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ABSTRACT
We presentObject Equality Profiling(OEP), a new technique for
helping programmers discover optimization opportunities in pro-
grams. OEP discovers opportunities for replacing a set of equiva-
lent object instances with a single representative object. Such a set
represents an opportunity for automatically or manually applying
optimizations such as hash consing, heap compression, lazy alloca-
tion, object caching, invariant hoisting, and more. To evaluate OEP,
we implemented a tool to help programmers reduce the memory us-
age of Java programs. Our tool performs a dynamic analysis that
records all the objects created during a particular program run. The
tool partitions the objects into equivalence classes, and uses col-
lected timing information to determine when elements of an equiv-
alence class could have been safely collapsed into a single represen-
tative object without affecting the behavior of that program run. We
report the results of applying this tool to benchmarks, including two
widely used Web application servers. Many benchmarks exhibit
significant amounts of object equivalence, and in most benchmarks
our profiler identifies optimization opportunities clustered around a
small number of allocation sites. We present a case study of using
our profiler to find simple manual optimizations that reduce the av-
erage space used by live objects in two SpecJVM benchmarks by
47% and 38% respectively.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.2.8 [Software Engineering]: Metrics—Performance measures;
D.3.4 [Programming Languages]: Processors—Memory manage-
ment, Optimization; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph Algorithms

General Terms
Measurement, Performance

Keywords
Object equality, object mergeability, profiling, profile-guided opti-
mization, space savings, Java language
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1. INTRODUCTION
Object-oriented programs typically create and destroy large num-

bers of objects. Creating, initializing and destroying an object con-
sumes execution time and also requires space for the object while
it is alive. If the object to be created is identical to another object
that the program has already created, it might be possible to simply
use the existing object and avoid the costs of creating a new ob-
ject. Even if a new object is created, if it later becomes identical
to an existing object, one might be able to save space by replacing
all references to the new “redundant” object with references to the
existing object and then destroying the redundant object.

Anecdotal evidence suggests that these improvements are fre-
quently possible and useful. For example, consider the white paper
“WebSphere Application Server Development Best Practices for
Performance and Scalability” [39]. Four of the eighteen “best prac-
tices” are instructions to avoid repeated creation of identical ob-
jects (in particular, “Use JDBC connection pooling”, “Reuse data-
sources for JDBC connections”, “Reuse EJB homes”, and “EJBs
and Servlets - same JVM - ’No local copies”’). The frequent use of
pooling and caching in applications in general suggests that avoid-
ing object allocation and reusing existing objects is an important
concern. Avoiding object allocation and initialization reduces mem-
ory usage, improves memory locality, reduces GC overhead, and
reduces the runtime costs of allocating and initializing objects.

Figure 1 shows a situation where OEP helps determine whether
an optimization opportunity exists. Two classes implement aneval-
uate method. The originalEval might be improved by switching
to CachedEval that caches all previously createdValue objects
and reuses one of them if it has already been allocated for a given
value of i . This is an attempt to save space as well as allocation
and initialization time. Determining whether this optimization is
actually valuable requires the information gathered by OEP. The
optimization will only save time if a significant number of identical
Value objects are created byEval . Furthermore the optimization
will only save space if the lifetimes of identical objects overlap sig-
nificantly, otherwise it may increase space usage.

Such optimization techniques, including hash consing [5,22] and
memoization [11, 12, 26, 28], burden the programmer and can im-
pose overhead at run time. We have developed a tool that identi-
fies and quantifies opportunities for eliminating redundant objects.
Our tool automatically computes, over all the objects in a program,
counts of identical objects and measurements of lifetime overlap.
Our tool helps focus developer effort on program data that deserve
optimization, just as a regular profiling tool helps detecting which
parts of a program’s code deserve optimization. Our tool reveals
some significant optimization opportunities in real Java applica-
tions and libraries. Furthermore, many of these optimizations re-
quire only relatively simple code restructuring, such as loop invari-



ant hoisting or lazy initialization. Hash consing or caching tech-
niques are often not needed. Automatic optimizations that take
advantage of the opportunities seem feasible, but are beyond the
scope of this paper; currently, the tool provides information that is
targeted at programmers.

Our basic approach is to detect when one object could bemerged
into another object. Merging an objecto into objecto′ means re-
placing all references too with references too′. Wheno can be
merged intoo′, theno is redundant and it might be possible for an
optimization to remove it. Ifo can be merged intoo′ early enough
in the life cycle ofo, then the creation ofo can be optimized away.
The concept of mergeability is complicated in a language such as
Java which allows object mutation, reference equality testing, and
synchronization on objects. We also need to identify particular
points in time at which objects become mergeable; if the object
lifetimes do not overlap, then optimization will not save space. We
define a mergeability relation precisely in Section 3.

Our profiling tool performs post-mortem dynamic analysis. We
instrument Java bytecode programs to monitor all relevant heap ac-
tivity during a program run. We then perform post-mortem analysis
to determine which objects could have been merged without affect-
ing the execution of the program, and when they could have been
merged. Our check for the mergeability of two objects requires, in
general, checking two (potentially cyclic) labelled graphs for iso-
morphism. Thus determining all-pairs mergeability in reasonable
space and time is not trivial, because typical heaps contain many
cyclic structures and millions of objects. (We consider every object
that the program ever created, which can be many more objects than
are actually live at one time.) In Section 4 we give an efficient algo-
rithm for mergeability checking, based on graph partitioning [4,15]
with modifications that make it work on more objects than can be
stored in main memory.

We applied our profiling tool to the SpecJVM98 benchmarks and
two production Web application servers. Section 5 shows that our
tool detects a significant amount of mergeability in many bench-
marks. To study its utility, we used the tool to extract detailed infor-
mation for the SpecJVM98 benchmarks with the most mergeability,
db andmtrt , and used the information to perform some manual
optimization of those benchmarks. Section 6 shows how we were
led directly to some simple program changes which greatly reduced
the space used by objects in those benchmarks.

This paper makes the following contributions:

• We present the idea of Object Equality Profiling (OEP) as an
aid to program optimization.

• We make OEP concrete by precisely defining themergeabil-
ity problem and showing how mergeability results lead to op-
timization opportunities.

• We describe how to efficiently compute mergeability by ex-
tending a graph partitioning algorithm to work well on data
sets which do not fit in main memory.

• We evaluate our OEP implementation against a set of bench-
marks which include two widely used Web application servers.
We show that significant mergeability does exist.

• We demonstrate the utility of OEP by showing how we used
our profiler to facilitate optimization of two of our bench-
marks, resulting in major space savings.

2. BACKGROUND
Previous work in reusing existing objects has focused on specific

optimization techniques. Two major groups of techniques are hash

class Eval {
public Value evaluate(Integer i) {

return new Value(i);
}

}

class CachedEval extends Eval {
private HashTable cache = new HashTable();
public Value evaluate(Integer i) {

Value v = (Value)cache.get(i);
if (v == null) {

v = new Value(i);
cache.put(i, v);

}
return v;

}
}

Figure 1: Example of Potentially Redundant Objects

consing and memoization. Other common optimizations can be
viewed as special cases of these techniques.

