
Leveraging Software Testing to Explore
Input Dependence for Approximate Computing∗

Abdulrahman Mahmoud Radha Venkatagiri Khalique Ahmed Sarita V. Adve
Darko Marinov Sasa Misailovic

University of Illinois at Urbana-Champaign
{amahmou2, venktgr2, kahmed10, sadve, marinov, misailo}@illinois.edu

With the end of Moore’s law and the shift towards al-
ternative paradigms for energy and performance gains,
approximate computing has gained considerable trac-
tion in recent years. Approximate computing environ-
ments obtain gains in performance and/or energy by
trading off computational accuracy. The gains afforded
by many approximation techniques are intimately cou-
pled with the inputs provided to the program. Hence,
reasoning about inputs in a systematic way is an im-
portant and open research problem. In this paper, we
discuss some concerns associated with input dependence
and the need to elevate program inputs to first-class cit-
izens within the domain of approximate computing. We
leverage the mature field of software testing for mech-
anisms and techniques to analyze program inputs and
measure their influence on approximations. We believe
that, going forward, software testing methodologies will
become an integral part of the workflow for approximate
computing-based systems.

1. THE ISSUE OF INPUT DEPENDENCE
Recent projects have illustrated a range of promising

techniques in both hardware and software for utilizing
approximate computing across the stack [1, 2, 3, 4, 5,
6, 7, 8]. Many of these techniques, however, use empiri-
cal evaluation methodology with a specific set of inputs
that may not be fully representative of the entire ap-
plication domain. Consequently, it may be difficult to
generalize the effectiveness of such techniques across the
whole application domain. As a result, a technique may
overfit the specific input data, or alternatively, be too
conservative and fail to benefit from additional approx-
imation opportunities.

At the other end of the spectrum, when data is preva-
lent, one can employ machine learning algorithms to
learn about an application’s behavior and amenability
to approximation [9, 10, 11]. Again, this can be ex-
tremely beneficial, but also suffers from a variety of is-
sues, including obtaining access to huge data sets, time-
consuming computations in the learning phase, as well
∗This work was supported in part by the National Science
Foundation under Grant CCF-1320941 and by the Center for
Future Architectures Research (C-FAR), one of six centers of
STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

as various challenges in understanding the features and
characteristics of an input set.

Some past projects have explored input-aware ap-
proximation techniques which elevate the reasoning about
approximation to the programmer; Others have tried
tuning their choice of approximation based on the cur-
rent program input [2, 12, 13]. Although adapting to
inputs is a good step towards input-independent ap-
proximations, understanding why certain inputs lend
themselves to specific approximations would open the
door for new techniques that do not need to reactively
be tuned to the input.

The difficulty with input dependence arises in the fact
that it is prohibitively expensive (if not intractable) to
explore the entire input space of an application in order
to provide guarantees. Fortunately, this is not a new
problem in computer science, and has been explored in
depth by the software testing community [14]. Software
testing literature has extensively dealt with providing
quality assurance, verification and validation, and reli-
ability estimation for software. Thus, the approximate
computing community can leverage decades of research
in this field to better reason about input dependence
and quality guarantees.

In this paper, we leverage software testing techniques
for analyzing input-dependence in an approximate-computing
framework. The presented parallels from software test-
ing to approximate computing are just an example corol-
lary, and we invite further exploration down this path to
help propel current approximate computing research.

2. SOFTWARE TESTING AND APPROXI-
MATION

One facet of the software testing framework is to de-
cide whether code is “good enough” to deploy. Many
bugs exist in the tools and applications a programmer
or client uses. However, at some point in the pipeline,
a software developer must decide that the code is good
enough for release. The analogy to approximate com-
puting naturally follows, in that we desire to also pro-
vide strong enough guarantees on approximation tech-
niques and tools, while understanding that the user has
a variety of knobs at her disposal.

The software testing community has developed differ-
ent metrics, techniques, and tools to decide what “good



enough” means quantitatively and to improve various
other aspects of testing. Mutation testing [15], regres-
sion testing [16], test prioritization, test selection, test
minimization, and coverage analysis [17] are just some
of the approaches aimed at improving testing. We ex-
plore a few techniques in this paper targeting input de-
pendence, and how these concepts relate to approximate
computing.

