

1 // Victim (in ShutdownListenerManagerTest class)
2 @Test
3 public void assertIsShutdownAlready() {
4 shutdownListenerManager.new InstanceShutdownStatusJobListener().
5 dataChanged("/test_job/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");
6 verify(schedulerFacade, times(0)).shutdownInstance();
7 }
8 // Polluter (also in ShutdownListenerManagerTest class)
9 @Test

10 public void assertRemoveLocalInstancePath() {
11 JobRegistry.getInstance().registerJob("test_job",
12 jobScheduleController, regCenter);
13 shutdownListenerManager.new InstanceShutdownStatusJobListener().
14 dataChanged("/test_job/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");
15 verify(schedulerFacade).shutdownInstance();
16 }
17 // Cleaner (in FailoverServiceTest class)
18 @Test
19 public void assertGetFailoverItems() {
20 JobRegistry.getInstance().registerJob("test_job",
21 jobScheduleController, regCenter);
22 ... // 12 more lines
23 JobRegistry.getInstance().shutdown("test_job");
24 }

Figure 4.1: Example victim, polluter, and cleaner from elasticjob/elastic-job-lite

other tests, and yet there exists a failing test order in which the test fails when run with one or more
other tests.

Definition 4.3. An order-dependent test v ∈ T is a victim if run([v]) = PASS.

The reason why a victim fails in a failing test order is that there is at least one test that runs before
the victim, and these tests “pollute” the state (e.g., global variable, file system, network [190]) on
which the victim depends. We call such state-polluting tests polluters. Note that a polluter can
consist of multiple tests, where the combination of running those tests in a certain order leads to
the victim failing. More specifically, a polluter is a test order that leads the victim to fail when
run before the victim. If a polluter consists of more than one test, then no suborder of the polluter
leads the victim to fail, instead all tests of a polluter must run in that order before the victim for
the victim to fail.

Definition 4.4. A test order (with one or more tests) P is a polluter for a victim v if run(P+[v]) =

FAIL.

Figure 4.1 shows an example (identified by iFixFlakies) of a victim and a polluter from project
elasticjob/elastic-job-lite [26]. The polluter is the test assertRemoveLocalInstancePath

58

(or PT for short), because it starts the instance (Line 11) but does not shut it down at the end of the
run. By not shutting down the instance, the victim is the test assertIsShutdownAlready (or VT
for short) that fails on Line 6, which checks whether an instance of a class variable has been shut
down. VT passes by itself or in test orders where a polluter that starts the instance, like PT, is run
after VT.

A victim may not fail even when a polluter is run before it, as long as a cleaner is run between
the two. Intuitively, a cleaner is a test order that resets the state polluted by a polluter; when the
cleaner is run after a polluter and before its victim, the victim passes.

Definition 4.5. A test order C is a cleaner for a polluter P and its victim v if run(P +C + [v]) =

PASS.

An example of a cleaner is also shown in Figure 4.1. The test assertGetFailoverItems (or
CT for short) is a cleaner for PT and VT, because Line 23 of CT shuts down the instance that PT
starts and VT checks. Therefore, even if PT runs before VT, as long as CT’s Line 23 successfully
executes before VT, VT passes. We can fix VT by inserting the statement from this line of CT at the
end of PT, or by inserting this line into a teardown method (annotated with @After in JUnit) in
ShutdownListenerManagerTest that runs after every test. We sent this change as a pull request
to the developers of elasticjob/elastic-job-lite, which they accepted [27].

4.1.2 Brittle

In contrast to a victim, an order-dependent test is a brittle if the test consistently fails when run
by itself in isolation, and yet there exists a passing test order in which the test passes when one or
more tests are run before the brittle.

Definition 4.6. An order-dependent test b ∈ T is a brittle if run([b]) = FAIL.

Intuitively, because a brittle fails in isolation and yet has a passing test order, then its passing
test order must contain one or more tests that set up the state for the brittle to pass. We refer to a
test order that sets up the state for a brittle as a state-setter.

Definition 4.7. A test order S is a state-setter for a brittle b if run(S + [b]) = PASS.

Figure 4.2 shows an example identified by iFixFlakies as a brittle and its corresponding state-
setter from project wildfly/wildfly [33]. The test testPermissions (or BT for short) is a brittle,
because it fails when run by itself, due to an AccessControlException. The test testBind (or
ST for short) is a state-setter for BT, because running ST and then BT is enough to make BT pass.

59

1 // Brittle (in WritableServiceBasedNamingStoreTestCase class)
2 @Test
3 public void testPermissions() throws Exception {
4 ...
5 final String name = "a/b";
6 final Object value = new Object();
7 try {
8 ...
9 store.bind(new CompositeName(name), value);

10 }
11 ...
12 assertEquals(value, testActionWithPermission(JndiPermission.ACTION_LOOKUP,
13 permissions, namingContext, name));
14 }
15 // State-setter (also in WritableServiceBasedNamingStoreTestCase class)
16 @Test
17 public void testBind() throws Exception {
18 final Name name = new CompositeName("test");
19 final Object value = new Object();
20 ... // 6 more lines
21 assertEquals(value, store.lookup(name));
22 }

Figure 4.2: Example brittle and state-setter from wildfly/wildfly

iFixFlakies finds that the store.lookup call of ST on Line 21 is the only method call that
BT needs in order to pass. store is a test class variable that is initialized by the setup method
(annotated with @Before in JUnit, meaning it runs before every test method is run) of the test
class. When store.lookup is invoked before Line 12, BT passes. When we proposed this fix
to the developers of wildfly/wildfly, they quickly accepted our fix and clarified that it works
because the lookup call causes “the WildFlySecurityManager.<clinit> to run” and running
this class constructor resolves the AccessControlException of BT [34].

Both cleaners (for victims) and state-setters (for brittles) help make order-dependent tests pass
when they run in certain test orders. Hence, we refer to cleaners and state-setters as helpers. Our
insight is that these helpers already contain logic to set the state for their corresponding order-
dependent tests. Therefore, a patch to fix an order-dependent tests would involve changing the test
code to include said logic.

Note that for a “good” patch that fixes an order-dependent test, we have three main requirements
for the test after applying the patch. First, the test must still cover the same logic as before. Second,
the test must have the same result regardless of the order in which it is run. Third, the test must
not run substantially slower than before. Such requirements rule out simple “patches”, such as
removing the order-dependent test entirely (which goes against the first requirement that the test
covers the same logic). Besides changing the test code itself through patches, there are other ways

60

1 def iFixFlakies(odtest, passingorder, failingorder):
2 odtype, polluters, cleaners = minimize(odtest, passingorder, failingorder)
3 patches = []
4 if odtype == VICTIM:
5 for polluter in polluters:
6 for cleaner in cleaners[polluter]:
7 patches += [patch(polluter + [odtest], cleaner)]
8 else: # odtype == BRITTLE
9 for statesetter in polluters:

10 patches += [patch([odtest], statesetter)]
11 return patches

Figure 4.3: Pseudo-code for the overall process of iFixFlakies

to address the problem of order-dependent tests, such as enforcing a specific test order. We discuss
some of these other potential fixes for order-dependent tests in Section 4.4.4.

4.2 IFIXFLAKIES

We present iFixFlakies to automatically recommend patches for order-dependent tests with
helpers. Figure 4.3 shows the pseudo-code for the overall process. iFixFlakies takes as input
an order-dependent test, a passing test order, and a failing test order. By Definition 4.2, each order-
dependent test has at least one passing and one failing test order. Several automated approaches
exist for detecting order-dependent tests and their corresponding test orders [69, 118, 190], which
can provide all these inputs for iFixFlakies. iFixFlakies has two main components: Minimizer
and Patcher. iFixFlakies first calls Minimizer (Line 2) to get the type of the order-dependent test,
the minimized polluters/state-setters, and the minimized cleaners. Based on the type of the order-
dependent test, iFixFlakies then calls Patcher to create patches corresponding to each helper for
the order-dependent test (lines 7 and 10).

Prior to developing iFixFlakies, we attempted to manually fix some order-dependent tests using
just their passing and failing test orders. In this manual process, we found it difficult to understand

why each test fails, let alone fix the test. However, as part of this process, we found ourselves
manually searching for the polluter, cleaner, and state-setter tests for order-dependent tests, which
is what inspired Minimizer. Once we realized the importance of the helpers and how they can be
used as the basis for patches, we developed Patcher. Overall, we find that the manual steps that
we undertook could be automated by a tool, leading to iFixFlakies, and such automation can save
developers’ time for fixing order-dependent tests.

61

1 def minimize(odtest, passingorder, failingorder):
2 isolation = run([odtest])
3 # Run in isolation multiple times to confirm it is order-dependent
4 for i in range(RERUN):
5 if not isolation == run([odtest]):
6 raise Exception("Incorrectly classified as order-dependent")
7

8 # Passing in isolation means victim, failing means brittle
9 if isolation == PASS:

10 odtype = VICTIM
11 startingorder = failingorder
12 expected = FAIL
13 else: # isolation == FAIL
14 odtype = BRITTLE
15 startingorder = passingorder
16 expected = PASS
17

18 polluters = set() # State-setters for brittles
19 cleaners = {} # Empty map from polluters to cleaners
20

21 # Get minimal test order that causes odtest to match expected result
22 prefix = startingorder[0:indexOf(odtest, startingorder)]
23 while run(prefix + [odtest]) == expected:
24 polluter = deltadebug(prefix, lambda o: run(o + [odtest]) == expected)
25 polluters.add(polluter)
26 if odtype == VICTIM:
27 cleaners[polluter] = findcleaners(odtest, polluter,
28 passingorder, failingorder)
29 # If not configured to find everything, stop
30 if not FIND_ALL:
31 break
32 prefix.remove(polluter)
33 return odtype, polluters, cleaners

Figure 4.4: Pseudo-code for finding minimal test orders

4.2.1 Minimizer

Minimizer aims to find the minimal subsequence2 of tests, called minimal test order, from a
passing test order or a failing test order to make the order-dependent test pass or fail, respectively.
The minimal test order is “1-minimal”, meaning removing any test from the minimal test order
will no longer satisfy the criterion [79, 184].

Figure 4.4 shows the pseudo-code for Minimizer. The input is an order-dependent test and its
two test orders. As shown in Lines 4-6, Minimizer first checks whether the order-dependent test
consistently passes or fails by itself, rerunning the test RERUN number of times (default is 10). If the

2The term “subsequence” refers to a potentially non-consecutive subset of elements in relation to the original
ordering.

62

test consistently passes or fails, it is likely order-dependent. This check should not be needed when
the input test is correctly classified as order-dependent, but our evaluation finds that we incorrectly
classified three tests in our previous work [118]. If the test is truly order-dependent, the isolation
result determines whether it is a victim or a brittle (Lines 9-16).

Next, Minimizer proceeds to delta debug [79, 184] the prefix to find the minimal test order
(Line 24). Delta debugging iteratively splits a sequence of elements to find a smaller subsequence
that satisfies a criterion. Our general delta debugging method takes two parameters: (1) the se-
quence to start delta debugging and (2) the criterion (in the form of a function) to check the current
subsequence validity at each iteration. For Line 24, a subsequence is valid when running it before
the order-dependent test matches the expected result for that test. The delta debugging output is
a minimal test order representing a polluter for a victim or a state-setter for a brittle; ideally the
polluter or state-setter consists of only one test. The search for finding a polluter or a state-setter
is the same, so our code assigns the final result to the variable named polluter, but it is actually
a state-setter if the order-dependent test is a brittle.

In practice, after Line 24, a developer would proceed to find a cleaner for the polluter if the
order-dependent test was a victim, or proceed to Patcher if the order-dependent test was a brittle.
However, for the sake of our experimental evaluation, we introduce the option to find all polluters
or state-setters from these test orders. If the FIND ALL option is set (Line 30), Minimizer proceeds
to find more polluters or state-setters by first removing the found polluter or state-setter and then
continuing with the loop that calls delta debugging again (Lines 23-32). The process stops when
running the prefix before the order-dependent test no longer matches the expected result. Our
experimental evaluation (Section 4.4.2) shows that finding more polluters or state-setters does not
provide substantial benefits in terms of patching order-dependent tests, so in practice one can just
use the first handful of found tests of each type.