A hash consing system [5, 22] compares an objecto, at some
point in its lifetime, against a set of existing objects. If the system
finds an identical objecto′, it replaces some or all references too
by references too′. In automatic schemes, this can happen conve-
niently at allocation time or during garbage collection [8]. Hash
consing is frequently applied as a manual optimization; for exam-
ple, a programmer can manually hash-cons a Java String objects
by writing s = s.intern() . Hash consing focuses on saving
space, but it must be used carefully so that the overhead of hashing
does not outweigh the benefits of sharing.

Memoization, caching, and pooling [11,12,26,28] are techniques
that reduce the need to construct new objects, and thus can save
time (but may or may not save space). Suppose that we add memo-
ization to a methodm that would normally create and return a new
object. The memoizedm first checks to see if the result of a previ-
ous call with the same parameters is already available in a cache. If
so, memoizedm returns the previously computed result instead of
building another, equivalent result object. A variety of policies are
available for managing the cache.

Loop invariant hoisting of object allocation can be viewed as a
special case of caching, which exploits knowledge of program se-
mantics to make the cache lookup trivial. Lazy allocation is another
example of a technique for avoiding object allocation. Instead of
reusing an existing object, lazy allocation uses a special value (e.g.,
null or a flag setting) to indicate that the object is trivial.

Our work does not present a new optimization technique. In-
stead, we provide a tool to help determine where these known tech-
niques may be useful. Our tool helps in avoiding the well-known
problem of “premature optimization” and focusing programmer ef-
fort where it is most needed.

We divide the techniques into two groups: those that do not ex-
tend object lifetimes (e.g., most hash consing) and those that can
extend object lifetimes (e.g., caching). Our profiler can focus on
either group by making different assumptions about lifetimes as it
checks which identical objects have overlapping lifetimes. If the
profiler uses each object’s actual lifetime, it will detect hash con-
sing opportunities but it may not detect caching opportunities. To
find caching opportunities, the profiler extends the apparent life-
times of objects, as if they were being stored in a cache. In this
paper we only describe the tool operating in “hash consing” mode
with no lifetime extension. Thus we focus on space savings, al-
though some of the optimizations that we describe can save time as
well.



3. DEFINING MERGEABILITY

3.1 Overview
Intuitively, two objects are mergeable at some step in a program

run if, at that step, all references to one of the objects can be re-
placed with references to the other object without changing the fu-
ture behavior of the program for that run. This definition of merge-
ability is rather general. Our tool for OEP uses a stronger condition
that implies the general condition. Informally, it states that two
objects are mergeable at a given point in time if:

• the objects are of the same class,

• each pair of corresponding field values in the objects is either
a pair of identical values or a pair of references to objects
which are themselves mergeable,

• neither object is mutated in the future, and

• neither object is subjected to a future operation that depends
on the object’s identity (e.g., passing the object toSys-
tem.identityHashCode in Java).

This definition allows computing all pairs of mergeable objects
with time complexity less than quadratic in the number of objects.
If we chose a stronger definition, e.g., requiring that objects in cy-
cles are mergeable iff they contain identical references, it would
allow faster computing mergeability, but it would give more conser-
vative results. If we chose a weaker definition, e.g., non-symmetric
mergeability where one of the two objects is mutated in the future
but the other object is not read, it would give better results, but it is
not clear how an automatic optimization technique could use them.
Also, our definition does not use any richer notion of equality such
as that defined by the objects’equals() methods, because even
correctly implementedequals() method does not imply that two
equal objects will respond identically to all operations.

3.2 Formal definitions
Let O be the set of all objects that a Java program allocates in

some run. Each objecto ∈ O has its dynamic class, class(o),
and the corresponding set of fully qualified (instance) field names,
fields(o). We treat indexes of array objects as fields. LetF be the
set of all fully qualified field names in a program, and letP be the
set of all (primitive) constant values:null , true , false , the set
of int values, etc. Aheaph : O × F 7→ (O ∪ P ) is a partial
function that gives the values to the fields; we consider only type-
correct heaps that map each object and each of its fields to a value
of the appropriate type.

Each Java program operates on astatethat consists of a heap and
additional elements, including a stack (for each thread) with local
variables (for each activation record), a set of static fields (for each
class) etc. We abstract the additional state into aroot r : L 7→
O ∪P , i.e., a function from some set of locationsL to O ∪P . The
whole states is then a pair〈h, r〉. We uses[o. f ] to denote the
value of the fieldf for the objecto in the (heap of) states.

We next introduce parts of Java relevant for our definitions. We
view a Java program as an infinite-state machine that makes tran-
sitions from one state to another during a program run. These
transitions correspond to the executions of program statements and
the evaluations of program expressions. Formally, a program run,
R, is an alternating sequence of program states and transitions:
s0, a1, s1, a2, s2, . . . , wheres0 is the starting state with the empty
heap. We useaR

t andsR
t , to denote the transitionat and the state

st, respectively, at the stept of the runR.

We consider the following predicates that specify when a transi-
tion a modifies an object or performs an action that depend on the
object’s identity (taking the identity-based hash code, locking on
the object, or comparing the object to another object by identity):

• write(a, o) holds iff a writes a field of the objecto (e.g., with
o.f=v or o[i]=v , as we treat array indexes as fields);

• idHash(a, o) holds iff a evaluates identity-based hash code
of o (e.g., withSystem.identityHashCode(o) or
o.hashCode() if class(o) does not overridehashCode
from Object );

• lockOp(a, o) holds iff a performs a locking operation ono
(i.e.,monitorenter(o) or monitorexit(o) );

• idComp(a, o) holds iff a performs an identity-based compar-
ison of objecto with another non-null object (i.e.,o==o’ ).

We can now define when a runR, after a stept, does not modify
an objecto and has no actions that depend on the identity ofo:

DEFINITION 1. An objecto is acandidate for mergingat a step
t of a runR, in notationCR

t (o), iff

¬∃t′ > t. write(aR
t′ , o) ∨ idHash(aR

t′ , o) ∨
lockOp(aR

t′ , o) ∨ idComp(aR
t′ , o).

It is easy to show that ifCR
t (o) thenCR

t′ (o) for all t′ ≥ t.
We next define the mergeability that OEP measures. The defini-

tion is recursive and to make it well-founded for objects that are in
cycles, we take thegreatest fixed point.

DEFINITION 2. Two objectso ando′ are mergeableat a stept
of a runR, in notationMR

t (o, o′), iff o = o′ or

class(o) = class(o′) ∧
(∀f ∈ fields(o). MR

t (sR
t [o. f ], sR

t [o′. f ])) ∧
CR

t (o) ∧ CR
t (o′).

For all objectso ando′, if MR
t (o, o′) then at the stept of the

run R all references too can be replaced with references too′,
without changing the semantics of the run. This is easy to show by
induction on the length ofR, with a case analysis for transitions.

