
© 2021 Wing Lam



DETECTING, CHARACTERIZING, AND TAMING FLAKY TESTS

BY

WING LAM

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Tao Xie, Co-Chair
Professor Darko Marinov, Co-Chair
Assistant Professor Tianyin Xu
Partner Researcher Suman Nath, Microsoft Research



ABSTRACT

As software evolves, developers typically perform regression testing to ensure that their
code changes do not break existing functionalities. During regression testing, developers can
waste time debugging their code changes because of spurious failures from flaky tests, which
are tests that non-deterministically pass or fail on the same code. These spurious failures
mislead developers about their code changes because the failures are often due to bugs that
existed before the code changes.

One prominent category of flaky tests is order-dependent (OD) flaky tests. Each OD
test has at least one order in which the test passes and another order in which the test
fails, and for every test order, the test either passes or fails in all runs of that test order.
Another prominent category is async-wait (AW) flaky tests. Each AW test makes at least
one asynchronous call and passes if the asynchronous call finishes on time but fails if the
call finishes too early or too late.

This dissertation tackles three main aspects of flaky tests. First, this dissertation presents
novel techniques to detect flaky tests so that developers can preemptively prevent the problem
of flaky tests from affecting their regression testing results. Second, this dissertation presents
novel techniques to characterize flaky tests to help developers better understand their flaky
tests and to help researchers invent new solutions to the flaky-test problem. Lastly, this
dissertation presents novel techniques to tame the problem of flaky tests by accommodating
the flakiness so that flaky tests do not mislead developers during regression testing.

For detecting flaky tests, this dissertation presents (1) iDFlakies, a framework for detecting
and partially classifying flaky tests, and IDoFT, an increasingly used dataset of flaky tests
found in popular open-source projects; (2) an analysis of the probability to detect OD tests
from randomizing test orders and a novel algorithm to systematically explore all consecutive
pairs of tests, guaranteeing to detect all OD tests that depend on one other test; and (3) a
large-scale longitudinal study of flaky tests to determine when flaky tests become flaky and
what changes cause them to become flaky—the results provide guidelines for when and how
developers should spend their efforts to detect flaky tests.

For characterizing flaky tests, this dissertation presents (1) the first automated technique
to help developers debug flaky-test failures; and (2) a study to understand the effect that
test orders have on non-deterministic tests, which can pass and fail even for the same test
order—the results suggest that many of these tests can fail with significantly different failure
rates for different test orders.

ii



Lastly, for taming flaky tests, this dissertation presents (1) the first automated techniques
to reduce the number of spurious failures from OD tests, reducing such failures by 73%; and
(2) the first automated techniques to speed up AW flaky tests while also keeping the number
of spurious failures low, speeding up such tests by 38%.

Overall, the work in this dissertation has helped detect more than 2000 flaky tests in over
150 open-source projects and fix more than 500 flaky tests in over 80 open-source projects.

iii



To my family and friends for their love and support.

iv



ACKNOWLEDGMENTS

During the six years that I spent working on my Ph.D., I received help from many people,
and this dissertation could not have been possible without everyone’s help. In this acknowl-
edgment, I do my best to express my gratitude to every one of you, but I will inevitably
forget to mention some of you. Nevertheless, please understand that you have my deepest
gratitude for all of the help and encouragement that you provided me over the years.

First of all, I would like to thank all of my mentors. In particular, I would like to thank
my advisors, Professor Tao Xie and Professor Darko Marinov. When I began my Ph.D. in
2015, both of them expressed interest in working with me, and I am happy to see that the
two of them ended up accepting me as their student. I became Tao’s student early on due to
my interest in pursuing Android testing related topics. I remember quite well the long hours
that Tao would spend with me in the early years of my Ph.D. and how the lessons learned
from those meetings would shape me to become the researcher that I am today. For example,
one saying that Tao has is that I should not just keep cooking my research, and instead, I
should let him smell or get a taste of the soup. Another saying that Tao has is that he is the
“wide receiver sitting in the end zone waiting for us to throw the ball to him”. Essentially,
the sayings taught me the importance of frequently engaging and iterating with my advisors
on my research. The sayings also highlight the many occasions that Tao invited me and
others over to his place to eat food and watch major sporting events together. I found these
occasions to be very comforting and am grateful to Tao for hosting them. Additionally, Tao
always encouraged me to think more about the big picture of my work and to dream big
with the work that I want to do. I am especially thankful to Tao for all of the lessons that
he has taught me, and I hope to instill such ideals in my future students.