Finding Cleaners After finding a polluter for a victim, Minimizer proceeds to find cleaners
(Lines 26-27 of Figure 4.4). Figure 4.5 shows the findcleaners method. It takes as input a
victim, a polluter for the victim, a passing test order, and a failing test order. The returned cleaners
make the victim pass when they are run between the polluter and the victim.

First, findcleaners determines cleaner candidates, which are test orders that are potentially
cleaners. findcleaners finds cleaner candidates using the passing and/or failing test order, de-
pending on the index of the polluter and victim in these test orders. For the passing test order, if
the victim is run after the polluter, then a cleaner must be among the tests that run between the
polluter and victim, so these tests in between become a cleaner candidate (Lines 4-7). For the fail-
ing test order, a cleaner can be run before the polluter or after the victim, so tests that run before
the polluter or after the victim both become cleaner candidates (Lines 9-12). Finding a cleaner is

63

1 def findcleaners(victim, polluter, passingorder, failingorder):
2 # Determine cleaner candidates from passing and failing orders
3 candidates = []
4 polluterpos = indexOf(polluter, passingorder)
5 victimpos = indexOf(victim, passingorder)
6 if polluterpos < victimpos:
7 candidates += [passingorder[polluterpos + 1:victimpos]]
8

9 polluterpos = indexOf(polluter, failingorder)
10 victimpos = indexOf(victim, failingorder)
11 candidates += [failingorder[0:polluterpos]]
12 candidates += [failingorder[victimpos + 1:len(failingorder)]]
13

14 # Add all tests as single candidates
15 candidates += [[c] for c in failingorder]
16

17 # Filter out candidates to find actual cleaners
18 cleaners = []
19 for c in candidates:
20 if run(polluter + c + [victim]) == PASS:
21 # If not configured to find everything, just return the first one
22 if not FIND_ALL:
23 return [deltadebug(c, lambda o: run(polluter + o + [victim]) == PASS)]
24 cleaners += [c]
25

26 # Minimize the cleaners, so <polluter, cleaner, victim> passes
27 return unique(map(lambda c:
28 deltadebug(c,
29 lambda o: run(polluter + o + [victim]) == PASS),
30 cleaners))

Figure 4.5: Pseudo-code for finding cleaners

crucial to enable automated search for a patch. To maximize the chance to find at least one cleaner,
findcleaners also considers every individual test as a cleaner candidate, including even both the
polluter and the victim (Line 15).

By considering every test as a cleaner candidate, findcleaners may even find a cleaner that
JUnit would never run between the polluter and the victim. More specifically, when a polluter and
victim are in the same class, findcleaners may find a cleaner consisting of tests from a different
class than the polluter and victim; JUnit will never run this cleaner between the polluter and victim.
findcleaners still searches for such cleaners, because their code can be used by Patcher.

For each cleaner candidate, findcleaners runs the polluter, the cleaner candidate, and then the
victim, checking whether the victim passes in this test order. If the victim passes, then the cleaner
candidate is an actual cleaner; findcleaners proceeds to delta debug the cleaner candidate to find
the minimal test order (Line 23), with the delta debugging criterion being that running the polluter,

64

1 def patch(order, helpertests):
2 stmts = []
3 # Grab statements from helper methods, including setups and teardowns
4 for h in helpertests:
5 stmts += get_setup(h) + get_body(h) + get_teardown(h)
6

7 # Create a method within the last helper’s class with these statements
8 patchmethod = insert_new_method(test_class(helpertests[-1]))
9

10 # Insert call to patchmethod at start of flaky test (last test in order)
11 insert_call_at_start(patchmethod, order[-1])
12

13 # Delta debug statements such that the order (that was failing) can pass
14 minimalstmts = deltadebug(stmts, lambda s: patchmethod.setbody(s).compile()
15 and run(order) == PASS)
16

17 patchmethod.setbody(minimalstmts)
18 return patchmethod

Figure 4.6: Pseudo-code for finding a patch

the subsequence from the cleaner, and the victim passes.
If the FIND ALL option is not set, then the first cleaner found is returned. Otherwise, findcleaners

checks the remaining cleaner candidates, for the set of all unique cleaners. We use this option to
find all cleaners as part of our evaluation (Section 4.4); our results suggest that finding just a few
cleaners suffices.

Minimizer takes the returned cleaners from findcleaners and adds them to a map from found
polluters to found cleaners (Line 27 in Figure 4.4). The final return value for Minimizer is a tuple
of (1) the type of the order-dependent test (victim or brittle), (2) the polluters or state-setters for the
order-dependent test, and (3) the map from polluters to cleaners (empty if the order-dependent test
is a brittle). These values in the returned tuple are then used by the next component, the Patcher.

4.2.2 Patcher

Patcher automatically recommends patches for fixing an order-dependent test using code from
helpers. Patcher takes as input (1) the minimal test order where the order-dependent test fails: for
a victim, this order is the polluter followed by the victim, and for a brittle, this order is just the
brittle; and (2) a helper for the order-dependent test (note that a helper can consist of multiple
tests). Figure 4.6 shows the pseudo-code for Patcher.

First, Patcher obtains all of the statements from the tests in the helper (Line 5). These state-
ments come from not just the body of the test itself but also from all the setup and teardown
methods associated with the test class of the test. We use JavaParser [31], a library for parsing Java

65

1 // Victim (in ShutdownListenerManagerTest class)
2 @Test
3 public void assertIsShutdownAlready() {
4 // Call to patch method
5 new FailoverServiceTest().patch();
6 ...
7 }
8+ // Starting patch method (in FailoverServiceTest class)
9+ public void patch() {

10+ // statements from @BeforeClass or @Before
11+ ...
12+ // 13 statements from cleaner, assertGetFailoverItems
13+ ...
14+ JobRegistry.getInstance().shutdown("test_job");
15+ // statements from @AfterClass or @After
16+ ...
17+ }

Figure 4.7: Starting code of Patcher for example in Figure 4.1

source code, to obtain these statements. Patcher keeps these statements in the order that JUnit runs
them in (i.e., statements in @Before run first, then statements in the test, and lastly, statements in
@After). More specifically, get setup obtains the statements from the setup methods (annotated
with @BeforeClass or @Before in the test class or super-classes), get body obtains all statements
in the helper test’s body, and get teardown obtains statements from the teardown methods (anno-
tated with @AfterClass or @After in the test class or super-classes). If the helper test method’s
@Test annotation is parameterized with the optional expected [32], which indicates that the test
expects a particular exception to be thrown for it to pass, then get body also wraps the statements
from the test in an appropriate try-catch block.

Next, Patcher adds code to run the helper code before the order-dependent test in two steps. First,
Patcher creates an empty method, referred to as the patch method, to store all of the statements
from the helper (Line 8). Second, Patcher inserts a call to the patch method at the start of the
order-dependent test (Line 11). The inserted code creates an instance of the test class using the
default constructor and uses that instance to call patch. Note that the code shows inserting this call
at the start of the order-dependent test, but for a victim, the call can also be inserted at the end of
the polluter. Users can configure Patcher to insert the patch at the beginning of the order-dependent
test, or at the end of the polluter for victims.

Figure 4.7 shows an example of the starting code to be minimized by Patcher. This code
is adapted from the example in Figure 4.1. Line 9 shows the declaration of the new patch

method. The body of the patch method contains all of the statements from (1) the setup method of
FailoverServiceTest, (2) the cleaner test body (assertGetFailoverItems), and (3) the tear-

66

1 // Victim (in ShutdownListenerManagerTest class)
2 @Test
3 public void assertIsShutdownAlready() {
4+ // Call to patch method
5+ new FailoverServiceTest().patch();
6 ...
7 }
8+ // Final patch method (in FailoverServiceTest class)
9+ public void patch() {

10+ JobRegistry.getInstance().shutdown("test_job");
11+ }

Figure 4.8: Final code of Patcher for example in Figure 4.1

down method of FailoverServiceTest. The inserted line (Line 5) calls patch using a new
instance of the helper’s test class.

Finally, Patcher delta debugs the statements from the helper to find the minimal list of state-
ments that can make the order-dependent test pass when run in the minimal test order (Line 14 of
Figure 4.6); the minimal list of statements is also “1-minimal”, and the finest granularity is at the
level of statements as defined by JavaParser [31]. The delta debugging method is the same general
one as in Minimizer, except this time it is minimizing the list of statements from the helper instead
of test orders. The delta debugging criteria for Patcher are that the patch method compiles and that
the inserted code makes the order-dependent test pass when run in the minimal test order. Patcher
returns the patch method with the minimal list of statements for the order-dependent test to pass.
Figure 4.8 shows the final code after Patcher runs (Line 10) for the example in Figure 4.1.

While the order-dependent test can already be fixed by inserting a call to the patch method at the
start of the order-dependent test, a developer using iFixFlakies can choose to inline the statements
from the patch method directly into the order-dependent test or into the polluter. In some cases,
it may be trivial to just inline these statements into the order-dependent test body. However, in
general, a developer should decide whether it is best to inline the statements of the helper into the
order-dependent test or polluter, or leave them in a separate method. Factors that may influence
the developer’s decision include the applicability of the patch method to other tests and the data
encapsulation of the patch method.

To further refine how statements invoked from helpers fix the order-dependent test, Patcher could
potentially minimize and inline the statements of methods (indirectly) invoked by the helpers. By
minimizing those statements, the developer can be given a patch that is much more specific to the
cause of the flakiness. However, it can be difficult to inline statements from code further away
from the helpers. Also, the number of statements in the final patch will likely increase when
minimizing and inlining statements from methods invoked by helpers. As such, Patcher currently

67

Table 4.1: Breakdown of the 213 likely order-dependent tests from a public dataset [29]

of tests Category
22 in a class with @FixMethodOrder

49 reuseForks is set to false in pom.xml

3 non-order-dependent test
2 out-of-memory when run with iFixFlakies

137 truly order-dependent tests

does not minimize the statements of these invoked methods, and we leave such investigation for
future work.

4.3 EVALUATION SETUP

In our prior work, we released a public dataset of flaky tests, including order-dependent tests [29,
118]. This dataset consists of 213 likely order-dependent tests from 38 Maven modules3; a Maven
module consists of code and tests from the project that the developers organized to be built and
run together. This dataset also has at least one passing and one failing test order for each order-
dependent test.

We implement iFixFlakies as a plugin for Maven [35]. For each module in the Maven project,
iFixFlakies takes as input order-dependent tests in the module to fix along with a passing test order
and failing test order for each order-dependent test. iFixFlakies uses a custom JUnit test runner,
the same from iDFlakies [118], to run the tests, so iFixFlakies currently recommends patches for
only JUnit order-dependent tests in Maven-based projects.

Unfortunately, not all tests in the dataset are well suited for our goal of submitting patches to
developers. First, 22 tests are in test classes annotated with @FixMethodOrder. This annotation
tells JUnit to run the tests within that test class in a fixed order. Since the developers are already
aware of the order-dependent tests in their test suite and have taken measures to address them, we
omit these tests from our evaluation. Second, we also do not consider 49 tests from the dataset that
are in modules that use the Maven Surefire parameter reuseForks to run each test class isolated in
its own JVM. Such isolation removes many of the dependencies between tests and is another way
used by developers to accommodate order-dependent tests.

We run iFixFlakies on all the remaining 142 purported order-dependent tests using the passing
and failing test orders from our dataset. Some order-dependent tests have more than one passing
test order and/or failing test order in the dataset, and we need only one of each for iFixFlakies, so
we arbitrarily choose one of each test order to run iFixFlakies. We configure iFixFlakies to find

3This dissertation evaluates more order-dependent tests than evaluated in the original paper on iFixFlakies [162].