Mergeability also has the following property: ifMR
t (o, o′) then

MR
t′ (o, o

′) for all t′ ≥ t. Intuitively, if o ando′ are mergeable att,
they have mergeable values of the corresponding fields, and these
values do not change for anyt′ > t, so they remain mergeable. We
leverage this property to determine the mergeability of all objects at
once, in thefinal stateof the run. This state contains all the objects
that the run ever creates (not only the objects live at the end of the
run) and thelast edges between the objects (not all the edges that
the run creates).

We finally define a notion of observable equivalence between
objects in a given state. This definition is also recursive and we
take thegreatest fixed point.

DEFINITION 3. Two objectso ando′ areobservably equivalent
in a states, in notationEs(o, o

′), iff o = o′ or

class(o) = class(o′) ∧
(∀f ∈ fields(o). Es(s[o. f ], s[o′. f ])).

This relation is reflexive, symmetric and transitive and is there-
fore a true equivalence relation.



class Node {
int i;
Node n;

}
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Figure 2: Example heap consisting only of sixNode objects

In general,EsR
t

(o, o′) ∧ CR
t (o) ∧ CR

t (o′) does not imply

MR
t (o, o′), because after stept, R may modify an object refer-

enced byo or o′, although it does not directly modifyo or o′. How-
ever, in the final state, two objects are mergeable iff they are ob-
servably equivalent. If two objects are not observably equivalent in
the final state, they are not mergeable in any state. Our OEP tool
uses graph partitioning to partition objects according to observable
equivalence in the final state (Section 4.4).

Figure 2 shows an example final heap that consists of only six
objects of the classNode. Each object has anint value and a
field that is either a reference to aNode object (such aso1 to o4)
or null (in the objecto6). In this example, the observably equiva-
lent objects are only(o4, o5) and(o1, o2); no other pair of distinct
objects are observably equivalent.

3.3 Mergeability metrics
We report potential savings due to merging by supposing that, at

each timet when a live objecto became mergeable with a different
live objecto′, we actually mergedo with o′. We can easily com-
pute the space saved as a result of this merging, but we also need
to compute the time interval during which this space saving would
have been in effect. Furthermore, merging two objects causes the
lifetime of the merged object to become the maximum of the life-
times of the two objects, and we also take this into account. Thus
we must compute when merging can happen and how it affects the
lifetimes of objects. Then we can compute the projected heap size
at each point in time during the program’s (modified) execution.

Conceptually, our profiler reports a limit study of what could be
achieved by a merging oracle.

Figure 3 illustrates some mergeability situations for four objects
(A, B, C, andD) that are observably equivalent in the final state.
The intervals indicate whenCR

t (o) holds for those objects. In this
example, the objectB gets merged intoA, and the merged object
has its lifetime extended to the end of the lifetime ofB. Similarly
D is merged intoC. As mentioned, this papers presents OEP only
in the “hash consing” mode with no lifetime extensions that mea-
sure potential for caching. To measure that potential, the tool would
extend the lifetime of the objects (as if they were in a cache) and
thus find thatD can be merged intoA.

3.3.1 Formal definitions
Suppose we have a total ordering< on object identifiers. When

mergingo with o′, we choose to keep the smaller ofo or o′ and
discard the other. Ifo′ < o we say thato is merged intoo′. When
o is merged intoo′, the lifetime ofo′ may be extended to ensure it
lives at least as long aso.

DEFINITION 4. TheGC timeGR(o) for an objecto is the time
at which the object was actually garbage collected (or the time at
which the program ended, if the object was never collected).

-
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Figure 3: Savings From Merged Objects

DEFINITION 5. Themerge timeMR(o) is the time at whicho
is merged into some other object, or∞ if o is never merged into
another object.

DEFINITION 6. The merge targetT R(o) is the object into
whicho is merged, or∞ if o is never merged into another object.

DEFINITION 7. Thedeath timeDR(o) is the time at whicho
would be discarded when merging is taken into account.

In Figure 3,GR(A) = t3, GR(B) = t4, GR(C) = t7, and
GR(D) = t8; MR(B) = t2 andMR(D) = t6, but is∞ for A and
C; DR(A) = t4, DR(B) = t2, DR(C) = t8, andDR(D) = t6.

The GC time is measured directly by observing the program run.
The rest of the functions are computed as follows.

The following definition says we only merge with objects that
have not yet been discarded or themselves merged away:

MR(o) = min({t|∃o′.MR
t (o, o′) ∧

o′ < o ∧DR(o′) ≥ t ∧MR(o′) ≥ t},∞)

The following definition chooses the minimum suitableo′ for o
to merge with:

T R(o) = min{o′|MR
t (o, o′) ∧

o′ < o ∧DR(o′) ≥ t ∧MR(o′) ≥ t}
wheret = MR(o) ∧ t 6= ∞

T R(o) = ∞ whereMR(o) = ∞
The following definition ensures thato persists at least as long

as it did in the actual program run, and also persists as long as all
the objects that were merged into it, unless it is merged into some
other object first:

DR(o) = min(MR(o), max({GR(o)} ∪ {DR(o′)|T R(o′) = o}))
These recursive functions have a solution which can be com-

puted in a straightforward way. The key idea is to simulate forward
through time keeping track of which objects get merged into which
other objects. We start by settingMR(o) andT R(o) to ∞ and
DR(o) to GR(o) for all o. We also create a worklist of the pairs
(o, o′) whereMR

t (o, o′) ando′ < o, sorted by increasingt (the
minimumt for whichMR

t (o, o′) holds) ando′. We iterate through
the worklist; each element can updateMR(o) andT R(o), but it
can be shown that they will only be set once for a giveno.

It can be shown that the solution thus obtained is unique.
Using the “death times” instead of each object’s original garbage

collection time, it is easy to predict the heap size with optimal
merging for any point in time. For example, in Figure 3, we can
see that one object is saved between timest2 andt3, and one object
is saved between timest6 andt7.



4. MEASURING MERGEABILITY
This section describes our OEP tool. It first instruments a Java

bytecode program to record the information about all objects cre-
ated during a program run. It then runs the program and builds a
trace file with the relevant information about the objects. It next
partitions the objects into equivalence classes, using an algorithm
for graph partitioning. It finally uses collected timing information
to determine when objects from an equivalence class could have
been safely collapsed into a single representative object.

4.1 Instrumentation
Our OEP tool uses the IBM Shrike framework to instrument Java

bytecode programs. We monitor program execution and record the
following information about each object:

• the object’s class

• the array length, if the object is an array

• the values of all the fields (or array elements, if the object is
an array)

• the time of the last read

• the time of the last write

• the time of the last identity-based operation (identity hash
code, lock acquisition or release, the object’s reference being
tested for equality against some other reference)

• an upper bound on the time at which the object was garbage
collected

• whether we observed the object’s creation

This metadata is associated with each object by a hash table whose
keys are weak references [38] to the objects, and whose values are
the metadata. Our instrumentation tool and its run time support are
written in pure Java and are independent of the underlying Java vir-
tual machine. (However, many JVMs have problems when certain
library classes are instrumented, such asjava.lang.Object ,
so we sometimes have to use VM-specific workarounds for these
problems.)