On the other hand, I started working with Darko during the Fall of 2018. Although I took
three years to begin working with Darko, he was always a helpful mentor to me even before
I officially became his student. In fact, Darko helped provide the connection and interview
preparation for my internship at Microsoft Research Cambridge in the summer of 2016. This
internship helped me foster a good connection with developers and researchers at the Tools
for Software Engineering group and eventually led to two more internships. During one of
those additional internships, my project was to work on automated techniques for debugging
flaky tests (included in Chapter 5 of this dissertation). After my internship that summer,
I became interested in researching flaky tests again after working on the topic during my
undergraduate and focusing on other topics in the early years of my Ph.D. As Darko would

v



jokingly put it, this moment was when I “began to see the light” in research as the topic of
flaky tests was one that Darko has had an interest in for a few years by then. After I began
working on flaky tests and with Darko, I completed most of the work in this dissertation.
I made progress because the topic is one that I am passionate about and because of how
much Darko cares about his students’ well-being and learning. One saying that Darko has
is that he has heard that micro-managing students is bad, which is why he prefers to “nano-
manage” his students instead. Although micro-managing (or “nano-managing”) implies that
he will control every part of his student’s work and this management style generally carries a
negative connotation, I found Darko’s “nano-managing” to be instrumental to my growth as
a researcher. In my initial projects with Darko, I lacked many of the skills to prototype ideas
quickly. Being a much more experienced programmer, Darko could have quickly implemented
the prototypes. However, instead of implementing them himself or just waiting for me to
slowly learn how to implement them, Darko “nano-managed” me. Specifically, he spent much
more time teaching me the necessary skills to implement the prototypes myself, thereby
providing me crucial future research skills. I hope to demonstrate the same amount of care
to my students in the future, possibly by “nano-managing” them as well .

After I became Darko’s student, I began interacting much more often with Owolabi Le-
gunsen and August Shi, who braved the job market in 2019 and 2020, respectively. The
two of them graciously spent their time helping me prepare for the job market this year and
made themselves available for me to share the difficulties that I had to overcome in recent
years and successes that I finally achieved. I like to think of the two of them as my unofficial
advisors. I am deeply grateful for the time that the two of them spent with me and I will
look to provide to others the same care and help that they provided me.

Beyond my advisors, other mentors of mine include my internship mentors. Namely, I
would like to thank Marc Brockschmidt, Patrice Godefroid, Ben Livshits, Kivanç Muşlu,
Suman Nath, Mukul Prasad, Ripon Saha, Hitesh Sajnani, Anirudh Santhiar, and Suresh
Thummalapenta. I am particularly grateful to Suman for officially mentoring me for one
internship, unofficially mentoring me for another, and for serving on my Ph.D. committee.
I am also particularly grateful to Suresh for being my official mentor and advocating for
my hiring for two internships. I also have some unofficial mentor friends. Specifically, Sean
Hurley, Vivek Nair, and Michele Tufano all interned at Microsoft with me. The four of us
spent much time together that summer and have kept in touch with one another throughout
the years. As Vivek and Michele spent much more time in academia than I have, the two of
them are unofficial mentors of mine for everything related to research and academia.

In some ways, all of my co-authors have mentored me through their contributions to the
work that we shared. Namely, I would like to thank my co-authors: Angello Astorga, Blake

vi



Bassett, Jonathan Bell, Long Chen, Yuetang Deng, Michael D. Ernst, Patrice Godefroid,
Jonathan de Halleux, Darioush Jalali, Pratap Lakshman, Dengfeng Li, Ge Li, Beihai Liang,
Hui Luo, Yingjun Lyu, Peyman Mahdian, Darko Marinov, Kivanç Muşlu, Suman Nath,
David Notkin, Reed Oei, Mukul Prasad, Ripon Saha, Hitesh Sajnani, Anirudh Santhiar,
August Shi, Siwakorn Srisakaokul, Victoria Stodden, Suresh Thummalapenta, Qianxiang
Wang, Wenyu Wang, Anjiang Wei, Stefan Winter, Zhengkai Wu, Jochen Wuttke, Fan Xia,
Tao Xie, Peng Yan, Wei Yang, Pu Yi, Hiroaki Yoshida, Hao Yu, Xia Zeng, Sai Zhang,
Haibing Zheng, and Wujie Zheng. There is no way that I would have accomplished the work
that I did in my Ph.D. without the mentoring and support from everyone. I look forward
to more collaboration opportunities in the future with everyone.

Looking beyond my mentors, I would like to thank my friends. I started my Ph.D. at
the same time as Angello Astorga, Chiao Hsieh, and Siwakorn Srisakaokul. I collaborated
with Angello and Siwakorn on some papers. Although I never collaborated with Chiao on a
paper, all four of us spent much time together in the early years of our Ph.D. studies, and
we learned a lot from one another. The three of them often served as my “sounding board”
for many research ideas and for my complaints about the stressful moments of grad school.

