
Basset: A Tool for Systematic Testing of Actor Programs

Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana IL, 61801, USA

{slauter2, rkumar8, marinov, agha}@illinois.edu

ABSTRACT
This paper presents Basset, a tool for systematic testing of
JVM-based actor programs. The actor programming model
offers a promising approach for developing reliable concur-
rent and distributed systems. Since the actor model is based
on message passing and disallows shared state, it avoids
some of the problems inherent in shared-memory program-
ming, e.g., low-level dataraces involving access to shared
data. However, actor programs can still have bugs that
result from incorrect orders of messages among actors or
processing of messages by individual actors. To systemat-
ically test an actor program, it is necessary to explore dif-
ferent message delivery schedules that might occur during
execution. Basset facilitates such exploration and provides
a generic platform that can support actor systems that com-
pile to Java bytecode. Our current implementation of Bas-
set supports testing of programs developed using the Actor-
Foundry library and the Scala programming language.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging; D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms: Verification

Keywords: Actors, JPF, Scala, State-space exploration

1. INTRODUCTION
The growing use of multicore and networked computing

systems is increasing the importance of developing reliable
concurrent and distributed code. Unfortunately, developing
and testing such code is very hard, especially using shared-
memory models of programming. The actor programming
model provides an alternative where multiple autonomous
agents communicate by exchanging messages. Each agent,
called an actor, has an independent thread of control and
its own local state [1].

A key challenge in testing actor programs is their inherent
nondeterminism. Although actors do not communicate via
shared memory, concurrency bugs may still occur as a result
of an incorrect order of message arrivals at different actors.
To test and model check actor programs, it is thus necessary
to systematically explore different message schedules.

We developed Basset [3], a tool for systematic testing
of actor programs that execute on a Java Virtual Machine

Copyright is held by the author/owner(s).
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
ACM 978-1-60558-791-2/10/11.

(JVM). To leverage work in model checking, we built Bas-
set as an extension for Java PathFinder (JPF), a popular
explicit-state model checker for Java bytecodes [5]. Prior to
our work, JPF did not have any direct support for actors.
One goal of our work was to build a generic platform that can
support several actor systems. There are over 20 actor-based
languages and actor libraries for existing languages [3]. Bas-
set is a generic tool and framework for testing actor systems
that compile to Java bytecode. Providing support for a spe-
cific language requires only a small amount of new code to
be written. We extended Basset for the Scala programming
language and the ActorFoundry library for Java.

A question that arises is why build a new tool and not
use JPF to directly check programs written against actor
libraries such as Scala and ActorFoundry. These libraries
include a complex, multi-threaded runtime system for ex-
ecution of actor programs. While these runtime systems
enable efficient execution of actor programs, because of the
complexity and scheduling choices in the runtime system,
they make exploration of the programs unfeasible or ineffi-
cient. JPF can execute the Scala library, but the resulting
state space is huge: for example, exploration of the state
space of a simple Scala helloworld application did not com-
plete in one hour! Even after we simplified parts of the Scala
library, JPF still took over 7 minutes to check helloworld [3].

Our design goal for Basset is efficient exploration of the

actor application itself and not the exploration of the code
inside actor libraries. Specifically, Basset provides a sim-
plified abstraction of a typical actor runtime system that
replaces much of the code in a given library. The modified
actor library presents the same interface to the actor appli-
cation but enables a much faster exploration. The result is a
highly efficient system to test actor code for potential bugs
due to message schedules. For example, Basset takes less
than one second to check helloworld.

2. BASSET OVERVIEW
Basset is implemented as an extension to JPF. Explo-

ration of actor programs using Basset can be performed
without any modifications to the programs. All that is re-
quired to test an actor program is a simple test driver that
is rarely more than a few lines in length. These drivers al-
low the developer to specify initial starting configurations
that create actors and seed initial messages without explor-
ing related message schedules. Since actors are often used
to develop “open” systems, this allows the systematic explo-
ration to be started after the system is setup and running.
This capability can greatly reduce testing time.



Basset provides several capabilities to support efficient
state-space exploration: actor state management (keeping
track of created and destroyed actors, as well as comparing
states when stateful search is used), actor execution (man-
aging actor threads), message management (scheduling and
delivering messages, as well as tracking message causality
when partial-order reduction is used), and error checking.

2.1. Actor state management: Each actor program
creates several actors that compute as well as exchange mes-
sages. Basset keeps track of all actors created and destroyed
during an execution, and maintains the internal state along
with the status of each actor, including the following: pro-
cessing a message (busy), waiting for a message (idle), or
waiting on a reply of a synchronous message (blocked).