68

all polluters, cleaners, and state-setters for every order-dependent test. For each order-dependent
test, we run iFixFlakies on Microsoft Azure with the virtual machine size Standard D11 v2, which
consists of 2 CPUs, 14GB of RAM, and 100GB of hard disk space.

Overall, we find 137 truly order-dependent tests. 3 tests were mis-classified as order-dependent
(found to be non-order-dependent through our reruns) and, due to the large number of polluters and
cleaners, 2 tests encounter out-of-memory errors from iFixFlakies. Table 4.1 shows the summary
breakdown of the tests from the dataset.

4.4 EVALUATION

To evaluate the effectiveness and efficiency of iFixFlakies, we address the following research
questions:

RQ1 What are the numbers of victims, brittles, polluters, cleaners, and state-setters found by
iFixFlakies among test suites with order-dependent tests? How many order-dependent tests
can iFixFlakies fix?

RQ2 What are the characteristics (e.g., size, uniqueness) of the patches generated by iFixFlakies?

RQ3 How much time does iFixFlakies take to find polluters, cleaners, state-setters, and patches?

The goal of RQ1 is to inform researchers and tool developers on which types of order-dependent
tests and roles of tests are the most common so that they can be prioritized appropriately. With the
main insight of iFixFlakies being to use helpers to propose patches for order-dependent tests, RQ1
also evaluates the frequency of tests that have helpers and therefore the applicability of our insight
on order-dependent tests. The goal of RQ2 is to evaluate the effectiveness of the patches proposed
by iFixFlakies and accepted pull requests created based on those patches. The goal of RQ3 is to
evaluate the efficiency of iFixFlakies and thus how it could be integrated into a practical software
development process.

4.4.1 RQ1: Characteristics of Tests

Table 4.2 shows some summary information about the projects and modules that contain at least
one order-dependent test. For each module, the table lists the total number of tests, the number
of order-dependent tests, and the breakdown of the number of victims and brittles among those
order-dependent tests. Overall, we find that out of 137 order-dependent tests, 120 tests are victims
and 17 tests are brittles, so most order-dependent tests are victims.

69

Table 4.2: Characteristics of the order-dependent tests (OD) in the projects used in our study

Number of Average number of
victims w/ polluters cleaners state-setters

ID Project Name - Module tests OD victims brittles cleaners per victim per victim per brittle
M1 alibaba/fastjson 4,470 11 4 7 1 1.8 279.0 51.6
M2 alien4cloud/alien4cloud 14 1 1 0 1 1.0 1.0 n/a
M3 apache/incubator-dubbo - m1 110 4 4 0 4 2.5 6.8 n/a
M4 - m2 65 4 3 1 3 5.3 152.0 2.0
M5 - m3 21 1 1 0 1 1.0 2.0 n/a
M6 - m4 40 3 3 0 0 1.0 n/a n/a
M7 apache/jackrabbit-oak 3,178 2 1 1 0 1.0 n/a 1.0
M8 apache/struts 61 4 4 0 4 1.0 16.0 n/a
M9 ctco/cukes 14 1 1 0 1 1.0 3.0 n/a
M10 dropwizard/dropwizard 80 1 1 0 1 2.0 16.0 n/a
M11 elasticjob/elastic-job-lite 511 6 6 0 5 1.0 35.8 n/a
M12 espertechinc/esper 49 1 1 0 0 1.0 n/a n/a
M13 fhoeben/hsac-fitnesse-... [37] 269 1 0 1 n/a n/a n/a 4.0
M14 gooddata/GoodData-CL 8 1 0 1 n/a n/a n/a 4.0
M15 hexagonframework/s... [39] 48 1 0 1 n/a n/a n/a 42.0
M16 jfree/jfreechart 2,176 1 1 0 0 1.0 n/a n/a
M17 jhipster/jhipster-registry 53 1 1 0 1 1.0 7.0 n/a
M18 kevinsawicki/http-request 163 28 28 0 28 1.0 1.0 n/a
M19 ktuukkan/marine-api 925 2 2 0 2 1.0 15.0 n/a
M20 openpojo/openpojo 1,185 5 5 0 5 3.0 9.0 n/a
M21 pholser/junit-quickcheck 11 1 0 1 n/a n/a n/a 1.0
M22 sonatype-nexus-... [38] 18 1 1 0 1 1.0 4.0 n/a
M23 spring-projects/spri... [40] 10 1 1 0 1 1.0 5.0 n/a
M24 spring-projects/spring-ws 119 2 2 0 2 1.0 16.0 n/a
M25 tbsalling/aismessages 44 2 2 0 0 1.0 n/a n/a
M26 tools4j/unix4j 288 1 1 0 0 1.0 n/a n/a
M27 undertow-io/undertow 79 1 1 0 1 4.0 12.0 n/a
M28 Wikidata/Wikid... [41] - m1 49 3 0 3 n/a n/a n/a 10.0
M29 - m2 23 2 2 0 2 1.0 1.0 n/a
M30 wildfly/wildfly 82 44 43 1 0 1.0 n/a 36.0

Total/Average per test 14,163 137 120 17 64 1.3 20.0 28.3

Table 4.2 also shows the average number of polluters per victim, cleaners per victim (that have
cleaners), and state-setters per brittle that iFixFlakies finds. Each victim has at least one polluter. In
the final row for averages, we show the averages computed per test (not per module). On average,
we find 1.3 polluters per victim, with a total of 156 polluters for the 120 victims. Note that our
search does not exhaustively find all polluters for a victim; the polluters that it finds depend on
the position of the victim in the failing test order. On average across all victims, the position of
a victim in its failing test order is 55.7% (i.e., a victim is just over the halfway position in the
failing test order). 106 of the victims have just one polluter, while 14 victims have more than one
polluter; the max number of polluters per victim is 6. While a polluter can consist of multiple
tests that only when run together before the victim lead to it failing (Section 4.1), we find that
only 4 polluters consist of more than one test. Because most polluters consist of only one test,
it is practical to assume only one test pollutes the state for a victim, and future work on finding
polluters may benefit from focusing on individual tests.

We hypothesized the existence of cleaners among the order-dependent tests in our prior work [118],

70

and using iFixFlakies we find and show the actual number of cleaners per victim and polluter; dif-
ferent polluters for the same victim may have cleaners in common, but we report each cleaner
separately per polluter for the same victim, because each one indicates a potential different patch
for that victim. Also, the number we report for each module is the average number of cleaners per
victims that have some cleaners (e.g., for alibaba/fastjson, the reported 279.0 is the number
of cleaners for the single victim that has a cleaner). We find that 64 victims of the total 120 vic-
tims have at least one cleaner, so over half of all victims can be fixed using the code from their
corresponding cleaners. Of these 64 victims, 32 have just one cleaner, while the remaining 32
have more than one cleaner. The average number of cleaners per the 64 victims with at least one
cleaner is 20.0. In total, we find 1,282 cleaners for all 64 victims that at least one cleaner, where
each cleaner consists of only one test. As described in Section 4.2.1, when iFixFlakies searches for
cleaners, it considers every test as a potential cleaner, even when JUnit would not run such a test
in between the polluter and victim. From the 64 victims with cleaners, we find seven with cleaners
that JUnit would not run between the polluter and the victim. Interestingly, two of the cleaners are
actually the polluters of a victim as well!

We also find that 13 victims have more than one polluter with cleaners. Interestingly, all pol-
luters of these victims have exactly the same cleaners. Based on these results, a developer should
use iFixFlakies to search for cleaners in just one polluter to know whether a victim likely contains
a cleaner or not. Different cleaners can produce different patches, but we find that the numbers of
statements produced by different cleaners are largely similar (Section 4.4.2).

Concerning state-setters, each brittle must have at least one state-setter, and we find a brittle has
on average 28.3 state-setters. The 17 brittles have a total of 481 state-setters. Because all 17 brittles
can be fixed using code from one of their state-setters, and 64 victims have cleaners, iFixFlakies
can recommend patches for a total number of 81 tests, over half of the 137 truly order-dependent
tests. In total, iFixFlakies finds 1,763 helpers to use to recommend patches for the 81 tests.

A1: Of the 137 order-dependent tests on which we evaluate iFixFlakies, 120 are victims and
17 are brittles. 64 of the victims have cleaners, so combined with the 17 brittles (that must have
state-setters), iFixFlakies can recommend patches for 81 of the 137 order-dependent tests.

4.4.2 RQ2: Characteristics of Patches

Table 4.3 shows the characteristics of the patches that iFixFlakies recommends, with one patch
per helper; we do not show rows for modules with no helpers, namely modules M6, M12, M16,
M25, and M26. For each module, we show the average number of patches per order-dependent test
in that module. We also show the average number of unique patches, based on statements, for each
order-dependent test per module. For example, M8 (apache/struts) has 16.0 patches per order-

71

Table 4.3: Characteristics of patches recommended by iFixFlakies; for each module, averages per
order-dependent test are shown

First Patch All Patches
Unique # Unique Avg. Avg. % Stmts Avg. Avg. % Stmts

ID # Patches Patches Patch Sizes # Stmts from Original # Stmts from Original
M1 80.0 8.9 1.9 1.1 21.4% 2.0 40.4%
M2 1.0 1.0 1.0 1.0 16.7% 1.0 16.7%
M3 6.8 2.2 1.0 7.0 65.8% 5.4 38.6%
M4 114.5 3.5 1.0 1.5 12.6% 1.0 8.2%
M5 2.0 2.0 2.0 5.0 71.4% 4.5 69.0%
M7 1.0 1.0 1.0 2.0 28.6% 2.0 28.6%
M8 16.0 2.0 2.0 2.0 13.3% 4.1 8.0%
M9 3.0 2.0 1.0 1.0 14.3% 1.0 14.3%
M10 16.0 8.0 4.0 2.0 25.0% 4.5 32.6%
M11 35.8 5.8 2.8 1.2 15.0% 1.5 15.3%
M13 4.0 2.0 1.0 2.0 25.0% 2.0 25.9%
M14 4.0 3.0 2.0 1.0 20.0% 2.0 22.2%
M15 42.0 16.0 10.0 4.0 66.7% 6.2 80.9%
M17 7.0 6.0 5.0 10.0 100.0% 7.6 83.9%
M18 1.0 1.0 1.0 1.0 16.7% 1.0 16.7%
M19 15.0 1.0 1.0 1.0 25.0% 1.0 22.4%
M20 27.0 7.8 1.0 1.0 12.9% 1.0 13.8%
M21 1.0 1.0 1.0 1.0 25.0% 1.0 25.0%
M22 4.0 4.0 3.0 4.0 80.0% 4.0 65.0%
M23 5.0 3.0 3.0 2.0 66.7% 6.2 60.0%
M24 16.0 9.0 5.5 9.0 90.9% 7.6 63.1%
M27 12.0 9.0 4.0 1.0 20.0% 2.7 32.5%
M28 10.0 2.7 2.0 1.7 17.2% 1.6 18.2%
M29 1.0 1.0 1.0 1.0 11.1% 1.0 11.1%
M30 36.0 8.0 4.0 13.0 86.7% 1.9 14.4%
Average 21.8 3.6 1.7 2.0 25.9% 2.3 30.2%

dependent test, but only 2.0 unique patches per order-dependent test. Overall, while iFixFlakies
recommends, on average, 21.8 patches for each order-dependent test across all modules, only 3.6
are actually unique. The overall average in the final row is the average per test across all modules,
not the (unweighted) average of averages per module (and some modules have more than one
order-dependent test with a patch).

Table 4.3 also shows the average number of unique patch sizes among all patches for each order-
dependent test per module; several patches with different statements can have the same number of
statements. If the patch size is the most important for a good patch, then it suffices to find just one
patch of a certain size instead of finding all the different patches of that size. With only 1.7 unique
patch sizes per order-dependent test on average, many patches actually have the same size.

Table 4.3 also shows some statistics about the sizes of patches for only the first patch (from
iFixFlakies trying the first cleaner of the first polluter or the first state-setter) and across all patches.