I would also like to thank many friends of mine in various groups. First, I would like
to thank the members of the group led by Professor Tao Xie. Specifically, I thank Angello
Astorga, Liia Butler, Dengfeng Li, Linyi Li, Xueqing Liu, Siwakorn Srisakaokul, Wei Yang,
Zirui Zhao, and Zexuan Zhong for their companionship during the many group meetings and
outings that we have had together. Second, I would like to thank the members of the group
led by Professor Darko Marinov. Specifically, I thank Alex Gyori, Farah Hariri, Owolabi
Legunsen, and August Shi for their guidance during my Ph.D. and their discussions about
research ideas. Third, I would like to thank the members of the group led by Professor Sasa
Misailovic. Specifically, I thank Saikat Dutta, Vimuth Fernando, Zixin Huang, Keyur Joshi,
and Jacob Laurel for their discussions about research and for their participation in the many
extracurricular activities we shared (e.g., volleyball games, BBQs). Lastly, I would like to
thank Wajih Ul Hassan, Umang Mathur, and Amarin Phaosawasdi, who provided valuable
comments regarding my research and job application material.

During my Ph.D., I was also fortunate enough to have the privilege of mentoring many
extraordinary undergraduate and Master’s students. I would like to thank all of them for the
privilege of mentoring them and for their hard work, which in one way or another contributed
to the research that I have done. I would particularly like to thank Dengfeng Li, Reed Oei,
Anjiang Wei, Pu Yi, and Hao Yu for their hard work and the papers we published together.
I hope that all of you find much success in your next endeavors.

For the preparation of my job search this year, many faculty members at the University

vii



of Illinois at Urbana-Champaign (UIUC) provided me valuable advice. Specifically, I would
like to thank Professors Sarita Adve, Vikram Adve, Nancy Amato, Saugata Ghose, Colleen
Lewis, and Lingming Zhang for their words of encouragement, job-search advice, and mock
interviews. I would also like to thank Professors Carl Gunter, Indranil Gupta, Jiawei Han,
Julia Hockenmaier, Reyhaneh Jabbarvand, Robin Kravets, Sasa Misailovic, Madhusudan
Parthasarathy, and Tianyin Xu for their advice on my job talk presentation and my research
in general. A special thank you goes to Tianyin Xu for also serving on my Ph.D. committee.

I would also like to thank the many CS department staff at UIUC who helped facilitate
my funding, prepare me for graduation, and the many other support activities that I needed
during my Ph.D. Specifically, I would like to thank Kim Baker, Kimberly Bogle, Maggie
Chappell, Jancie Harris, Samantha Hendon, Viveka Kudaligama, and Kara MacGregor.

My research would not have been possible without funding from various agencies, such
as the National Science Foundation, Facebook, Futurewei, Google, and Microsoft. I was
also supported by the Google – CMD-IT LEAP Alliance Fellowship, Ray Ozzie Computer
Science Fellowship, State Farm Companies Foundation Doctoral Scholarship, and Yunni &
Maxine Pao Memorial Fellowship.

The work in this dissertation was published at seven different conferences: ICST 2019
(Chapter 2), TACAS 2021 (Chapter 3), OOPSLA 2020 (Chapter 4), ISSTA 2019 (Chapter 5),
ISSRE 2020 (Chapter 6), ISSTA 2020 (Chapter 7), and ICSE 2020 (Chapter 8). I would
like to thank all of the anonymous reviewers who reviewed the submissions and provided
comments to improve the work. I would also like to thank the audiences who attended and
commented on the presentations of the work in this dissertation.

Lastly and most importantly, I would like to thank my family. In particular, I would like
to thank my parents, Veda Lam and Vikki Miu, for their care and support over the years.
My mom devoted much of her life to caring for my sister and me, but she unfortunately
passed away before I started college. I attribute almost all of my accomplishments to my
memory of her, and this dissertation is no different. I would also like to thank my aunt,
Teresa Miu, for taking care of me and often putting her own interest behind the interest of
others, such as myself. Growing up, I spent much of my time with my sister, Ming Lam,
and my cousins, Arthur Chang, Philip Chang, Bo Kwok, and Camy Kwok. All of them
provided much help and companionship to me over the years. Eventually, Arthur married
Michelle Lai and had Katherine Chang and Kelly Chang, while Philip married Fei Yuan
and had Heidi Chang and Hermes Chang. It provides me immense joy to babysit the little
Changs and watch them grow up. Finally, I want to thank my girlfriend, Karen Lam. I am
very excited for the next chapters of our lives together and am extremely grateful to her for
everything that she does for me and for all of the happiness that she brings to my life.