Using real time for our timestamps would be too expensive. In-
stead we maintain an internal “event clock” counter which we in-
crement each time the program reads or writes to an object.

Because our approach is at the pure Java level, we have no way
to detect certain kinds of accesses to objects. In particular we do
not detect accesses performed via reflection or by native code using
the Java Native Interface to manipulate Java objects. We do instru-
ment certain native methods commonly used to manipulate objects,
such asSystem.arraycopy , and simulate their effects on our
metadata. We have performed experiments to compare the writes
we observe with the actual contents of objects, and we have found
that the number of unobserved writes that actually change values
is negligible. For programs that heavily use reflection, we could
instrument calls to the methods for reflection.

We insert instrumentation at the following program points:

• allocation sites for objects and arrays, including theldc in-
struction which can loadString objects from a constant
pool; on IBM’s JVM, we also instrument calls toExtend-
edSystem.newArray

• field writes

• array element writes

• calls to System.arraycopy , and on IBM’s JVM Ex-
tendedSystem.resizeArray

• field reads

• array element reads

• array length reads

• identity-dependent operations:

– lock acquisition and release

– reference comparisons

– calls toSystem.identityHashCode

– calls to the dynamichashCode method (we check the
receiver class to see if theObject.hashCode im-
plementation is called, which depends on the object’s
identity)

All our instrumentation ensures thread safety using a combina-
tion of locks and thread-local storage.

Our tool instruments the program and the libraries it uses offline,
before it is run (and not during class loading as some other tools).
Online instrumentation using a custom class loader is not possible,
because we want to track objects of all classes, and many library
classes (e.g.,String ) must be loaded by the system class loader.

An important issue in instrumentation is to avoid stability prob-
lems with instrumenting the libraries. We do not activate instru-
mentation until the program starts itsmain method. (VMs bring
up classes such asString before the VM is ready to run arbitrary
code, and so our instrumentation inString must remain quies-
cent until the VM is ready.) This means there are many built-in
objects which have already been created and manipulated before
our instrumentation starts. These objects are marked “untracked”
and they are always treated as unmergeable. We do this for all ob-
jects whose creation site we did not instrument, such as objects cre-
ated by native code or using reflection. The numbers of untracked
objects are given in Section 5. Untracked objects are included in
all our heap size calculations (except for untracked objects which
were never accessed by any Java library code or application code;
we have no way of even detecting whether any such objects exist).

Note that our instrumentation uses the same instrumented library
classes for its own purposes, e.g., we usejava.io classes to write
the trace file. This could cause infinite recursion: while processing
some program event, the instrumentation executes another instru-
mented program point in a library, and reenters itself. We avoid this
scenario using a per-thread re-entrancy protection flag. The manip-
ulation of this flag is carefully implemented to avoid ever entering
code that could be instrumented.

4.2 Measuring object reachability
Section 5 reports results based on knowing when objects became

unreachable. Computing the precise time when an object becomes
unreachable is difficult [23], especially in the context of a full-
fledged Java virtual machine, where it is difficult to determine all
roots. We compute upper and lower bounds on the time at which
an object became unreachable, using two different techniques.

Computing an upper bound on the time an object became un-
reachable is simple. We already maintain a weak reference to each
application object, as described above. When an object is about
to be garbage collected, the collector places its weak reference on
a queue which we poll every time our metadata table is accessed.
When a weak reference is found on the queue, we remove its en-
try from the metadata table, and note the current time as an upper



Figure 4: Tightness of bounds on “last reachable” times

bound on the object’s time of last reachability. At this point we
write the object’s metadata to a trace file.

We assume that the just-collected object was collected by the
very latest garbage collection, and therefore must have survived the
second-to-last garbage collection. (We did experiments to verify
that the IBM JDK places dead objects on the “dead weak reference
queue” as soon as the garbage collection that declared the object
dead has finished.) Thus the start time of the second-to-last garbage
collection is a lower bound on the last reachability time of the dead
object. We may observe an access to the object after the lower
bound on reachability computed by this method, in which case we
update the lower bound to the time of last observed access to the
object. We shrink the gap between the upper and lower bounds
by injecting a thread which forces a full garbage collection every
100 milliseconds. This thread also records the time it initiated each
collection.

Figure 4 shows the difference between the bounds on last reach-
ability time for our benchmarks. See Section 5.1 for information
about the benchmarks. This graph reports the average over the pro-
gram run of the reachable data size according to the upper bounds,
divided by the average over the program run of the reachable data
size according to the lower bounds (minus one). The results show
that with the exception ofjack and jess , the error is within a
few percent.

4.3 Measuring object size
We cannot measure object size directly with our Java-based in-

strumentation — it depends on the implementation of the virtual
machine. We assume that every object has an 8-byte header. We
assume that an array object uses 4 bytes to store the length, that ar-
ray elements of non-boolean primitive type use their natural size as
defined by Java, that boolean array elements use 1 byte each, and
that reference array elements use 4 bytes each. We assume that a
non-array object uses 4 bytes for each field except for fields of type
double andlong , which use 8 bytes.

4.4 Partitioning objects
Our OEP tool uses the information from the trace to partition the

objects into equivalence classes based on mergeability. As pointed
out in Section 3, it is sufficient to consider only observable equiva-
lence of objects in the final state of the run. The trace contains the
final state for all objects that the program ever created (except for
the “untracked” objects).

Recall that two objectso ando′ areobservably equivalentin final
states (notationEs(o, o

′)) iff o = o′ or

class(o) = class(o′) ∧
(∀f ∈ fields(o). Es(s[o. f ], s[o′. f ])).

This is an instance of thegraph partitioningproblem [4]. The
worst-case time complexity of some simple partitioning algorithms
is O(n2), wheren is the number of nodes in the graph, i.e., the
number of objects in the final state. Aho, Hopcroft, and Ullman
present an efficient partitioning algorithm (“AHU”), based on the
Hopcroft’s algorithm for minimizing a deterministic finite automa-
ton [24]. The AHU algorithm is typically said to run in time
O(n log n). For example, this algorithm has been used to detect
equivalent computations [6].

Two issues complicate our implementation. First, the final heaps
(which include every object the program run ever created) com-
prise millions of objects for our programs (see Table 1). OEP thus
processes graphs many orders of magnitude larger than graphs pro-
cessed in the context of compilers; the data structures required for
OEP do not always fit in RAM. Second, the AHU algorithm runs in
timeO(n log n), but only if the number of distinct edge labels is a
constant. More precisely, the algorithm runs in timeO(l · n log n),
wherel is the number of distinct labels. In our graphs, each field
name and each value of an array index constitute a distinct edge
label, and sol grows with the static size of the program and also
with the dynamic size of the largest array, which can makel very
large.