72

Table 4.4: Number of tests addressed by pull requests (PRs) based on iFixFlakies patches.

of Test Fixed by
ID Pending PRs Accepted PRs Patcher
M1 1 7 8
M2 0 1 1
M3 0 2 2
M4 0 4 4
M5 0 1 1
M7 1 0 1
M8 0 4 4
M9 1 0 1
M10 0 1 1
M11 0 5 5
M13 0 1 1
M14 1 0 1
M15 1 0 1
M18 28 0 28
M19 0 2 2
M20 4 1 5
M21 0 1 1
M22 1 0 1
M23 0 1 1
M24 2 0 2
M27 0 1 1
M28 0 3 3
M29 0 2 2
M30 0 1 1
Total 40 38 78

The table shows the average number of statements and the average percentage of the number
of statements w.r.t. the number of statements in the original helper (Section 4.2.2). Across all
patches, iFixFlakies recommends a patch with only 2.3 statements on average, and these statements
comprise only 30.2% of the statements in the original patch method. In fact, of the 1,763 total
patches, 1,147 (65.1%) contain just one statement! When we look into the spread of the patch
sizes per order-dependent test, we find that, on average, each order-dependent test has around 90%
of their patches with the same size, most often being the smallest size. For example, the average
number of statements in the first patch (2.0) is almost equal to the average number of statements
across all patches (2.3). The results suggest that iFixFlakies should search for a few helpers, but
not all of them, because the majority of the helpers lead to the same size of patches.

73

Submitted Patches We submitted pull requests for 78 of the 81 order-dependent tests with
helpers; 3 of the 81 had already been fixed before we submitted pull requests. Table 4.4 shows
the breakdown of the tests corresponding to our pull requests. Developers already accepted pull
requests for 38 tests.

While our pull requests are based on the patches generated by iFixFlakies, we sent patches for
33 exactly as iFixFlakies recommended, and the remaining 45 required small, manual changes. For
18 of the changed fixes, the change involved just putting shared code of different order-dependent
tests into one setup/teardown method. For one test, a brittle, from our manual inspection, we
find that the real problem with the test is actually a developer typo. Based on this inspection, we
find it more appropriate to make the typo fix rather than include the extra code that iFixFlakies
recommends. When we had to make changes to the patch for the pull requests, the effort was
roughly 1-3 minutes per patch, mostly refactorings or simple changes to match the style of the
existing code. Existing techniques and tools [45, 47, 166, 172] could help with such manual
effort. We believe that developers using iFixFlakies could use such tools for more automation
but still examine the patches and manually apply small changes if necessary. We make available
the patches that iFixFlakies generates, a more detailed breakdown describing the changes that we
made to the patches, and links to the corresponding pull requests on our website [30].

Because iFixFlakies fixes an order-dependent test using statements from a helper, the recom-
mended patches may reduce the order-dependent test’s fault-detection capability, i.e., make the
test miss a fault. However, if a patch does reduce an order-dependent test’s fault-detection capa-
bility, then the passing test order in which iFixFlakies (may have) found the helper could likely
miss the fault as well. iFixFlakies assumes that each passing test order is correct, and the failing
test order indicates a fault in the test code, not a fault in the code under test. We do not believe
that the scenario where the failing test order indicates a fault in the code under test actually oc-
curred in our evaluation, particularly because developers did not reject our pull requests to fix the
order-dependent tests.

It should be noted that for M30 (wildfly/wildfly), iFixFlakies actually helps fix victims with-

out cleaners as well! None of the 43 victims have a cleaner. However, they all share the same
polluter, and that polluter is itself the single brittle that iFixFlakies finds. When we apply a recom-
mended patch for the brittle, not only is the brittle fixed, but all of the victims are also fixed. This
example showcases one of the complexities of order-dependent tests and how iFixFlakies can even
help fix order-dependent tests that do not have helpers themselves. We do not count these 43 tests
as fixed in our evaluation, because iFixFlakies fixes these tests indirectly.

A2: iFixFlakies recommends 21.8 patches per order-dependent test, with only 3.6 unique patches
and 1.7 patch sizes per order-dependent test. Of the GitHub pull requests we sent for 78 order-
dependent tests, developers have accepted pull requests for 38 tests, with none rejected so far.

74

Table 4.5: Average time in seconds that iFixFlakies takes; ‘*’ denotes that the time includes finding
some test(s) with no cleaner

Test suite Avg. time to find first Avg. time to find all
ID time polluter cleaner state-setter patch polluters cleaners state-setters patches
M1 203 92 *523 42 299 113 *1,443 1,748 25,424
M2 1 17 9 n/a 76 17 48 n/a 76
M3 8 22 52 n/a 294 48 465 n/a 2,473
M4 206 143 178 21 130 389 7,089 39 54,856
M5 1 2 4 n/a 395 2 25 n/a 572
M6 3 19 *104 n/a n/a 19 *104 n/a n/a
M7 189 218 *5,710 50 416 218 *5,710 50 416
M8 4 13 11 n/a 411 13 159 n/a 14,478
M9 2 6 8 n/a 47 6 44 n/a 230
M10 7 36 16 n/a 714 57 589 n/a 4,960
M11 24 45 *293 n/a 258 45 *1,434 n/a 11,854
M12 11 28 *82 n/a n/a 28 *82 n/a n/a
M13 3 9 2 n/a 291 33 *8 n/a 619
M14 1 n/a n/a 3 33 n/a n/a 14 258
M15 1 n/a n/a 20 114 n/a n/a 485 5,018
M16 22 16 *1,695 n/a n/a 16 *1,695 n/a n/a
M17 3 10 75 n/a 419 10 216 n/a 493
M18 2 15 5 n/a 56 15 227 n/a 56
M19 1 14 5 n/a 50 14 675 n/a 756
M20 21 47 53 n/a 53 95 3,125 n/a 1,455
M21 7 n/a n/a 12 76 n/a n/a 12 76
M22 3 32 25 n/a 169 32 41 n/a 660
M23 1 20 19 n/a 93 20 85 n/a 406
M24 2 15 4 n/a 139 15 139 n/a 1,766
M25 1 5 *34 n/a n/a 5 *34 n/a n/a
M26 5 35 *535 n/a n/a 35 *535 n/a n/a
M27 17 32 79 n/a 232 109 1,025 n/a 2,617
M28 3 n/a n/a 8 43 n/a n/a 70 416
M29 1 2 3 n/a 36 2 24 n/a 36
M30 3 21 *114 11 463 21 *114 345 4,749

Average 25 28 154 27 160 38 638 837 7,238

4.4.3 RQ3: Performance

Table 4.5 shows the time iFixFlakies takes to find polluters, cleaners, and state-setters, along
with the time to create patches. The table shows for each module the average time (across all
order-dependent tests in the module) that iFixFlakies takes to find/create (1) the first polluter,
cleaner, state-setter, and patch; and (2) all polluters, cleaners, state-setters, and patches. The time
to create patches assumes that a helper has been found and does not include the time to find the
helper. As a reference for the time taken by iFixFlakies, the table shows the time to run each
module’s test suite.

Effective use of iFixFlakies would only require finding the first polluter and cleaner (for a vic-
tim) or state-setter (for a brittle) so that iFixFlakies can recommend a patch (Section 4.4.2). If the
victim has more than one polluter, then the time for the first cleaner is for the first cleaner of the
first polluter. Similarly, the time to the first patch for such a victim is then the patch created from
the first cleaner for the first polluter. If the victim has no cleaners, the table reports the time taken
by iFixFlakies to search for cleaners for that first polluter, eventually not finding any; we mark such

75

time with a ‘*’ in the table. The overall average time to find the first polluter, cleaner, state-setter,
and patch is 28, 154, 27, and 160 seconds, respectively. The overall averages are over all order-
dependent tests, not over modules. Likewise, the overall average for running all tests in a module
is “weighted” by the number of tests as well, so modules with more than one order-dependent test
have their test suite time counted multiple times, once per each order-dependent test. Compared to
this weighted average time to run all the tests, the time to find the first polluter, cleaner, state-setter,
and patch is about 1.1x, 6.2x, 1.1x, and 6.4x the time to run all tests, respectively.

On average, iFixFlakies takes 38, 638, 837, and 7,238 seconds to find/create all polluters, clean-
ers, state-setters, and patches, respectively; once again, ‘*’ denotes time that includes searching
for cleaners where there are none. Compared to the time to find/create just the first correspond-
ing test/patch, the time is 1.5x, 25.5x, 33.5x, and 289.5x larger. The average time for finding all
state-setters is particularly larger than the time for finding the first state-setter due to the large
number of state-setters in M1 (alibaba/fastjson). The average time for creating all patches is
also particularly larger due to the large number of helpers (one per patch).

Note that iFixFlakies performance can be improved, e.g., Patcher could modify the bytecode
of the patch code in-memory [72, 123] to avoid compilation during delta debugging, or could
instrument the code to allow turning statements on or off during delta debugging similar to meta-
mutants [110, 173]. In general, considering the large amount of time to create all patches and there
being fewer unique patches than all patches, developers should not use iFixFlakies to create all
patches using all helpers for each order-dependent test; obtaining just a few should suffice.

Overall, the average end-to-end time for iFixFlakies to try to create a patch for an order-
dependent test is 256 seconds; the end-to-end includes the time to find the first helper (including
the time to find the first polluter for victims) and then to create the corresponding patch. This end-
to-end time also includes the cases where an order-dependent test has no cleaner, and iFixFlakies
spends time looking for it. If we split the order-dependent tests between those with and without
helpers, the time to create a patch for an order-dependent test with a helper is 207 seconds, while
the time to fail to create a patch for one without a helper is 325 seconds.

A3: iFixFlakies on average takes 28, 154, 27, and 160 seconds to find/create the first polluter,
cleaner, state-setter, and patch, respectively, for an order-dependent test. The times are much
larger when trying to consider all polluters, cleaners, state-setters, and patches. Furthermore,
considering that there are also far fewer unique patches than all patches, we do not recommend
using iFixFlakies to create all patches.

4.4.4 Discussion

Using iFixFlakies, we aim to fix order-dependent tests by modifying test code. However, there

76

are potentially other ways to address the problem of order-dependent tests. One way is to enforce
that tests run in a specific order (all the tests in a previously found passing test order) all the time.
Enforcing the order thereby removes any possibility of failing test orders for order-dependent
tests, and the only reason for a failure should be due to the changes developers make to the code.
However, such an approach does not ensure tests can be run independently, which in turn makes
other testing tasks more difficult. For example, test parallelization becomes more difficult if there
is no guarantee that tests can have the correct result when they are run on any machine with any
other tests; preventing order-dependent test failures when using test parallelization requires extra
effort [119]. Debugging also becomes more difficult if tests must always run in a specific order,
because developers must then run all the tests (at least up to the failing test) as they iteratively try
to debug any test failures.

Another approach to addressing the problem of order-dependent tests is to always run tests
isolated from one another, e.g., run each test in its own process. Most order-dependent tests are
victims, which fail due to polluters, so isolation can naturally remove this state pollution between
the polluter and the victim. However, isolation adds extra overhead. Bell and Kaiser [48] found
that running JUnit tests in their own JVM processes adds on average a 618% overhead. Having
such high overheads every time tests are run, e.g., after every change as in regression testing, adds
tremendous cost to the development process.

4.5 THREATS TO VALIDITY

The results of our study concerning the frequency of victims, brittles, polluters, cleaners, and
state-setters may not generalize to other projects. We attempt to mitigate this threat by using a
dataset of popular and diverse projects from our prior work [118]. We generated this dataset of
order-dependent tests using 13 projects from earlier work on flaky tests [50], and 150 Java projects
deemed the most popular on GitHub [28] based on the number of stars that the projects have.
Furthermore, iFixFlakies itself or tools that it uses (e.g., JavaParser [31]) may have faults that
could have affected our results. We used extensive logging in iFixFlakies, and at least two people
(among the dissertation author and collaborators) reviewed iFixFlakies’s code and logs.