2.1 Test-Input Generation
Identifying which inputs trigger certain scenarios in

the code can be extremely beneficial in the approximate
computing realm. Different code segments may exhibit
a certain affinity to some approximation tactics, while
others are averse to any approximation, and both these
segments can swap roles based on a different input.

Given a piece of code, test-input generation automat-
ically finds inputs that lead to some execution point.
One technique that can be of value to approximate com-
puting researchers is that of symbolic execution. Rather
then executing the program with concrete values, sym-
bolic execution executes the program with symbolic ex-
pressions, resulting in a general and input-insensitive
analysis of the software.

A major benefit of symbolic execution is that it can
find concrete inputs that together span a large part of
the input domain. Hence, it can provide a software
engineer with a minimal set of inputs needed to stress
a program, solving the issue of a large input space.

Unfortunately, a symbolic execution tree usually grows
exponentially in size, and is very computationally ex-
pensive to generate. Further, most tools available today
(such as KLEE [18] ) are not widely used in real-world
practice, and are only used in research domains.

Generating representative inputs is imperative in as-
sessing an approximation technique and providing qual-
ity guarantees. Using tools that automatically generate
and reason about inputs would greatly alleviate the is-
sues of input dependence in approximate computing.

2.2 Coverage Criteria
Whether an input set was generated automatically

(e.g. via symbolic execution) or manually, it is impor-
tant to assess how representative the input set really is
of the input space. Coverage analysis can be used in
tandem with test-input generation to measure the cov-
erage of a given program and its test inputs, provided
a coverage criterion.

Formally, coverage criteria are defined as a rule or re-
quirement which a test suite needs to satisfy, with many
coverage criteria existing in the literature [14]. Some
coverage criteria, such as branch or statement coverage,
are more readily used due to their simplicity and feasi-
bility in implementation. Common tools such as gcov
and lcov are widely available for use today [19]. Oth-
ers, such as path coverage, are less common due to cost
or intractability despite being more comprehensive in
studying inputs.

By incorporating coverage criteria in the analysis of
an approximation technique, one can reason more about

the quality guarantees needed by an application. For ex-
ample, in real-life scenarios, most commercial code can
simply be vetted with statement coverage. However, in
the situation of mission-critical code, such as airliner-
related software, the coverage criterion may differ (to
be more stringent than simple statement coverage), and
the actual coverage percentage would need to be higher.
Similarly, there is a range of applications between these
two extremes where an appropriate coverage criterion
may be utilized with acceptable results.

3. BRIDGING THE GAP WITH TOOLS
For true wide-scale adoption of approximate comput-

ing across the stack, there is a need for automated tools
that provide quality assurance to the end user. Incor-
porating the software testing tools already in use into
the approximation work flow would only strengthen the
gains shown by approximate computing in performance
and energy savings. This gap needs to be tightened
to ensure guarantees and allow for full acceptance by
software developers.

For example, we recently released an open-source tool
called Approxilyzer1 [20] which can quantify the quality
impact of a single-bit error in virtually all dynamic in-
structions of an application. Approxilyzer functions at
the instruction level, and requires very little program-
mer involvement to profile an application and extract
instructions that exhibit first-order approximation po-
tential for a given input.

As instructions are the abstraction level a machine
understands, we are currently exploring a new cover-
age criterion called PC coverage, which is analogous to
statement coverage at the source code level. As a re-
sult, rather than using Approxilyzer with a large input
set as typically provided in benchmark suites, we can
target just a small set of inputs which together provide
us with close to 100% PC coverage.

Preliminary results show that running smaller input
sets with Approxilyzer, we can get up to a 7x reduction
in total error injections necessary when Approxilyzer is
used for resiliency analysis. Additionally, the smaller
input set can match the classification of error injections
for the larger set with 99% accuracy for some applica-
tions. Further, it can do this faster due to the reduc-
tion in simulation run-time per injection, and the fewer
number of total injections.