The latter problem is easier to address. Cardon and
Crochemore [15] show how to modify the AHU algorithm to run
in time that does not depend on the number of distinct labels. The
AHU algorithm maintains a worklist of partitions that need to be
processed. The key change is to store in the worklist, along with
each partition, the set of edges incoming to that partition that need
to be proessed. The modified algorithm runs in timeO(e log n),
where e is the actual number of edges in the graph; typically
e ¿ l · n.

We use additional techniques to scale our analysis to millions of
objects. Our variant of the AHU algorithm is seeded with an “initial
partition” that fully takes account of primitive field values. Thus
the expensive graph algorithm does not need to keep in memory
field values of primitive type or fields with null references. We also
break the heap graph into strongly connected components (SCCs)
and process one SCC at a time. Between algorithm phases, data
is stored in temporary files structured so that the reads of the next
phase are mostly sequential.

4.4.1 Initial partition
We seed our graph partitioning algorithm with an “initial parti-

tion” that takes into account each object’s class and the values of
its primitive (i.e., non-reference) fields. Two objects are placed in
the same initial partition if and only if

• they have the same class

• and, if they are arrays, they have the same length

• and, corresponding fields (or array elements) of non-
reference type have the same value

• and, corresponding fields (or array elements) of reference
type are both null or both non-null

Having formed the initial partition, the class, primitive fields, and
null reference fields of the object are no longer needed.

The program instrumentation produces a trace with a record for
each object, in the order in which the objects were garbage col-
lected. To build the initial partition we first scan the trace, comput-
ing a hash code for each object based on the above equality relation,
and counting how many objects hash to a given value. Most of the
hash values that occur are hashed to by just one object; each such



Allocated objects
Example Code (bytes) Description total untracked References
Java library 15,052,844 Standard Java library

(IBM JDK 1.3.1)
db 168,017 small database management program 3213922 3846 8497930
compress 172,801 Java port of LZW (de)compression 10282 4127 10868
raytrace 222,429 ray-tracing program 6375211 3763 2454931
mtrt 223,572 multi-threaded ray-tracing program 6639901 2944 2747718
jack 286,262 Java parser generator 5690095 17348 5754814
jess 485,805 expert shell system 7927585 3760 28597623
javac 2,096,408 JDK 1.0.2 Java compiler 5868126 273511 8722822
resin 9,727,578 Web application server (v2.1.2) from Caucho Technology2449706 339960 5214929
tomcat 11,419,565 Web application server (v4.0.4) from Apache Foundation1980341 210747 4188529

Table 1: Benchmark programs and allocation statistics

object can only be observationally equivalent to itself. We place
each such object into its own final partition, and ignore them for
the rest of the algorithm. Then we scan the trace again, selecting
the objects whose hashes correspond to more than one object, and
grouping these into initial partitions using the equality test above.

Next, we project references between objects onto references be-
tween initial partitions; i.e., there is an edge between partitionp1

andp2 if some object inp1 has a reference to an object inp2. We
topologically sort the initial partitions according to these edges. We
scan the trace again and copy each object (minus the fields of primi-
tive type or reference fields referring to a “singleton” object or null)
to a new file, ordering the objects according to the topological or-
der of the SCC containing the object’s initial partition. This step
requires two passes over the data: a pass splitting the objects inton
temporary files, each individually sorted, followed by a merge pass
reading alln files and producing the final sorted file;n is chosen
to ensure that the objects in each temporary file can be sorted in
memory.

4.4.2 Graph partitioning
Now we read the sorted file and apply the graph partitioning al-

gorithm independently to each strongly connected component of
initial partitions. The invariant is that after processing each compo-
nent, we know the final partitions of all the objects involved.

For each component, we build a new refined initial partition of
the objects. The topological ordering guarantees that a reference
from objecto in the component points to either an object in the
same component or an object in a component that has already been
processed. In the latter case, we know the target object’s final par-
tition; such object references are treated as “primitive” and used to
build the new initial partition. More specifically, two objects in the
same new initial partition if and only if

• they were in the same original initial partition

• and, if corresponding fields (or array elements) of reference
type refer to objectso1 ando2, then eithero1 ando2 have
been assigned to the same final partition, oro1 ando2 are
both in the current component

Thus, after building the new initial partition, the only references
left to be treated by the graph partitioning algorithm are references
between objects in the current component. At this point we run the
O(e · log n) graph partitioning algorithm. It is important to note
that at this point, the number of nodes in the graph is only a tiny
fraction of the total number of objects in the final heap.

4.5 Computing mergeability metrics
The above algorithm partitions objects according to observable

equivalence in the final state. The remaining problem is to compute
the merge and death times as described in Section 3.3. Optimiza-
tions for efficiency make the full details of our implementation too
complex for presentation here.

Our implementation is based on the algorithm described in Sec-
tion 3.3. That algorithm requires a list of(o, o′) pairs sorted by the
minimum t for which MR

t (o, o′) holds. As previously discussed,
MR

t (o, o′) can only hold for somet when wheno ando′ are ob-
servably equivalent in the final state. Thus the partitions computed
by the previous stage constrain the set of(o, o′) pairs we need to
consider for the list. For each objecto we precompute the minimum
t for whichCR

t (o) holds; these are the times at whichMR
t (o1, o2)

can hold for the first time, whereo = o1 or o = o2, and also
when o1 or o2 directly or indirectly referenceo. Our algorithm
steps through the list of all suchts in increasing order, checking
MR

t (o1, o2) for all not-yet-merged objectso1 ando2 whereo1 and
o2 are in the same partition, ando = o1 or o = o2 or o1 or o2

directly or indirectly referenceo. The check for each(o1, o2) pair
mostly uses brute force heap traversal.

5. MERGEABILITY RESULTS

5.1 Benchmarks
We applied the tool to the programs shown in Table 1. The first

seven programs are from the SpecJVM98 benchmark suite [36].
(We omitted thempegaudio benchmark because it caused prob-
lems with our instrumentation tool.) The last two programs are
Web application servers. Every program was used in conjunction
with the Java library. The sizes are the sum of the sizes of all class
files, often grouped in JARs, that are part of the benchmark. The
sizes of the Web servers are somewhat misleading because our tests
only exercise a fraction of the server functionality.

To benchmarkresin and tomcat , we configured them with
their respective default Web sites and Web application examples,
then used thewget tool to crawl the default site and retrieve a
list of accessible URLs. Then we modified the Web servers to add
a “harness” thread which scans through the list 10 times, loading
each URL in turn. Each server’s persistent caches were cleared at
the end of each benchmark run. All the other benchmarks come
with their own input data sets. We used input size ’100’ for all the
SpecJVM98 benchmarks.

All tests were performed using the IBM JDK 1.3.1 (service re-
lease 3) on a 2GHz Pentium 4 machine with 1.5GB of memory,
running IBM’s variant of Red Hat Linux 7.1.