The metrics that we use to evaluate the patches that iFixFlakies creates, e.g., patch size and
uniqueness, may not be the most important metrics for determining the quality of patches. Other
important metrics include the time taken to run the patched-in code. The patches that iFixFlakies
recommends may also not lead the order-dependent test to pass for test orders other than the failing
test orders that iFixFlakies checks. To mitigate these two threats, we submitted pull requests for
the patches that iFixFlakies recommends. So far, developers have already accepted pull requests

77

for 38 order-dependent tests, and the rest are pending with none rejected.

4.6 SUMMARY

We present iFixFlakies, a framework for automated fixing of order-dependent tests. Our main
insight for iFixFlakies is that test suites often have helpers whose code can help fix order-dependent
tests. iFixFlakies searches for helpers and uses their code to propose relatively small patches for
order-dependent tests. Our evaluation on 137 order-dependent tests from a public dataset shows
that iFixFlakies can automatically recommend patches for 81 of 137 tests. The recommended
patches are effective, with 65.1% of them having just one statement. Also, iFixFlakies is efficient,
requiring only 207 seconds on average to produce the first patch for an order-dependent test with a
helper. The effectiveness and efficiency of iFixFlakies show promise that it may be integrated into
a practical software development process. We used patches recommended by iFixFlakies to open
pull requests for 78 order-dependent tests (3 of the 81 had already been fixed); developers have
already accepted pull requests for 38 tests, and the remaining ones are pending but none have been
rejected.

78

CHAPTER 5: RELATED WORK

This chapter covers work related to traditional techniques to reduce the cost of regression testing
(Section 5.1), continuous integration builds (Section 5.2), flaky tests (Section 5.3), and mutation
testing (Section 5.4).

5.1 REGRESSION TESTING TECHNIQUES

Test-suite reduction, regression test selection, and test-case prioritization are traditional ap-
proaches to reducing the cost of regression testing [183]. We describe work in each of these
three areas in more detail.

5.1.1 Test-Suite Reduction (TSR)

Test-suite reduction (TSR) is a well-studied research topic [183], and over the years researchers
have proposed various ways to create reduced test suites [53, 57, 60, 61, 71, 78, 86, 92, 104,
109, 125, 129, 182, 183, 191] and to evaluate the effectiveness of TSR techniques [148, 151,
176, 177, 188]. All these studies used either seeded faults or mutants to evaluate fault-detection
effectiveness. We find that the Failed-Build Detection Loss (FBDL) for a reduced test suite is much
higher than its mutant-detection loss. Our definition of fault-detection effectiveness follows the
approach from Wong et al. [176] and Rothermel et al. [151]; while they measured the percentage
of seeded faults detected by the original test suite that the reduced test suite does not detect, we
measure the percentage of failed builds where the reduced test suite does not detect all the faults
detected by the original test suite. Since their experiments had one seeded fault per faulty program
version, their evaluation matches our FBDLS , where all test failures are mapped to the same fault.
However, we have multiple mappings from test failures to faults in FFMap, allowing us to consider
multiple faults in a build at a time, which is required when using test failures from real-world
software evolution.

In our previous work [158], we studied the effects of software evolution on TSR. We measured
the mutant-detection loss of the reduced test suite at an early, passed version where TSR is per-
formed and the mutant-detection loss at a future, passed version. We found that the loss remains
roughly the same, indicating TSR may be predictable, suggesting that the reduced test suite re-
mains as effective as before even as software evolves. In this dissertation, we instead measure
missed failed builds based on historical project build logs. Moreover, we evaluate whether the
traditional TSR metrics are good predictors of the missed failed builds. Unlike prior work, we find

79

that TSR is unpredictable and can lead to a large percentage of missed failed builds in the future.
Other work has also studied prediction in the context of regression testing, but for regression test
selection [94, 146, 147] as opposed to TSR.

Instead of removing tests from a test suite as in TSR, prior work has also proposed removing
statements or minimizing test inputs as to reduce the cost of testing; such an approach is known
as test-case reduction. Originally, reducing individual test cases was used for debugging purposes,
such as proposed by delta debugging [184], to create smaller test cases that can reproduce a failure
from the original test case. Groce et al. [79] later proposed such a reduction for speeding up regres-
sion testing by reducing the test case while still satisfying some test-requirements, such as cover-
age. We later followed up on Groce et al.’s work by proposing inadequate test-case reduction that
reduces test cases to satisfy only a configurable percentage of the specified test-requirements [44].

5.1.2 Regression Test Selection (RTS)

Given a program change, regression test selection (RTS) techniques aim to select a subset of
affected tests [66, 74, 93, 95, 141, 150, 183]. The key idea of prior RTS techniques is to maintain
some metadata, such as statements covered by tests on the previous version, and leverage this
metadata to select a subset of tests that are affected by the change. Most proposed techniques
collected the metadata dynamically, i.e., instrumenting test runs to determine what parts of the
code each test covers and using that information to determine what tests to run in the future [74,
121, 141, 150, 185]. We recently proposed STARTS [121, 122], a technique for performing RTS
statically by determining the relationship between tests and classes being tested through a static
analysis of the class-level dependency graph. However, a pure static analysis can potentially miss
dependencies reachable through dynamic language features such as reflection; we later extended
STARTS to account for reflection [161]. The number of different RTS techniques is large and
growing. Rothermel and Harrold [149] established a framework for analyzing RTS techniques,
and we recently proposed a framework to test implementations of RTS techniques [192].

While early work on RTS used fine-grained metadata such as what statements are covered by
which tests, Harrold et al. [93] specify that RTS can be based on coarser-grained entities, such
as methods, classes, or modules. Recent work by Gligoric et al. [73, 74] found dynamic RTS
that tracks dependencies dynamically from test runs at the coarse granularity level of classes to
be effective. We also similarly found class-level static RTS to be more effective than using finer
granularities in our prior work comparing static RTS at different levels of granularity [121].

In our other prior work [165], we compared a class-level RTS technique against module-level
RTS on open-source projects using the Maven build system on Travis CI, finding that the two
have similar costs in terms of regression testing time while not missing to select tests that fail

80

due to changes. Vasic et al. [175] also evaluated class-level and module-level RTS, but for .NET
applications, and they proposed a hybrid technique that runs a class-level RTS technique on top of
an incremental build system that does module-level RTS. Gyori et al. [83] studied class-level RTS
compared against an even coarser-granularity of RTS, at the project level, where different open-
source projects, each written by different teams of developers, depend on one another in a very
large open-source ecosystem. They find that class-level RTS can provide additional opportunities
for more efficient testing at this scale.

Researchers have also proposed RTS techniques that do not rely on directly analyzing changes
and their relationship with the tests. Herzig et al. [98] proposed an RTS technique based on a
cost model. Their technique dynamically skips tests when the expected cost of running a test
exceeds the expected cost of not running the test. All tests are still run at least once before the
code is released, so fault detection is merely delayed (but can potentially be more costly to fix).
Machalica et al. [130] recently proposed selecting tests based on historical failure information.
The goal is to not select all tests that can be affected by the changes, but rather to predict what
tests would likely fail and select to run only those tests. Elbaum et al. [65] also proposed using
historical information to select what tests to run in an industrial setting at Google, though they
combine such an RTS technique with test-case prioritization.

5.1.3 Test-Case Prioritization (TCP)

Test-case prioritization (TCP) aims to run tests in a more optimized order, one that runs likely-
to-fail tests (which detect faults) earlier [183]. Unlike TSR or RTS, TCP does not reduce the
absolute cost of regression testing by running fewer tests. Instead, the idea behind TCP is that
developers can early on observe what failures occur and begin to debug even as the remaining tests
continue to run. As such TCP guarantees safety in terms of not missing to run a failing test that
indicates a fault, because TCP eventually does run all tests.

Most prior work has implemented techniques based on test coverage (e.g., prioritizing tests
that cover more) and diversity (e.g., ordering tests such that similar tests in terms of coverage
are ordered later), and investigated characteristics that can affect TCP effectiveness such as test
granularity or number of versions from original point of prioritization [97, 106, 124, 126, 127,
186]. Recent work showed that traditional coverage-based techniques may not be cost effective at
running the tests that detect bugs earlier, because they tend to execute long-running tests first [58].
In lieu of coverage-based techniques, some prior work investigated TCP using information retrieval
(IR) techniques. Saha et al. [155] proposed IR-based TCP that compares the textual similarity
between recent changes and test code as to rank the tests, evaluating on Java projects. Mattis and
Hirschfeld [131] also evaluated IR-based TCP similarly for Python projects. We later conducted

81

a deeper analysis of IR-based TCP on Java projects by investigating the effectiveness of different
configuration options for IR. We also also proposed hybrid TCP techniques that combine IR-based
TCP with historical test information, such as previous test running times and historical test failure
information; the hybrid techniques performed better than the individual techniques that formed
that hybridization [143].

5.2 CONTINUOUS INTEGRATION (CI)

Researchers have recently studied developers’ usage of continuous integration (CI) for both
open-source and industry settings [100, 101]. Given CI’s wide-spread usage, it becomes important
to develop techniques that improve upon CI as a whole, in both testing and in the actual building
of code after changes.

There is a growing body of work on techniques to improve the efficiency of builds [42, 132, 133].
Telea and Voinea [169] developed a tool that decomposes header files (in C/C++ code) to remove
performance bottlenecks. Morgenthaler et al. [136] developed a tool that ranks libraries in a build
based on their utilization rank to identify under utilized nodes that can be refactored. There has also
been a body of work on predicting build outcomes without running the build [96, 107, 138, 180].
The goal of predicting a build outcome is to quickly determine if it is worthwhile to actually run
the build, so then developers can entirely skip to run a build if it is predicted to pass (because
passing builds would not indicate any faults in the code that developers would need to address).

Our work in TestOptimizer is closely related to work by Vakilian et al. [174] that attempts
to decompose build nodes into two or more nodes to improve build times. Their work shares
a similar goal with TestOptimizer, i.e., avoid unnecessary building of nodes when dependencies
change. TestOptimizer substantially differs from their technique due to the following reasons.
First, we focus on moving individual tests from their current test nodes into either other existing
or new test nodes. We allow movements to existing test nodes, as opposed to Vakilian et al.’s
technique that only creates new nodes. Second, because test nodes are essentially the leaf nodes
in the dependency graph, we do not have to update dependencies for any child nodes. Third,
Vakilian et al.’s technique does not take historical information into consideration, i.e., they assume
all nodes are built in every build. In contrast, we take historical information into consideration to
ensure that tests are moved away from test nodes that have a high historical build count. Finally,
their technique identifies dependencies statically, whereas our technique uses dynamic analysis
(code coverage), which is more precise. Although it would be ideal to evaluate both techniques
on common evaluation projects, such an evaluation is not practical because both techniques use
proprietary applications and target different technologies.

82

5.3 FLAKY TESTS

Luo et al. [128] reported the first extensive academic study of flaky tests; they categorized flaky
tests by studying historical commits of fixes for flaky tests and found order-dependent tests to be
among the top three most common categories. Gao et al. [70] studied flaky GUI tests, and they
found tests that change the configurations for later-run tests, resulting in GUI order-dependent
tests. Thorve et al. [170] studied flaky tests found in Android apps, leading to different root causes
found in prior work. In our recent work [63], we similarly studied flaky tests in applications
that use probabilistic programming or machine learning frameworks, finding that randomness is a
bigger cause of flakiness in this domain.

5.3.1 Detecting Flaky Tests

In addition to studying flaky tests, researchers have also proposed techniques to detect different
types of flaky tests early on, so developers know ahead of time that there can be failures due to
these detected flaky tests. Bell et al. [50] proposed DeFlaker, a technique for detecting when a test
failure is a flaky test failure by checking the coverage of failed tests against the recent changes.
We previously proposed a technique NonDex [82, 159] for detecting tests that fail due to assuming
deterministic implementations of nondeterministic specifications. We also proposed a technique
FLASH [63] that detects flaky tests due to differences in numbers produced by random number
generators by rerunning tests while controlling for the seeds to random number generators.