Most importantly however, this provides us with a
systematic methodology as to how to choose our inputs,
and how we can provide guarantees with our tool with
respect to the input we explored.

This simple example illustrates how software testing
methodology can be an additional piece of the puzzle to-
wards an automated end-to-end framework. We demon-
strate here just one example of how software testing can
be applied to approximate computing. Going forward,
we would like to explore additional techniques from soft-
ware testing for approximate computing.

1https://cs.illinois.edu/approxilyzer



4. REFERENCES

[1] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, and Dan Grossman. Enerj:
Approximate data types for safe and general low-power
computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’11, pages 164–174, New York, NY,
USA, 2011. ACM.

[2] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi,
Amir Hormati, and Scott Mahlke. Sage: Self-tuning
approximation for graphics engines. In Proceedings of the
46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 13–24, New York, NY,
USA, 2013. ACM.

[3] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry
Hoffmann, and Martin C. Rinard. Managing performance
vs. accuracy trade-offs with loop perforation. In SIGSOFT
FSE, pages 124–134, 2011.

[4] D.S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke.
Rumba: An online quality management system for
approximate computing. In Computer Architecture (ISCA),
2015 ACM/IEEE 42nd Annual International Symposium
on, pages 554–566, June 2015.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Neural acceleration for general-purpose approximate
programs. In Microarchitecture (MICRO), 2012 45th
Annual IEEE/ACM International Symposium on, pages
449–460, 2012.

[6] Joshua San Miguel, Jorge Albericio, Andreas Moshovos,
and Natalie Enright Jerger. Doppelganger: A cache for
approximate computing. In International Symposium on
Microarchitecture, 2015.

[7] James Bornholt, Todd Mytkowicz, and Kathryn S.
McKinley. Uncertain: A first-order type for uncertain data.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, 2014.

[8] John Sartori and Rakesh Kumar. Architecting processors to
allow voltage/reliability tradeoffs. In Proceedings of the
14th International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’11, pages
115–124, New York, NY, USA, 2011. ACM.

[9] Adrian Sampson. The case for compulsory approximation.
In Workshop on Approximate Computing Across the Stack,
2016.

[10] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav
Pingali. Proactive control of approximate programs. In
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 607–621, New
York, NY, USA, 2016. ACM.

[11] Subrata Mitra, Manish K. Gupta, Sasa Misailovic, and
Saurabh Bagchi. Phase-aware optimization in approximate
computing. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization, CGO
2017, pages 185–196, Piscataway, NJ, USA, 2017. IEEE
Press.

[12] Woongki Baek and Trishul M. Chilimbi. Green: A
framework for supporting energy-conscious programming
using controlled approximation. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’10, pages 198–209, New
York, NY, USA, 2010. ACM.

[13] Michael A. Laurenzano, Parker Hill, Mehrzad Samadi,
Scott Mahlke, Jason Mars, and Lingjia Tang. Input
responsiveness: Using canary inputs to dynamically steer
approximation. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’16, pages 161–176, New York, NY,
USA, 2016. ACM.

[14] Paul Ammann and Jeff Offutt. Introduction to Software
Testing. Cambridge University Press, New York, NY, USA,
1 edition, 2008.

[15] Yue Jia and Mark Harman. An analysis and survey of the
development of mutation testing. Transactions on Software
Engineering, 37(5):649–678, 2011.

[16] Shin Yoo and Mark Harman. Regression testing
minimization, selection and prioritization: A survey.
Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[17] Hong Zhu, Patrick A. V. Hall, and John H. R. May.
Software unit test coverage and adequacy. ACM Comput.
Surv., 29(4):366–427, 1997.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[19] Qian Yang, J. Jenny Li, and David Weiss. A survey of
coverage based testing tools. In Proceedings of the 2006
International Workshop on Automation of Software Test,
AST ’06, pages 99–103, New York, NY, USA, 2006. ACM.

[20] Radha Venkatagiri, Abdulrahman Mahmoud, Siva
Kumar Sastry Hari, and Sarita V. Adve. Approxilyzer:
Towards a systematic framework for instruction-level
approximate computing and its application to hardware
resiliency. 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 00:1–14, 2016.