Normal Profiling Analysis
Example Time Space Time Space Time Space
db 16.5s 28M 2274s 1122M 530s 710M
compress 14.5s 25M 1985s 273M 117s 159M
raytrace 4.8s 22M 1686s 1093M 183s 260M
mtrt 5.0s 26M 1441s 1123M 215s 234M
jack 9.2s 17M 403s 622M 729s 460M
jess 9.0s 18M 1298s 1077M 234s 219M
javac 17.6s 44M 1327s 1140M 729s 649M
resin 75.3s 47M 867s 1032M 377s 98M
tomcat 24.2s 31M 281s 562M 263s 83M

Table 2: Performance of the OEP tool

Average Peak
Example Base Merge Save Base Merge Save
db 7.60M 4.38M 0.42 9.10M 5.90M 0.35
compress 4.83M 4.77M 0.01 6.79M 6.79M 0.00
raytrace 3.38M 1.91M 0.43 3.70M 2.09M 0.44
mtrt 5.44M 2.25M 0.59 6.87M 2.65M 0.61
jack 0.44M 0.25M 0.42 0.74M 0.41M 0.45
jess 0.91M 0.81M 0.10 1.23M 1.08M 0.12
javac 4.77M 4.35M 0.09 7.11M 6.62M 0.07
resin 6.23M 3.03M 0.51 8.29M 4.60M 0.45
tomcat 2.18M 1.63M 0.25 2.64M 2.13M 0.19

Table 3: Mergeability Results

5.2 Profiling performance
Table 2 shows the performance of our profiler on these bench-

marks. The memory numbers are the maximum of SIZE value re-
ported bytop (“the size of the task’s code plus data plus stack
space”) during one run of the profiler and post-mortem analysis.
To a large extent the memory numbers are at the mercy of the heap
growth heuristics of the IBM Java virtual machine.

This data shows high variation across benchmarks. Profile gath-
ering is very memory-intensive, because we have a large metadata
object associated with every normal object. Profiling is also very
slow. Interestingly, the smallest overheads seem to apply to the
most “real” applications. These applications create smaller num-
bers of objects than the SpecJVM98 benchmarks even though they
run much longer. (Small numbers of objects improve the perfor-
mance of profiling and post-mortem analysis.) One possible ex-
planation is that the virtual machine optimizes the SpecJVM98 ap-
plications particularly well in their unmodified configurations, and
these optimizations are inhibited by our profiling instrumentation,
but the VM is not optimizingresin or tomcat as well in the
normal case so the slowdown is less severe.

5.3 Mergeability
We measured the ideal space savings obtainable by an oracle

merging algorithm as described in Section 3.3. Table 3 and Figure 5
show the space used by live objects, in the original program run and
with merging enabled, averaged over the lifetime of the program.
We computed the merging benefits using the algorithm outlined in
Sections 3.3 and 4.5. Instead of using the actual garbage collection
times, for both cases we idealized the garbage collector by using
our lower bound on the “last reachable” time for an object as the
time of garbage collection. Thus, the benefits shown in the graph
are independent of the garbage collection strategy (provided a trac-
ing collector is used) and would apply even with a perfect tracing
collector. With a real garbage collector, the benefits would be even
greater.

Figure 5: Object Mergeability

Table 3 also shows the peak space used by live objects in the
original program run and with merging enabled.

The numbers show that mergeability varies across applications,
but in many applications there are significant numbers of objects
with overlapping lifetimes which are identical. In particular, in 5
of our 9 applications at least 40% of the average space would have
been saved by oracular merging. The results for peak are very sim-
ilar to the results for average.

The space usages recorded here are smaller than the actual mem-
ory used by the applications. These numbers record only the actual
data used by the application and do not include virtual machine
overheads such as space for holding classes, space for generated
code, or heap management overhead. Our results focus on the space
usage that the application programmer can control.

5.4 Mergeability by class
We focus on two applications with high mergeability and easy

source code access:db andmtrt . Figures 6 and 7 show the classes
of objects in these applications that account for 95% of the savings
from merging. (Note thatC[] denotes “array ofchar ”.) For each
class, we show the average space used by objects of that class over
the program run, and the average space that would be saved by
oracular merging.

These figures show that a small number of classes are responsible
for the vast majority of savings. They also show that (unsurpris-
ingly) the most mergeability savings are usually (but not always)
found where the most memory is used.

To ensure the methodological soundness of the study in Sec-
tion 6, the per-class and per-site data in these figures were actu-
ally computed by runningdb andmtrt on a small “training data
set”, not the full data set used to produce the benchmarks in the
previous subsections. Fordb the training dataset is configured by
running the benchmark with “speed=10”, which selects a differ-
ent, (about 75%) smaller database file than the default configura-
tion. For mtrt , the SpecJVM98 “speed=10” configuration just
renders the same scene data into a smaller number of pixels. This
does not significantly change the input data or the heap configu-
ration. Furthermore, there appear to be no other valid input files
for mtrt /raytrace on the Internet. Therefore we made our own
“training data set” by removing the last 90% of the polygons in the
scene file. In both benchmarks, the results were very similar to the
results for the full data sets.



Figure 6: Savings By Class:db

Figure 7: Savings By Class:mtrt

5.5 Mergeability by site
Figures 8 and 9 break down the classes further, distinguishing

between objects allocated at different sites. We show the top 10
sites. The figures show that a small number of allocation sites are
responsible for the majority of savings indb . However, inmtrt
the situation is different; there are many allocation sites forPoint
that are all equally mergeable.

The data shows that using a profiler to find opportunities for
mergeability optimization is feasible, because the opportunities are
concentrated in a few classes. The data also shows that if merge-
ability is present, it may suffice to focus on the classes responsible
for the most space consumption to find the savings; this holds true
for all our benchmarks which have significant mergeability. Even if
it is true across all types of applications, OEP is still useful for iden-
tifying the particular applications where mergeability-based opti-
mizations are applicable, and in each application it tells us how
many classes are worth looking at, and which allocation sites for
each class should be examined.

6. CASE STUDY
In this section we present a case study of using OEP results to

help manually optimize applications. We focus onmtrt anddb .
As mentioned above, the results used in this section were obtained
by running OEP on a “training input set”. The resulting improve-
ments shown below were measured against a separate input set.

6.1 Optimizing db

Figure 6 showed that only two classes matter for mergeability.
We immediately suspected that the mergeablechar arrays were
simply part of the mergeableStrings . Figure 8 told us that the
relevant allocation site for the mergeableStrings was site 43655.
Profiler output tables told us that site 43655 is line 191 in the file
Database.java , in the methodDatabase.read db :

entry.items.addElement{
new String(buffer, 0, s, e-s));

Figure 8: Savings By Site:db

Figure 9: Savings By Site:mtrt

Java’sString.intern() method let us convert the string to
a canonicalString object, which can then be shared amongst all
sites that get this character sequence:

entry.items.addElement(
(new String(buffer, 0, s, e-s)).intern());

Java strings are immutable, so the only way this could affect pro-
gram semantics is ifdb did something tricky using identity-based
operations, such as locking the strings or testing references to these
strings for equality. Even with no prior knowledge of the program,
we can tell by inspection (or testing) that this is not so, but a static
analysis would be very helpful here.