Focusing on just order-dependent tests, Zhang et al. [190] proposed DTDetector, which de-
tects order-dependent tests through randomizing the test orders. We followed up and released
iDFlakies [118], a framework for detecting order-dependent tests by randomizing test orders, sim-
ilar to DTDetector. Along with the framework, we also released a dataset [29] of flaky tests found
using iDFlakies; almost half of the flaky tests found are order-dependent tests, and we evaluate
iFixFlakies using these tests.

Huo and Clause [103] studied tests whose assertions depend on input data not controlled by the
tests themselves. They called these assertions “brittle”, inspiring our naming of brittles as tests
with similar kinds of assertions1. The difference is that their brittle assertions may fail due to
the tests using wrong input data that they do not control, while our brittles are tests that always

fail when run in isolation (without a state-setter running before them). We previously proposed
a technique, PolDet [84], for detecting tests that change shared state so the state at the end of
their run differs from the state at the start of their run. In that work, we also called these tests
“polluters”, and the polluters from this dissertation are similar in nature. The difference is that

1The term “brittle” test was also used to describe GUI tests that fail due to changes in the interface [102, 171, 181].

83

the polluters from that prior work may pollute the state so other tests (potentially future ones) fail,
while our polluters in this dissertation always pollute the state for some existing victims. Bell et
al. [49] proposed a technique, ElectricTest, to detect data dependencies between existing tests in
a test suite, and Gambi et al. [69] followed up on ElectricTest with PraDet, which detects when
dependencies between tests can actually lead to tests failing in different orders.

5.3.2 Debugging, Fixing, and Accommodating Flaky Tests

Besides detecting flaky tests, recent work has started investigated debugging, fixing, and accom-
modating flaky tests. Indeed, Harman and O’Hearn recently called for research to assume all tests
are flaky and modify existing testing to take this assumption into account [91]. Our technique,
iFixFlakies, is the first technique to automatically fix flaky tests, focusing specifically on order-
dependent tests. Bell and Kaiser [48] proposed VMVM, a technique to tolerate order-dependent
tests by restoring the state of the heap between test runs. VMVM adds instrumentation that re-
initializes static fields shared between tests to isolate tests from one another with regards to their
heap state when run in the same JVM. Muşlu et al. [137] proposed an even more extreme technique
for isolation in that each test should not only run in a separate JVM but also in a fresh environment,
e.g., a fresh file system. Bell et al. [50] also evaluated how various forms of isolation can help in
test reruns to detect which test failures are due to flaky tests. Lam et al. [116] proposed RootFinder
for determining the root causes of flaky tests at Microsoft. Building on that work, Lam et al. [117]
later proposed a technique to fix flaky tests due to async waits by searching for suitable times to
wait as to reduce the chance of flakiness. Finally, as developers may not want to fix known order-
dependent tests in their test suite due to the benefits they can provide (sharing resources between
tests without having to reset), we recently proposed enhancing regression testing techniques to
take known test dependencies into account [119].

5.4 MUTATION TESTING

Mutation testing is commonly used in research to evaluate the quality of testing [105]. Re-
searchers have reported strong correlations between mutants and real faults [46, 112]. Researchers
have utilized mutants to generate tests [68, 142] and evaluate testing techniques [79, 126, 158, 164],
such as for test-suite reduction as we do in this dissertation.

There has been much work in developing new tools to perform mutation testing, such as devel-
oping tools for general programming languages like Java [19, 110], for an intermediate representa-
tion like LLVM bitcode [56, 87, 88, 89], or even a universal mutator that aims to provide mutation
testing across a wide variety of programming languages [80].

84

Prior work has also investigated how to improve mutation testing efficiency or effectiveness.
Offutt et al. [139] proposed reducing the number of mutants by finding only a subset of mutation
operators that are sufficient to evaluate mutation score. Just et al. [111] proposed tracking state
infection and propagation at runtime to reduce the time for running tests on mutants. Zhang et
al. [187] leveraged TSR and TCP for faster mutation testing. We previously proposed combining
concepts from approximate computing and mutation testing to improve on both [75]. Building on
ideas from that work, we later evaluated using transformations from approximate computing as
new mutation operators [90]. Mutation testing also can suffer from flaky tests, which can mislead
developers concerning the quality of their test suites, so we proposed techniques to mitigate the
effects of flaky tests on mutation testing [157].

85

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Regression testing is an important part of the software development process, but it suffers from
two main challenges: (1) regression testing is costly, and (2) regression test suites contain flaky
tests. The cost of regression testing is due to large number of tests that have to be run after
every change, and changes happen frequently, so a large amount of machine time is spent on just
running tests. Flaky tests can nondeterministically pass or fail when run on the same version of
code regardless of any changes, so flaky test failures can mislead developers into thinking there
are faults in their changes that they need to debug. This dissertation addresses these challenges
through test-suite transformations that can reduce the cost of regression testing and fix flaky tests.

First, we evaluate a traditional approach to reduce cost by transforming test suites through test-
suite reduction (TSR). TSR removes tests from the test suite that are redundant with others based
on heuristics such as the code coverage of individual tests. While TSR was proposed over two
decades ago, prior work has always evaluated TSR using seeded faults and on a single version of
software. Such evaluation does not indicate how well a reduced test suite performs into the future
after software evolution. Our evaluation of TSR on real-world projects with real software evolution
and test failures shows that reduced test suites computed from traditional TSR techniques are not
as effective on future versions of the projects, and existing TSR metrics are not good predictors of
the effectiveness of reduced test suites.

Second, we propose a different test-suite transformation that moves tests between modules in
projects that use modern module-based build systems. Such a build system allows developers
to distribute their builds and testing, but can lead to inefficiencies in testing due to suboptimal
placement of tests within modules. We propose TestOptimizer to suggest optimal test movements
between modules, and our evaluation on five Microsoft projects shows that the suggestions can
result in a reduction of 21.7 million test executions (17.1%) across those projects.

Third, to address flaky tests, we propose iFixFlakies, a framework for automatically fixing
order-dependent tests, a prominent type of flaky tests. iFixFlakies recommends patches for order-
dependent tests based on the insight that often the logic for fixing these individual tests can be
found among other tests in the test suite. We sent pull requests for 78 order-dependent tests, and
developers accepted pull requests fixing 38 order-dependent tests while the rest remain pending.

6.1 FUTURE WORK

In this section, we describe potential future work building upon topics in this dissertation.
Better heuristics for determining redundant tests: Our evaluation finds that traditional TSR

86

techniques based on code coverage are not effective at creating reduced test suites that detect
faults in future builds. Developing new metrics to determine redundancy could lead to reduced
test suites that that are less likely to miss faults in future builds and therefore more acceptable to
developers.
Better predictors of FBDL: Our evaluation finds that the current metrics researchers use to eval-
uate reduced test suites are not good predictors of these test suites’ FBDL in future builds. New
metrics that better predict FBDL can help developers make the decision of whether to use reduced
test suites or not.
Incremental TestOptimizer suggestion: Instead of running TestOptimizer on the whole test suite,
we can make TestOptimizer incrementally suggest ideal placements for newly added tests.
Split build nodes: TestOptimizer splits test nodes by suggesting a better placement of tests. How-
ever, our evaluation finds that these suggestions sometimes lead to developers modifying build
nodes instead, creating better dependency graphs for future builds. Interesting future work would
be to extend TestOptimizer to suggest how to split build nodes.
Automatic refactoring of nodes: While TestOptimizer suggests placement of tests, it relies on
developers to actually implement the suggestions. Our experience at Microsoft showed that devel-
opers ultimately desire a tool that can automatically implement those suggestions as well, so future
work can explore large-scale automated refactoring techniques [178] that apply those suggestions.
Automatic fixing of different types of flaky tests: iFixFlakies specifically targets order-dependent
tests. However, there are many different types of flaky tests with different causes such as async
wait, concurrency, unordered collections, random number generators, etc. [128]. Given the suc-
cess of iFixFlakies, it should be possible to develop different techniques targeting specific types
of flaky tests. Eventually, if we have a suite of techniques targeting all kinds of flaky tests, we can
help developers completely eliminate flaky tests from their test suites.
Computational science and reproducibility: Code developed by scientists for computational
science experiments, such as for computational physics, currently has challenges in reproducing
results. Our prior work has found that part of the challenge comes from scientists not being trained
in software engineering practice [113]. However, the domain of code they are developing may be
prone to nondeterminism that leads to difficulties in reproducing results, akin to flaky tests. We
should take our work on flaky tests in traditional software to help scientists with their challenges
in reproducibility.

Software continues to be an essential part of our daily lives, and as long as we develop software,
we will need software testing. Regression testing is a crucial part of the software development
process, and this dissertation presented techniques that improve regression testing. In the future,
we expect to see further advancements to reduce the cost of regression testing, make testing more
reliable, improve developer productivity, and overall lead to higher quality software.

87

REFERENCES

[1] “JUnit and Java 7,” http://intellijava.blogspot.com/2012/05/junit-and-java-7.html, 2012.

[2] “Visual Studio Team Test,” https://msdn.microsoft.com/en-us/library/ms379625.aspx,
2012.

[3] “Maintaining the order of JUnit3 tests with JDK 1.7.” https://coderanch.com/t/600985/
engineering/Maintaining-order-JUnit-tests-JDK, 2013.

[4] “VRaptor commit 021d10b7,” https://github.com/caelum/vraptor4/commit/021d10b7,
2013.

[5] “VRaptor commit 49742a2d,” https://github.com/caelum/vraptor4/commit/49742a2d,
2013.

[6] “VRaptor commit b2437ab1,” https://github.com/caelum/vraptor4/commit/b2437ab1,
2013.

[7] “VRaptor Travis CI build #15235447,” https://travis-ci.org/caelum/vraptor4/builds/
15235447, 2013.

[8] “Magellan code coverage framework,” http://research.microsoft.com/en-us/news/features/
magellan.aspx, 2016.

[9] “Bazel,” https://bazel.build, 2017.

[10] “FASTBuild,” http://www.fastbuild.org/docs/home.html, 2017.

[11] “Rapid release at massive scale,” https://engineering.fb.com/web/
rapid-release-at-massive-scale, 2017.

[12] “Z3 theorem prover,” https://z3.codeplex.com, 2017.

[13] “Design patterns implemented in Java,” https://github.com/iluwatar/java-design-patterns,
2018.

[14] “Docker,” https://www.docker.com, 2018.

[15] “JSONLD-JAVA,” https://github.com/jsonld-java/jsonld-java, 2018.

[16] “Maven Git commit ID plugin,” https://github.com/ktoso/maven-git-commit-id-plugin,
2018.

[17] “Multiclass classification,” https://en.wikipedia.org/wiki/Multiclass classification, 2018.

[18] “PIT mutation operators,” http://pitest.org/quickstart/mutators, 2018.

[19] “PIT mutation testing,” http://pitest.org, 2018.

88

[20] “Redline Smalltalk,” https://github.com/redline-smalltalk/redline-smalltalk, 2018.

[21] “Spring Data JDBC generic DAO implementation,” https://github.com/nurkiewicz/
spring-data-jdbc-repository, 2018.

[22] “Swagger Maven Plugin,” https://github.com/kongchen/swagger-maven-plugin, 2018.

[23] “Travis-CI,” https://travis-ci.org, 2018.

[24] “Travis Docker image,” https://hub.docker.com/r/travisci, 2018.

[25] “VRaptor,” https://github.com/caelum/vraptor4, 2018.

[26] “Elastic-Job,” https://github.com/elasticjob/elastic-job-lite, 2019.

[27] “Elastic-Job pull request 592,” https://github.com/elasticjob/elastic-job-lite/pull/592, 2019.

[28] “GitHub,” https://github.com, 2019.