2.2. Actor execution: A critical aspect of any actor
system is how to execute the actor code that processes each
message. Semantically, each actor has its own thread of
control. To support this model and to provide for efficient
exploration (not execution) of actor programs, Basset uses
a separate ActorThread object/thread for each actor instead
of a thread pool. Exploring all possible fine-grained inter-
leavings of instructions from these threads would be very
costly and is not necessary because actors have no shared
state. Hence, Basset uses the macro-step semantic [1] for
actor execution: after Basset delivers a message to an actor,
the actor processes the message by executing a sequence of
instructions atomically until the next message receive point.

2.3. Message scheduling: At the heart of Basset are the
message management and scheduling functions that drive
the exploration of a subject program. Basset maintains a
message cloud containing all messages that have been sent
but not yet delivered to actors. Whenever a new cloud
configuration contains more than one deliverable message,
Basset nondeterministically chooses to deliver one of these
messages to its corresponding receiver actor. In subsequent
executions, Basset systematically explores the state space of
the program by choosing different possible delivery schedules
for the messages in the cloud. The tool facilitates reduc-
tion of the number of message delivery schedules that need
to be explored by using either state comparison or dynamic
partial-order reduction (DPOR).

State comparison: Basset can perform a stateful ex-
ploration, i.e., it stores visited states and checks whether
a state has been seen previously by comparing it against a
set of states [3]. A challenge for object-oriented programs
(whose state include heaps with connected objects) is that
states need to be compared for isomorphism. Using JPF’s
default state comparison, two states are equivalent when
their heaps have the same shape among connected objects
and the same primitive values, even if they have different
object identities. Basset additionally provides a custom
state comparison specialized for the actor domain. For ex-
ample, when comparing actors, the top-level state items—
actors and the message cloud—are sets. Standard compari-
son simply compares them at their concrete implementation
level (say, as arrays or lists) and thus could find two sets
with the same elements to be different due to the order of
their elements. Basset’s custom actor state comparison uses
a sorting heuristic to help identify equivalent sets [3].

Partial-order reduction: As an alternative to stateful
exploration, Basset includes support for dynamic partial-
order reduction (DPOR) for actor programs. To avoid ex-
ecuting message schedules that are equivalent, DPOR algo-

rithms dynamically identify situations where only a subset
of the messages available for delivery need be considered.
We have implemented multiple DPOR algorithms in Basset
and have extended the tool’s actor and message represen-
tations to include vector clocks that track causality among
message (send and receive) events. Furthermore, since the
effectiveness of DPOR is highly sensitive to the order in
which messages (and their receiving actors) are ordered for
delivery [4], Basset allows users to select from among several
different message ordering heuristics when using DPOR.

2.4. Error checking: Basset provides several checks that
can be applied during execution of actor programs. Bas-
set can check for state assertions (expressed using arbitrary
Java expressions) and for undeliverable messages at the end
of an execution path (due to actors being terminated or
blocked). Basset can also detect deadlocks. An obvious
deadlock occurs when several actors are blocked, each wait-
ing for another (in a cycle) to return from a synchronous
call. Another type of deadlock can occur when the execu-
tion reaches a final program state where no alive actor can
make progress. Since actor programs are open systems, such
a final state is not necessarily a deadlock; it may be that ac-
tors are waiting for a new message from the environment. To
check for deadlocks in such cases, Basset allows the user to
“close” the system by providing a model of the environment
(as another actor) [3].

3. CONCLUSIONS
We presented Basset, a tool for systematic testing of JVM-

based actor programs. Basset’s current implementation sup-
ports testing of programs developed using the ActorFoundry
library and the Scala programming language. Basset is avail-
able at http://mir.cs.illinois.edu/basset/. The availabil-
ity of Basset’s generic exploration allowed us to quickly com-
pare existing DPOR techniques for actor programs [4] and to
experiment with mutation testing for actors [2]. We expect
that making the tool publicly available will also help other
researchers to test actors programs as well as to improve
testing and model checking of actor programs.

Acknowledgments. We would like to thank Mirco Dotta,
Milos Gligoric, Vilas Jagannath, and Samira Tasharofi for
their help on this project. This material is based upon work
partially supported by the NSF under Grant Nos. CCF-
0916893, CNS-0851957, CCF-0746856, and CNS-0509321.

4. REFERENCES
[1] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.

A foundation for actor computation. Journal of
Functional Programming, 7(1):1–72, 1997.

[2] V. Jagannath, M. Gligoric, S. Lauterburg,
D. Marinov, and G. Agha. Mutation operators for
actor systems. In Mutation, 2010.

[3] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A
framework for state-space exploration of Java-based
actor programs. In ASE, 2009.

[4] S. Lauterburg, R. K. Karmani, D. Marinov, and
G. Agha. Evaluating ordering heuristics for dynamic
partial-order reduction techniques. In FASE, 2010.

[5] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated

Software Engineering, 10(2):203–232, April 2003.