6.2 Optimizing mtrt

Figure 7 told us that we should focus on thePoint class, of
which most instances are mergeable with previously existing in-
stances. This class was a little harder to optimize than the strings in
db , because its interface allows mutation (although we knew from
our profiles that “most of the time” there is no mutation, because
otherwise there would be little mergeability).

Our approach here was to let the compiler help. We declared
a new class,ImmutablePoint , which has only the immutable
methods ofPoint . ImmutablePoint is not a subclass of
Point , nor is Point a subclass ofImmutablePoint (ei-
ther would be incorrect [25]). ImmutablePoint has a pri-
vate constructor; instead ofnew ImmutablePoint , the pro-
grammer calls a factory [19] methodImmutablePoint.make .
This factory method looks up its parameters in a cache of 2000
recently allocatedImmutablePoints . Our implementation of
ImmutablePoint is 67 lines of code.

Then we looked at our profile data to see which call sites
to new Point always get objects which are not mutated af-
ter construction. The call site with the most mergeability was



Figure 10: Average Space Before and After Optimization

in Scene.ReadPoly , which fills in a vertex array to be used
to construct a 3D object. We replacednew Point with Im-
mutablePoint.make and then followed the type errors. Wher-
ever the program expectedPoint and hadImmutablePoint ,
we changed it to expectImmutablePoint . After making 10
lines of such changes, we found that the methodVector.Sub
took Points as parameters. Instead of changing them, we
added an overloadedVector.Sub which can takeImmutable-
Points (another 7 lines of changes). The program is then type
correct, and therefore (modulo the identity operations mentioned
above), we have confidence that we have not changed the behavior.

In the next step we looked at the next most mergeable allocation
site forPoint . It was actually one of a set of more than 20 calls to
new Point from OctNode.createChildren . We replaced
them all withImmutablePoint.make and chased the type er-
rors, eventually changing another 37 lines of code. That accounted
for almost all the mergeable sites constructingPoints .

6.3 Results
Figure 10 shows the results of our optimizations. We ran the

optimized programs and the original programs on the full input set.
We show the average object space usage for both versions of each
program. We also show what the average object space usage would
be if oracle merging was applied to each version of each program.

The oracle merging results show that indb we have captured
practically all the mergeability with our optimization. In fact, we
have saved more space than with oracular merging. This hap-
pened becauseString.equals is optimized to perform a ref-
erence equality test on its parameters before comparing their con-
tents. This reference equality test is an identity operation that de-
lays mergeability for objects involved in the test. (It is a “fast path”;
the code gives exactly the same behavior if the test was skipped,
thus our optimization cannot have affected its behavior.) Thus our
call to intern() merges the string before the oracle is able to
merge it.

In mtrt we have captured much of the mergeability, but not
all of it. There are some classes (mostly arrays) which are still
significantly mergeable.

Overall for these two benchmarks we have reduced average
space utilization by objects by 47% and 38% respectively. Includ-
ing all the overhead of the virtual machine, we reduced peak mem-
ory usage as recorded bytop ’s SIZE from 32600K to 28952K for

mtrt , and from 30164K to 28344K fordb . We even improved the
run time formtrt from 5.4s to 5.0s and the run time fordb from
19.1s to 18.8s, although these programs run for too short a time for
us to claim significant speedup.

These optimizations were designed, implemented and measured
in just a few hours. The total changes amounted to one line of code
in db and 121 lines of code inmtrt . In a more realistic environ-
ment we might have spent more time retesting the programs after
the changes, but we would also have benefited from prior knowl-
edge of the programs.

6.4 Discussion
In db andmtrt , as well as in all the other examples we looked

at, it was easy to transform the code to realize the mergeability
opportunities. But, in theory, OEP could report “false positives”
where merging cannot be achieved with simple code transforma-
tions. For example, if objects became mergeable after the program
had already created many references to the objects, it would be
hard to update the references to all point to a new merged object.
In such cases, our tool helps programmers to evaluate whether it is
worthwhile to perform more elaborate code transformations.

In db and mtrt , the transformations did not involve cyclic
structures. In fact, the vast majority of mergeability opportunities
found across all our benchmarks do not depend on cyclic struc-
tures — the results would be very similar if OEP considered all
distinct cyclic structures as not mergeable. Wherever this fact holds
true, a much simpler algorithm can be used to determine observable
equivalence and mergeability: each object in a cycle is assigned a
singleton final partition during initial partitioning of the heap (Sec-
tion 4.4); the initial partitions form a tree, and a simple bottom-up
traversal suffices to find all final partitions. However, for research
purposes it is useful to support merging of cyclic structures, to ver-
ify whether other kinds of applications have mergeable cyclic data.

7. RELATED WORK
Object Equality Profiling (OEP) discovers opportunities for

reusing existing objects in runs of Java programs in order to avoid
redundant computation and/or reduce space requirements. To our
knowledge, OEP is the first analysis that considers reusing whole
objects for an object-oriented language, such as Java. There is an
active body of research on reducing space requirements for Java,
but the focus is typically on reducing per-object space, reducing
the overhead of garbage collection (GC), or reducing heap require-
ments using stack/static allocation. There has been an extensive
work on reusing whole objects, but for functional languages, not for
Java. Almost all this work is focused on automatically performing
simple transformations; we are not aware of other tools that pro-
vide the information for programmers to identify and attempt more
difficult transformations. Note that some profitable transformations
may not even be strictly semantics-preserving in all situations and
will therefore be very difficult to apply automatically.

7.1 Space optimizations for Java
In an object-oriented language, each object is represented in

memory with some number of header fields and some number of
instance fields. The header fields in Java contain information about
the object’s type/class, default hash code, locking status, and GC
status. These fields in a non-optimized implementation require two
or three memory words. Bacon et al. [9] present a set of techniques
that reduce the headers to only one word per object. Their opti-
mizations compress the representation of all header fields.

Several projects offer compressed representation of some header
fields for Java objects. Shuf et al. [33] use profiling to discover a



set of “prolific” types that have a large number of instantiated ob-
jects. The header fields are then optimized for these prolific types.
Thin locking [10], meta locking [2], and lightweight monitors [41]
are techniques for improving performance of locking operations
on Java objects. Although mainly designed to reduce time for
these operations, these techniques also reduce the space required
for locking status in object’s header.

Other projects optimize representation of instance fields.
Sweeney and Tip [35] show that a significant number of instance
fields are never used in many C++ programs, because not every
program uses library classes in their full generality. These instance
fields can be removed at compile-time and do not take any space at
run-time. Further improvements in the space requirements of C++
objects can be obtained through class hierarchy specialization [37].
Bit-width analyses [14, 30, 34] determine the range of values that
each variable in a program can take. These results can then be used
to compress and pack the instance fields.