[29] “iDFlakies: Flaky test dataset,” https://sites.google.com/view/flakytestdataset, 2019.

[30] “iFixFlakies framework,” https://sites.google.com/view/ifixflakies, 2019.

[31] “JavaParser,” http://javaparser.org, 2019.

[32] “JUnit expected annotation,” https://junit.org/junit4/javadoc/4.12/org/junit/Test.html, 2019.

[33] “WildFly application server,” https://github.com/wildfly/wildfly, 2019.

[34] “WildFly bug report,” https://issues.jboss.org/browse/WFLY-11323, 2019.

[35] “Apache Maven project,” https://maven.apache.org, 2020.

[36] “Buck: A high-performance build tool,” https://buck.build, 2020.

[37] “HSAC-fitnesse-fixtures,” https://github.com/fhoeben/hsac-fitnesse-fixtures, 2020.

[38] “Nexus repository helm,” https://github.com/sonatype-nexus-community/
nexus-repository-helm, 2020.

[39] “spring-data-ebean,” https://github.com/hexagonframework/spring-data-ebean, 2020.

[40] “Spring Data Envers,” https://github.com/spring-projects/spring-data-envers, 2020.

[41] “Wikidata toolkit,” https://github.com/Wikidata/Wikidata-Toolkit, 2020.

[42] B. Adams, R. Suvorov, M. Nagappan, A. E. Hassan, and Y. Zou, “An empirical study of
build system migrations in practice: Case studies on KDE and the Linux kernel,” in Inter-
national Conference on Software Maintenance, 2012, pp. 160–169.

89

[43] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? A characterization of
open source software repositories,” in International Conference on Program Comprehen-
sion, 2008, pp. 182–191.

[44] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce, “Evaluating non-adequate
test-case reduction,” in International Conference on Automated Software Engineering,
2016, pp. 16–26.

[45] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding conventions,” in
International Symposium on Foundations of Software Engineering, 2014, pp. 281–293.

[46] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation analysis for
assessing and comparing testing coverage criteria,” IEEE Transactions on Software Engi-
neering, vol. 32, no. 8, pp. 608–624, 2006.

[47] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated software transplan-
tation,” in International Symposium on Software Testing and Analysis, 2015, pp. 257–269.

[48] J. Bell and G. Kaiser, “Unit test virtualization with VMVM,” in International Conference
on Software Engineering, 2014, pp. 550–561.

[49] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency detection for safe
Java test acceleration,” in International Symposium on Foundations of Software Engineer-
ing, 2015, pp. 770–781.

[50] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker: Automat-
ically detecting flaky tests,” in International Conference on Software Engineering, 2018,
pp. 433–444.

[51] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing Travis CI and GitHub
for full-stack research on continuous integration,” in Mining Software Repositories, 2017,
pp. 447–450.

[52] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, “The
promises and perils of mining Git,” in Mining Software Repositories, 2009, pp. 1–10.

[53] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for all-uses test suite reduc-
tion,” in International Conference on Software Engineering, 2004, pp. 106–115.

[54] H. Borges, A. Hora, and M. T. Valente, “Predicting the popularity of GitHub repositories,”
in International Conference on Predictive Models and Data Analytics in Software Engineer-
ing, 2016, pp. 9:1–9:10.

[55] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do centralized and dis-
tributed version control systems impact software changes?” in International Conference on
Software Engineering, 2014, pp. 322–333.

90

[56] T. T. Chekam, M. Papadakis, and Y. Le Traon, “Mart: A mutant generation tool for LLVM,”
in European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (Tool Demonstrations Track), 2019, pp. 1080–1084.

[57] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How do assertions impact
coverage-based test-suite reduction?” in International Conference on Software Testing, Ver-
ification, and Validation, 2017, pp. 418–423.

[58] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang, “Optimizing test
prioritization via test distribution analysis,” in European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp. 656–667.

[59] T. Y. Chen and M. F. Lau, “Heuristics towards the optimization of the size of a test suite,”
in International Conference on Software Quality Management, 1995, pp. 415–424.

[60] ——, “A new heuristic for test suite reduction,” Journal of Information and Software Tech-
nology, vol. 40, no. 5-6, pp. 347–354, 1998.

[61] ——, “A simulation study on some heuristics for test suite reduction,” Journal of Informa-
tion and Software Technology, vol. 40, no. 13, pp. 777–787, 1998.

[62] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the
practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41, 1978.

[63] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and M. Sasa, “Detecting flaky tests in
probabilistic and machine learning applications,” in International Symposium on Software
Testing and Analysis, 2020, pp. 211–224.

[64] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration: Improving Software Qual-
ity and Reducing Risk. Addison-Wesley Professional, 2007.

[65] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing in
continuous integration development environments,” in International Symposium on Foun-
dations of Software Engineering, 2014, pp. 235–245.

[66] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations of regression test selec-
tion techniques: A systematic review,” in International Symposium on Empirical Software
Engineering and Measurement, 2008, pp. 22–31.

[67] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac, W. Schulte, N. Sanches,
and S. Kandula, “CloudBuild: Microsoft’s distributed and caching build service,” in Inter-
national Conference on Software Engineering Companion, 2016, pp. 11–20.

[68] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” in Interna-
tional Symposium on Software Testing and Analysis, 2010, pp. 147–158.

[69] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,” in International
Conference on Software Testing, Verification, and Validation, 2018, pp. 1–11.

91

[70] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making system user interac-
tive tests repeatable: When and what should we control?” in International Conference on
Software Engineering, 2015, pp. 55–65.

[71] J. Geng, Z. Li, R. Zhao, and J. Guo, “Search based test suite minimization for fault detection
and localization: A co-driven method,” in Search-Based Software Engineering, 2016, pp.
34–48.

[72] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via bytecode mutation,” in
International Symposium on Software Testing and Analysis, 2019, pp. 19–30.

[73] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test selection,” in Interna-
tional Conference on Software Engineering (Tool Demonstrations Track), 2015, pp. 713–
716.

[74] ——, “Practical regression test selection with dynamic file dependencies,” in International
Symposium on Software Testing and Analysis, 2015, pp. 211–222.

[75] M. Gligoric, S. Khurshid, S. Misailovic, and A. Shi, “Mutation testing meets approximate
computing,” in International Conference on Software Engineering (New Ideas and Emerg-
ing Results Track), 2017, pp. 3–6.

[76] Google, “Avoiding flakey tests,” http://googletesting.blogspot.com/2008/04/
tott-avoiding-flakey-tests.html, 2008.

[77] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation for developers,”
in International Conference on Software Engineering, 2014, pp. 72–82.

[78] A. Gotlieb and D. Marijan, “FLOWER: Optimal test suite reduction as a network maximum
flow,” in International Symposium on Software Testing and Analysis, 2014, pp. 171–180.

[79] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause reduction for quick test-
ing,” in International Conference on Software Testing, Verification, and Validation, 2014,
pp. 243–252.

[80] A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang, “An extensible, regular-expression-
based tool for multi-language mutant generation,” in International Conference on Software
Engineering (Tool Demonstrations Track), 2018, pp. 25–28.

[81] J. P. Guilford, Fundamental Statistics in Psychology and Education. McGraw-Hill, 1973.

[82] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov, “NonDex: A tool for detecting
and debugging wrong assumptions on Java API specifications,” in International Symposium
on Foundations of Software Engineering (Tool Demonstrations Track), 2016, pp. 993–997.

[83] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression test selection op-
portunities in a very large open-source ecosystem,” in International Symposium on Software
Reliability Engineering, 2018, pp. 112–122.

92

[84] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting state-polluting tests
to prevent test dependency,” in International Symposium on Software Testing and Analysis,
2015, pp. 223–233.

[85] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Transactions on Software
Engineering, vol. 3, no. 4, pp. 279–290, 1977.

[86] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test suite reduction,” in
International Conference on Software Engineering, 2012, pp. 738–748.

[87] F. Hariri and A. Shi, “SRCIROR: A toolset for mutation testing of C source code and LLVM
intermediate representation,” in International Conference on Automated Software Engineer-
ing (Tool Demonstrations Track), 2018, pp. 860–863.

[88] F. Hariri, A. Shi, H. Converse, D. Marinov, and S. Khurshid, “Evaluating the effects of
compiler optimizations on mutation testing at the compiler IR level,” in International Sym-
posium on Software Reliability Engineering, 2016, pp. 105–115.

[89] F. Hariri, A. Shi, V. Fernando, S. Mahmood, and D. Marinov, “Comparing mutation test-
ing at the levels of source code and compiler intermediate representation,” in International
Conference on Software Testing, Verification, and Validation, 2019, pp. 114–124.

[90] F. Hariri, A. Shi, O. Legunsen, M. Gligoric, S. Khurshid, and S. Misailovic, “Approximate
transformations as mutation operators,” in International Conference on Software Testing,
Verification, and Validation, 2018, pp. 285–296.

[91] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities and open problems
for static and dynamic program analysis,” in International Working Conference on Source
Code Analysis and Manipulation, 2018, pp. 1–23.

[92] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the size of a test
suite,” ACM Transactions on Software Engineering Methodology, vol. 2, no. 3, pp. 270–285,
1993.

[93] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon,
and A. Gujarathi, “Regression test selection for Java software,” in Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 2001, pp. 312–326.

[94] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker, “Empirical studies of a pre-
diction model for regression test selection,” IEEE Transactions on Software Engineering,
vol. 27, no. 3, pp. 248–263, 2001.

[95] M. J. Harrold and M. L. Soffa, “An incremental approach to unit testing during mainte-
nance,” in International Conference on Software Maintenance, 1988, pp. 362–367.

[96] F. Hassan and X. Wang, “Change-aware build prediction model for stall avoidance in con-
tinuous integration,” in International Symposium on Empirical Software Engineering and
Measurement, 2017, pp. 157–162.

93

[97] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon, “Comparing white-box and
black-box test prioritization,” in International Conference on Software Engineering, 2016,
pp. 523–534.

[98] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing less without sacri-
ficing quality,” in International Conference on Software Engineering, 2015, pp. 483–493.

[99] K. Herzig and N. Nagappan, “Empirically detecting false test alarms using association
rules,” in International Conference on Software Engineering, 2015, pp. 39–48.

[100] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in continuous inte-
gration: Assurance, security, and flexibility,” in European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2017, pp. 197–207.

[101] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits of
continuous integration in open-source projects,” in International Conference on Automated
Software Engineering, 2016, pp. 426–437.

[102] C. Hoagland, “Fixing the brittleness problem with GUI tests,” https://www.stickyminds.
com/articles/fixing-brittleness-problem-gui-tests, 2014.

[103] C. Huo and J. Clause, “Improving oracle quality by detecting brittle assertions and unused
inputs in tests,” in International Symposium on Foundations of Software Engineering, 2014,
pp. 621–631.

[104] D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively retaining test
cases during test suite reduction,” IEEE Transactions on Software Engineering, vol. 33,
no. 2, pp. 108–123, 2007.

[105] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”
IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[106] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test case prioritization,”
in International Conference on Automated Software Engineering, 2009, pp. 233–244.

[107] X. Jin and F. Servant, “A cost-efficient approach to building in continuous integration,” in
International Conference on Software Engineering, 2020, pp. 13–25.

[108] D. S. Johnson, “Approximation algorithms for combinatorial problems,” Journal of Com-
puter and System Sciences, pp. 256–278, 1974.

[109] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for modified condi-
tion/decision coverage,” in International Conference on Software Maintenance, 2001, pp.
92–102.

[110] R. Just, “The Major mutation framework: Efficient and scalable mutation analysis for Java,”
in International Symposium on Software Testing and Analysis, 2014, pp. 433–436.

94

[111] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by propagating and par-
titioning infected execution states,” in International Symposium on Software Testing and
Analysis, 2014, pp. 315–326.

[112] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants a
valid substitute for real faults in software testing?” in International Symposium on Founda-
tions of Software Engineering, 2014, pp. 654–665.

