What Will the User Do (Next) in the Tool?"

Darko Marinov
University of lllinois at Urbana-Champaign

marinov@cs.uiuc.edu

ABSTRACT

This position paper advocates the importance of analyzing how
users interact with tools that aid software development. Answer-
ing “What will the user do (next) in the tool?” can help improve
not only the tool’s usability but also its underlying technology in a
common usage scenario. While a lot of progress has been made in
improving the underlying technology for such tools, less effort has
been spent on studying how the tools are typically used in practice.

We present a summary of our previous, initial study on how (be-
ginner) users interact with the Alloy Analyzer, a tool for automatic
analysis of software models written in Alloy, a first-order, declar-
ative language. We extended the analyzer to log (some of) its in-
teractions with the user. We studied the interaction logs collected
from several students and identified some opportunities for improv-
ing the analyzer, both the performance of analyses and the user in-
teraction. We hope that this paper motivates the Alloy community
to improve and use our logging extension and to further study the
new interactions logs. We expect that such studies would lead to
improving the analyzer for common usage scenarios, benefiting the
entire community. More generally, we argue for a broader effort on
studying the usage of software-development tools.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems—Human
factors; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.2 [Software Engineering]: Design Tools and Tech-
niques; 1.6.5 [Simulation and Modeling]: Model Development

General Terms

Human Factors, Design, Performance

Keywords

Alloy language, Alloy Analyzer, user interaction, incremental anal-
ysis, continuous analysis

*This paper is based on the work [5] presented at the Sixth Work-
shop on Language Descriptions, Tools, and Applications (LDTA
2006) in Vienna, Austria.

Sarfraz Khurshid

The University of Texas at Austin
khurshid@ece.utexas.edu

1. WHAT IN THE ALLOY ANALYZER?

The Alloy tool-set [2,3] has been successfully used in research
and teaching for several years and has assisted in finding and cor-
recting flaws in software systems (e.g., [4,7]). However, prior to
our initial work [5], there had been no study into how users inter-
act with the tool-set. We next present the motivation for doing our
study, the logging that enabled it, and some results that it showed.

1.1 Need for the study

Two aspects of Alloy make studying user interactions with the
tool-set particularly worthwhile: the declarative nature of the lan-
guage and the bounded-exhaustive checking performed by the ana-
lyzer. Declarative logic paradigms, in general, and Alloy, in partic-
ular, tend to elicit a pervasive use of conjunction. An Alloy model
is often built by first defining sets and relations that represent the
model and then defining formulas that constrain the representation
appropriately, starting from a minimal representation and incre-
mentally strengthening it until a sufficient level of detail is attained.
The use of the analyzer in an interactive fashion assists the users in
making the incremental changes and checking their validity. These
incremental changes tend to be small, so the analyzer may exploit
the differences introduced between consecutive analyses to provide
a faster analysis using the result of the previous analysis.

The Alloy Analyzer performs bounded exhaustive analysis: the
analyzer checks a given formula for a specified scope, i.e., bound
on the universe of discourse. The analyzer translates the Alloy
model into propositional formulas and uses off-the-shelf SAT solvers
to check the resulting formulas. The nature of the analyzer’s check-
ing implies that its results are valid with respect to the given scope
only, i.e., if the analyzer fails to find an instance that satisfies an Al-
loy model within a given scope (bound), an instance may still exist
in a larger scope. For Alloy users, it is natural to increase their level
of confidence in a model by increasing the scope and re-checking
the model after the analyzer failed to generate a desired instance
in a smaller scope. Notice that in such a scenario, the only change
in the model between two consecutive analyses is the scope—once
again, a situation arises where the analyzer may be able to provide
a faster checking using the result of the previous analysis.

Based on the above scenarios and our personal experience with
the analyzer, we hypothesize that incremental analysis, which reuses
results of previous analyses, could improve the performance of the
Alloy Analyzer. To evaluate our hypothesis, we need to collect the
actual logs of interaction with the analyzer.

1.2 Logging

To investigate how users work with the Alloy Analyzer, we have
modified the analyzer to log (some of) its interactions with the user.
We designed our logging to provide the Alloy tool-set developers



with the usage data that could help improve the tool-set. The log-
ging currently captures several build, analysis, and user-interface
events. The build events record the compilation of the models (from
Alloy to propositional formulas). The analysis events record the
Alloy analysis commands used after a successful compilation. The
logging stores all the information required to replay an event, in-
cluding the configuration of the analyzer and the SAT solver, the
Alloy file being compiled and any files referenced, and the repre-
sentation of the analysis commands. The logging also stores the
time stamps for event beginnings and ends. Finally, the logging
stores other usage data that might further improve understanding of
the usage pattern of the analyzer. For example, the user-interface
events may help streamline the workflow of the analyzer, while the
information about failed builds may shed light on the common mis-
takes that users make while learning the Alloy language and the
ways in which the analyzer can help them develop correct models.

1.3 Results

We asked students in two of our graduate classes to solve a prob-
lem set that required them to build Alloy models using the analyzer
extended with our logging. Our study [5] of the resulting 68 logs
from 11 students shows three key observations.