Ananian and Rinard [7] combine several techniques for optimiz-
ing header and instance fields: compressing type representations,
eliminating or reducing the size of instance fields, and field “ex-
ternalization” (removing mostly-constant fields from their classes
and storing them in a hash table). Their results show up to 40%
reduction in the maximum heap size. Our OEP tool can be used in
addition to all these techniques to achieve even further reductions
by manually eliminating whole objects.

Dieckman and Hoelzle [18] present a detailed study of the mem-
ory usage of the SpecJVM98 benchmarks. Their study quantifies
potential for several space reductions, but it does not offer insights
into object mergeability. Shaham et al. [31] present a study that fo-
cuses on measuring “drag” time, i.e., the time difference between
the last use of an object and its collection time, in several Java ap-
plications. R̈ojemo and Runciman [29] present a similar study for
Haskell, a lazy functional language. In a later work [32], Shaham
et al. use their results to manually transform Java applications to
invoke GC in a more timely manner and thus save space.

Agesen et al. [3] describe how to improve GC for Java using
type-precise root set and liveness analysis. They also give an ex-
tensive list of references for work on reducing and measuring GC
overhead. Chen et al. [16] use compression and lazy allocation
(combined with splitting objects into subobjects) to reduce heap
requirement for Java applications. They present a family of GC
strategies; the best strategy reduces heap requirement by more than
20% on average for a set of benchmarks targeted for handheld de-
vices.

Several escape analyses [13,17,20,40] determine objects whose
lifetime is included in the lifetime of the stack frame of the method
(or one of its callers) that allocates the objects. These objects can
then be allocated on the stack instead on the heap. Gheorghioiu et
al. [21] present an analysis that determines allocation sites such that
of all objects allocated at each such site, there is at most one live
object at any point in the execution. All objects from such a site can
then reuse statically preallocated memory space instead of using
heap. Stack and static (pre)allocation for Java aim at reducing GC
overhead and thus saving time. These optimizations reduce space
requirement for heap, but increase for stack or static data. In some
situations, the optimizations reduce the total space requirement, but
in others, they increase it.

7.2 Reusing existing objects
Hash consing [5,22] and memoization [11,12,26] are major tech-

niques for reusing existing objects. They have been widely used in
functional languages, such as LISP and ML. An extensive list of
references is given by Acar et al. [1] who present a memoization

system that gives the programmer control over comparisons and
caching. They argue that fully automatically applying memoiza-
tion and hash consing can have negative effects [8, 27, 28]. OEP
can help the programmer decide when to apply these techniques.

Appel and Goncalves did a study [8] on automatic hash-consing
during GC for SML/NJ. They modified a generational GC to per-
form hash-consing while copying objects from the young gener-
ation to the old generation. They evaluated their implementation
on a set of small and medium sized programs. Most programs had
only a small reduction on their data size. Moreover, some programs
were slowed down by up to 20%, and only one program was sped
up by 10%.

There are a few reasons that could account for the difference be-
tween their results and our own. First, ML programs mostly manip-
ulate immutable objects, and thus ML programmers may explicitly
use sharing much more than Java programmers. In general, the
languages and programming styles are very different. Second, the
modern Java programs that we analyze are much larger and more
complex than the ML programs that they analyzed. These Java
benchmarks create more objects, which can expose more sharing
because there is a greater probability that any given object is iden-
tical to some existing object. Additionally, our tool uses knowledge
of the future to find mergeable data which their collector does not
have. Thus, when we apply profiling results to implement actual
optimizations, we can restructure the code and data in ways that
their collector cannot.

8. CONCLUSIONS AND FUTURE WORK
We have demonstratedObject Equality Profiling(OEP), a tech-

nique for finding opportunities for space optimizations when mul-
tiple identical objects can be replaced with one. The results show
that OEP is practical and can be applied to large, complex Java ap-
plications without requiring virtual machine support. The largest
instrumented programs take less than an hour to run and build the
trace. Most of the cost appears to be the incessant garbage collec-
tions; relaxing the accuracy of the reachability statistics, or finding
another way to compute them, would be very helpful. The post-
mortem analysis of the trace takes less than 15 minutes for each of
the programs. The analysis uses a carefully implemented algorithm
for partitioning objects and computing mergeability metrics, which
makes it require less space than running the program while building
the trace.

Some, but not all, of our benchmark applications exhibit consid-
erable mergeability of the sort we are looking for. Our case studies
show how the OEP results allow us to pinpoint applications, and
sites within applications, where mergeability exists. In the context
of two benchmarks, we have described some simple manual opti-
mization techniques for exploiting the mergeability, and we have
shown that they lead to significant space savings.

Our tool only identifies opportunities for optimizations, but does
not apply them automatically. It would be useful to have static anal-
ysis tools that could verify the soundness of optimizations, or even
perform them automatically. The analysis would need to determine
when an object can no longer be modified and when there can be
no more identity operations performed on it. Given automatic op-
timizations, our profiling would help focus a compiler or virtual
machine on the profitable opportunities. OEP also motivates differ-
ent language design choices. The immutability and identity opera-
tions cannot be constrained by current Java’s type system, so it is
difficult to verify their use. Supporting them as types/annotations
would both benefit from and be beneficial to OEP.



Acknowledgments
This research was done while Darko Marinov had an internship at
the IBM T. J. Watson Research Center. We would like to thank
Glen Ammons, Alexandr Andoni, Chandrasekhar Boyapati, Sar-
fraz Khurshid, Viktor Kuncak, Derek Rayside, Bill Thies, Karen
Zee and anonymous reviewers for comments on an earlier draft of
this paper.

9. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Selective

memoization. In30th Annual ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages,
pages 14–25, New Orleans, LA, Jan. 2003.

[2] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S.
Ramakrishna, and D. White. An efficient meta-lock for
implementing ubiquitous synchronization. InProceedings of
the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
207–222. ACM Press, 1999.

[3] O. Agesen, D. Detlefs, and J. E. Moss. Garbage collection
and local variable type-precision and liveness in Java virtual
machines. InProceedings of the ACM SIGPLAN 1998
conference on Programming language design and
implementation, pages 269–279, 1998.

[4] A. Aho, J. Hopcroft, and J. Ullman.The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[5] J. R. Allen.Anatomy of LISP. McGraw-Hill, NY, 1978.
[6] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting

equality of variables in programs. In15th Annual ACM
Symposium on the Principles of Programming Languages,
pages 1–11, January 1988. San Diego, CA.

[7] C. S. Ananian and M. C. Rinard. Data size optimizations for
Java programs. In2003 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’03), San Diego,
CA, June 2003.

[8] A. W. Appel and M. J. R. Goncalves. Hash-consing garbage
collection. Technical Report TR-412-93, Princeton
University, Computer Science Department, Feb. 1993.

[9] D. F. Bacon, S. J. Fink, and D. Grove. Space- and
time-efficient implementation of the Java object model. In
B. Magnusson, editor,Proceedings of the Sixteenth
European Conference on Object-Oriented Programming,
volume 2374 ofLecture Notes in Computer Science, pages
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