[113] M. Krafczyk, A. Shi, A. Bhaskar, D. Marinov, and V. Stodden, “Scientific tests and contin-
uous integration strategies to enhance reproducibility in the scientific software context,” in
International Workshop on Practical Reproducible Evaluation of Computer Systems, 2019,
pp. 23–28.

[114] B. Kunjummen, “JUnit test method ordering,” http://www.java-allandsundry.com/2013/01/
junit-test-method-ordering.html, 2013.

[115] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of regression testing
in practice: A study of Java projects using continuous integration,” in European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, 2017,
pp. 821–830.

[116] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root causing flaky
tests in a large-scale industrial setting,” in International Symposium on Software Testing and
Analysis, 2019, pp. 101–111.

[117] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the lifecycle of flaky
tests,” in International Conference on Software Engineering, 2020, pp. 1471–1482.

[118] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A framework for detect-
ing and partially classifying flaky tests,” in International Conference on Software Testing,
Verification, and Validation, 2019, pp. 312–322.

[119] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-test-aware re-
gression testing techniques,” in International Symposium on Software Testing and Analysis,
2020, pp. 298–311.

[120] W. Lam, S. Zhang, and M. D. Ernst, “When tests collide: Evaluating and coping with the
impact of test dependence,” University of Washington Department of Computer Science and
Engineering, Tech. Rep. UW-CSE-15-03-01, 03 2015.

[121] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive study of
static regression test selection in modern software evolution,” in International Symposium
on Foundations of Software Engineering, 2016, pp. 583–594.

[122] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic Regression Test Selection,” in
International Conference on Automated Software Engineering (Tool Demonstrations Track),
2017, p. 949.

95

[123] X. Li and L. Zhang, “Transforming programs and tests in tandem for fault localization,”
Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 92:1–92:30,
2017.

[124] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test case prioriti-
zation,” IEEE Transactions on Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[125] J.-W. Lin and C.-Y. Huang, “Analysis of test suite reduction with enhanced tie-breaking
techniques,” Journal of Information and Software Technology, vol. 51, no. 4, pp. 679–690,
2009.

[126] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang, “How does regression
test prioritization perform in real-world software evolution?” in International Conference
on Software Engineering, 2016, pp. 535–546.

[127] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical comparison of static and
dynamic test case prioritization techniques,” in International Symposium on Foundations of
Software Engineering, 2016, pp. 559–570.

[128] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in
International Symposium on Foundations of Software Engineering, 2014, pp. 643–653.

[129] X.-y. Ma, B.-k. Sheng, and C.-q. Ye, “Test-suite reduction using genetic algorithm,” in
International Conference on Advanced Parallel Processing Technologies, 2005, pp. 253–
262.

[130] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive test selection,” in Inter-
national Conference on Software Engineering, Software Engineering in Practice, 2019, pp.
91–100.

[131] T. Mattis and R. Hirschfeld, “Lightweight lexical test prioritization for immediate feed-
back,” Programming Journal, vol. 4, pp. 12:1–12:32, 2020.

[132] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of Java build systems,” Empirical
Software Engineering Journal, vol. 17, pp. 578–608, 2012.

[133] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. Hassan, “A large-scale empiri-
cal study of the relationship between build technology and build maintenance,” Empirical
Software Engineering Journal, vol. 20, pp. 1587–1633, 2014.

[134] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco, “Tam-
ing Google-scale continuous testing,” in International Conference on Software Engineering,
Software Engineering in Practice, 2017, pp. 233–242.

[135] J. Micco, “The state of continuous integration testing @Google,” https://static.
googleusercontent.com/media/research.google.com/en//pubs/archive/45880.pdf, 2017.

96

[136] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching for build debt:
Experiences managing technical debt at Google,” in International Workshop on Managing
Technical Debt, 2012, pp. 1–6.

[137] K. Muşlu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit tests,” in European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering,
2011, pp. 496–499.

[138] A. Ni and M. Li, “Cost-effective build outcome prediction using cascaded classifiers,” in
Mining Software Repositories, 2017, pp. 455–458.

[139] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental determina-
tion of sufficient mutant operators,” ACM Transactions on Software Engineering Methodol-
ogy, vol. 5, no. 2, pp. 99–118, 1996.

[140] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size of coverage-based test
sets,” in International Conference on Testing Computer Software, 1995, pp. 111–123.

[141] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large software systems,”
in International Symposium on Foundations of Software Engineering, 2004, pp. 241–251.

[142] M. Papadakis and N. Malevris, “Automatic mutation test case generation via dynamic sym-
bolic execution,” in International Symposium on Software Reliability Engineering, 2010,
pp. 121–130.

[143] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing IR-based test-case
prioritization,” in International Symposium on Software Testing and Analysis, 2020, pp.
324–336.

[144] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities of test-suite evo-
lution,” in International Symposium on Foundations of Software Engineering, 2012, pp.
33:1–33:11.

[145] N. Rachatasumrit and M. Kim, “An empirical investigation into the impact of refactoring
on regression testing,” in International Conference on Software Maintenance, 2012, pp.
357–366.

[146] D. S. Rosenblum and E. J. Weyuker, “Predicting the cost-effectiveness of regression testing
strategies,” in International Symposium on Foundations of Software Engineering, 1996, pp.
118–126.

[147] ——, “Using coverage information to predict the cost-effectiveness of regression testing
strategies,” IEEE Transactions on Software Engineering, vol. 23, no. 3, pp. 146–156, 1997.

[148] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia, “The impact of test
suite granularity on the cost-effectiveness of regression testing,” in International Conference
on Software Engineering, 2002, pp. 130–140.

97

[149] G. Rothermel and M. J. Harrold, “A framework for evaluating regression test selection tech-
niques,” in International Conference on Software Engineering, 1994, pp. 201–210.

[150] ——, “A safe, efficient regression test selection technique,” ACM Transactions on Software
Engineering Methodology, vol. 6, no. 2, pp. 173–210, 1997.

[151] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical study of the effects of
minimization on the fault detection capabilities of test suites,” in International Conference
on Software Maintenance, 1998, pp. 34–43.

[152] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical studies of test-suite
reduction,” Journal of Software Testing, Verification and Reliability, vol. 12, no. 4, pp. 219–
249, 2002.

[153] D. Saff and M. D. Ernst, “Reducing wasted development time via continuous testing,” in
International Symposium on Software Reliability Engineering, 2003, pp. 281–292.

[154] ——, “An experimental evaluation of continuous testing during development,” in Interna-
tional Symposium on Software Testing and Analysis, 2004, pp. 76–85.

[155] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval approach for
regression test prioritization based on program changes,” in International Conference on
Software Engineering, 2015, pp. 268–279.

[156] W. Schulte and C. Prasad, “Taking control of your engineering tools,” IEEE Computer,
vol. 46, no. 11, pp. 63–66, 2013.

[157] A. Shi, J. Bell, , and D. Marinov, “Mitigating the effects of flaky tests on mutation testing,”
in International Symposium on Software Testing and Analysis, 2019, pp. 112–122.

[158] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Balancing trade-offs in test-
suite reduction,” in International Symposium on Foundations of Software Engineering,
2014, pp. 246–256.

[159] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions on deterministic
implementations of non-deterministic specifications,” in International Conference on Soft-
ware Testing, Verification, and Validation, 2016, pp. 80–90.

[160] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating test-suite reduction
in real software evolution,” in International Symposium on Software Testing and Analysis,
2018, pp. 84–94.

[161] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen, “Reflection-aware static
regression test selection,” Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 187:1–187:29, 2019.

[162] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A framework for automat-
ically fixing order-dependent flaky tests,” in European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp. 545–555.

98

[163] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjørner, and J. Czerwonka, “Optimizing test
placement for module-level regression testing,” in International Conference on Software
Engineering, 2017, pp. 689–699.

[164] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining test-suite reduction
and regression test selection,” in European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, 2015, pp. 237–247.

[165] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving regression test selection in
continuous integration,” in International Symposium on Software Reliability Engineering,
2019, pp. 228–238.

[166] D. Silva, R. Terra, and M. T. Valente, “Recommending automated extract method refactor-
ings,” in International Conference on Program Comprehension, 2014, pp. 146–156.

[167] G. Soares, B. Catao, C. Varjao, S. Aguiar, R. Gheyi, and T. Massoni, “Analyzing refactor-
ings on software repositories,” in Brazilian Symposium on Software Engineering, 2011, pp.
164–173.

[168] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development environ-
ment,” in International Symposium on Software Testing and Analysis, 2002, pp. 97–106.

[169] A. Telea and L. Voinea, “A tool for optimizing the build performance of large software code
bases,” in European Conference on Software Maintenance and Reengineering, 2008, pp.
323–325.

[170] S. Thorve, C. Shrestha, and N. Meng, “An empirical study of flaky tests in Android apps,” in
International Conference on Software Maintenance and Evolution (New Ideas and Emerg-
ing Results Track), 2018, pp. 534–538.

[171] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram, D. D. Nagaraj, and
S. Sathishkumar, “Efficient and change-resilient test automation: An industrial case study,”
in International Conference on Software Engineering, 2013, pp. 1002–1011.

[172] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring opportuni-
ties,” IEEE Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[173] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using mutant schemata,” in
International Symposium on Software Testing and Analysis, 1993, pp. 139–148.

[174] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Automated decomposition
of build targets,” in International Conference on Software Engineering, 2014, pp. 123–133.

[175] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs. module-level regression
test selection for .NET,” in International Symposium on Foundations of Software Engineer-
ing (Tool Demonstrations Track), 2017, pp. 848–853.

99

[176] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set minimization on
fault detection effectiveness,” in International Conference on Software Engineering, 1995,
pp. 41–50.

[177] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test set size minimization
and fault detection effectiveness: A case study in a space application,” in International
Computer Software and Applications Conference, 1997, pp. 522–529.

[178] H. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan, “Large-scale automated refac-
toring using ClangMR,” in International Conference on Software Maintenance, 2013, pp.
548–551.

[179] J. Wuttke, K. Muşlu, S. Zhang, and D. Notkin, “Test dependence: Theory and manifesta-
tion,” University of Washington, CSE, Tech. Rep. UW-CSE-13-07-02, 07 2013.

[180] Z. Xie and M. Li, “Cutting the software building efforts in continuous integration by semi-
supervised online auc optimization,” in International Joint Conference on Artificial Intelli-
gence, 2018, pp. 2875–2881.

[181] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust test automation using
contextual clues,” in International Symposium on Software Testing and Analysis, 2014, pp.
304–314.

[182] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,” in International
Symposium on Software Testing and Analysis, 2007, pp. 140–150.

[183] ——, “Regression testing minimization, selection and prioritization: A survey,” Journal of
Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[184] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[185] L. Zhang, “Hybrid regression test selection,” in International Conference on Software En-
gineering, 2018, pp. 199–209.

[186] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap between the total
and additional test-case prioritization strategies,” in International Conference on Software
Engineering, 2013, pp. 192–201.

[187] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired by test prioriti-
zation and reduction,” in International Symposium on Software Testing and Analysis, 2013,
pp. 235–245.

[188] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study of JUnit test-suite
reduction,” in International Symposium on Software Reliability Engineering, 2011, pp. 170–
179.

100

[189] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based mutant selection su-
perior to random mutant selection?” in International Conference on Software Engineering,
2010, pp. 435–444.

[190] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin, “Empiri-
cally revisiting the test independence assumption,” in International Symposium on Software
Testing and Analysis, 2014, pp. 385–396.

[191] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical test suite reduction
techniques,” Journal of Information and Software Technology, vol. 50, no. 6, pp. 534–546,
2008.

[192] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for checking regression test
selection tools,” in International Conference on Software Engineering, 2019, pp. 430–441.

[193] C. Ziftci and J. Reardon, “Who broke the build?: Automatically identifying changes that
induce test failures in continuous integration at Google scale,” in International Conference
on Software Engineering, 2017, pp. 113–122.

101