Observation 1: The answer to “What will the user analyze next?”
is often “Something similar to what the user has just analyzed.”
Users often perform consecutive analyses with slightly different
models, as expected from the two afore-mentioned aspects of Al-
loy. This suggests that incremental constraint-solving techniques
can improve the analyzer’s performance. Alloy’s use of SAT tech-
nology and recent advances in incremental SAT solving [8] provide
a natural start for exploring optimizations for the Alloy Analyzer.
We explored the use of incremental SAT for the problem set ex-
amples in the simple scenarios when the user adds a new fact to
the model and when the user increases the scope by one. For these
scenarios, the time to generate a solution reduces by up to a half [5].

Observation 2: It is sometimes possible to predict the answer to
“What will the user do next in the analyzer?” User’s interaction
with the analyzer is sometimes predictable, e.g., that the user will
compile and analyze the model or that the user will ask for addi-
tional solutions to the model. This points out that, similar to contin-
uous compilation and continuous testing [6], the analyzer can con-
tinuously precompute the result of a future action while the user is
editing the model or visually inspecting a solution. For the problem
set examples, the time a user takes to inspect a particular solution is
always less than the time the SAT solver takes to generate the next
solution [5]. Thus, precomputing the next solution while the user
is inspecting the current one can instantaneously generate a result
when the users asks for the next solution.

Observation 3: The answer to “What will a beginner user do?”
may be more surprising than the answer to “What will an expert
user do?” (Beginner) users can naturally develop semantically
equivalent (but syntactically different) Alloy models that have sig-
nificantly different analysis time. Thus, it would be worthwhile to
study manual and automatic transformations of Alloy models that
could result in improved analysis time. This result also provides ev-
idence against a previous claim [7] that semantically equivalent Al-
loy models tend to have similar analysis time. While it is clear that
in any reasoning system the analysis time depends on the specific
formulation of the problem, our result shows that beginner Alloy
users naturally create models that have different analysis time [5].

1.4 Summary

Our results provide an encouraging starting point for the further
studies of the Alloy Analyzer. We hope to engage the Alloy com-

munity to collect more logs and analyze them to detect potential
further improvements for the analyzer. Our logging is included in
the current, publicly available version of the analyzer. Our proto-
type incremental analysis, however, handles only very basic scenar-
ios. Implementing full incremental analysis and continuous analy-
sis in the analyzer would be important future steps in realizing the
potential improvements.

2. WHAT IN OTHER TOOLS?

The Alloy Analyzer is only one example tool used in software
development. We next propose a specific study for a completely
different tool and then argue for more such studies in general.

Eclipse (http://eclipse.org) isan open-source IDE for Java
and other languages. It has been downloaded tens of millions of
times and used in many more interactive sessions. Eclipse does
offer a logging facility, but it is primarily used for logging warn-
ing and error messages rather than user interactions. We specifi-
cally propose to investigate how developers in Eclipse use refac-
torings [1], which are program transformations that change the in-
ternal structure of the code without changing its external behav-
ior, e.g., renaming a method. Eclipse provides an engine that au-
tomates refactorings. Developers using Eclipse mix manual code
editing and automated refactorings. Two key questions are: “How
(frequently) do developers use refactorings?” and “Can we pre-
dict when a developer will apply a refactoring?”. Answering these
questions could enable specializing refactorings for different users.

In conclusion, we consider studies of tool usages important in
general. We have summarized our study of logs from the Alloy An-
alyzer and proposed a study of logs from Eclipse. We believe that
collecting and analyzing detailed logs of user interactions could
lead to improvement of these and many other tools.

Acknowledgments. We would like to thank the 11 students from
our classes for submitting the logs of their interactions with the
Alloy Analyzer. We would also like to thank Xiaoming Li, Daryl
Shannon, and Jabari Walker for their help with our initial study and
Derek Rayside and Greg Dennis for their help with Alloy logging.

3. REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code.

Adison-Wesley, 1999.

D. Jackson. Software Abstractions: Logic, Language and

Analysis. The MIT Press, Cambridge, MA, 2006.

[3] D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. In Proc. ICSE, Limerick, Ireland,
June 2000.

[4] S. Khurshid and D. Jackson. Exploring the design of an
intentional naming scheme with an automatic constraint
analyzer. In Proc. ASE, Grenoble, France, Sep 2000.

[5] X.Li, D. Shannon, J. Walker, S. Khurshid, and D. Marinov.

Analyzing the uses of a software modeling tool. In Proc.

LDTA, Vienna, Austria, Apr. 2006. http://www.ece.

utexas.edu/~khurshid/papers/1dta06.pdf.

D. Saff and M. D. Ernst. An experimental evaluation of

continuous testing during development. In Proc. ISSTA,

Boston, MA, 2004.

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.

Software assurance by bounded exhaustive testing. In Proc.

ISSTA, Boston, MA, 2004.

J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new

incremental satisfiability engine. In Proc. DAC, Las Vegas,

NV, June 2001.

2

—

[6

—

[7

—

[8

—_—