viii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Categories and Examples of Flaky Tests . . . . . . . . . . . . . . . . . . . . 3
1.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Taming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 [DETECTING] IDFLAKIES: A FRAMEWORK TO DETECT
AND PARTIALLY CLASSIFY FLAKY TESTS . . . . . . . . . . . . . . . . . . . 15
2.1 iDFlakies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 End-to-End Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 3 [DETECTING] PROBABILISTIC AND SYSTEMATIC COVER-
AGE OF CONSECUTIVE TEST-METHOD PAIRS TO DETECT ORDER-
DEPENDENT FLAKY TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 In-Depth Example of Order-Dependent (OD) Test . . . . . . . . . . . . . . . 32
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Analysis of Failure Rate and Simple Algorithm Change . . . . . . . . . . . . 36
3.4 Generating Test Orders to Cover Test Pairs . . . . . . . . . . . . . . . . . . 43
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CHAPTER 4 [DETECTING] A LARGE-SCALE LONGITUDINAL STUDY OF
FLAKY TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Case Studies of Tests Not Flaky At Test-Introducing Commit . . . . . . . . 69
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



CHAPTER 5 [CHARACTERIZATING] ROOT CAUSING FLAKY TESTS IN
A LARGE-SCALE INDUSTRIAL SETTING . . . . . . . . . . . . . . . . . . . . 79
5.1 Background on Microsoft’s Build and Test System . . . . . . . . . . . . . . . 79
5.2 End-to-End Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Open Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 6 [CHARACTERIZATING] UNDERSTANDING REPRODUCIBIL-
ITY AND CHARACTERISTICS OF FLAKY TESTS THROUGH TEST RE-
RUNS IN JAVA PROJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Manually Inspected Flaky Tests . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CHAPTER 7 [TAMING] ACCOMMODATINGORDER-DEPENDENT FLAKY
TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1 Impact of Order-Dependent Tests . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Dependent-Test-Aware Regression Testing Techniques . . . . . . . . . . . . . 121
7.3 Evaluation of General Approach . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

CHAPTER 8 [TAMING] ACCOMMODATING ASYNC-WAIT FLAKY TESTS . . 136
8.1 Background on Microsoft’s Flaky-Test Management System . . . . . . . . . 136
8.2 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.3 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

CHAPTER 9 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1 Detecting Flaky Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2 Characterizing Flaky Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3 Taming Flaky Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

CHAPTER 10 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . 163
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

x



CHAPTER 1: INTRODUCTION

With software permeating all kinds of systems, the reliability of software has monumental
societal impact. The most common and practical way for developers to ensure that their
software is reliable is through the use of regression testing as they develop software. Namely,
developers run tests to check that recent changes do not break existing functionalities. Re-
searchers have proposed a variety of regression testing techniques to improve regression
testing. These regression testing techniques produce an order (a permutation of a subset of
tests in the test suite) in which to run tests. Examples of such traditional regression testing
techniques include test prioritization (run all tests in a different order with the goal of find-
ing failures sooner) [45, 89, 101, 117, 171, 173, 192, 227], test selection (run only a subset of
tests whose outcome can change due to the code changes) [20, 77, 83, 146, 157, 227, 234],
and test parallelization (run tests in parallel across multiple machines) [93, 102, 140, 193].

Both proprietary software development and the open-source community have embraced
the use of regression testing as part of their continuous integration (CI) model of software
development and releases [81, 180]. In this model, every check-in is validated through an
automated pipeline, perhaps running as a service in the cloud, that fetches source code from
a version-controlled repository, builds source code, and runs tests against the built code.
These tests must all pass in order for the developer to integrate changes with the main
development branch. Thus, tests play a central role in ensuring that the changes do not
introduce regressions.

During software development, tests should run quickly and reliably without imposing
undue load on underlying resources such as build machines. That is, in an ideal world,
test failures would reliably signal issues with the developer’s changes and every test failure
would warrant investigation. Unfortunately, the reality of CI pipelines today is that some
tests may pass and fail with the same version of source code and the same configuration.
These tests are commonly referred to as flaky tests [126]. Tests can be flaky due to the
use of concurrency, timeouts, asynchronous calls, network/IO, dependency on the order that
tests are run, etc. [42, 126]. More details about the categories of flaky tests are described in
Section 1.2.

Many software organizations report that flaky tests are one of their biggest problems in
software development. For example, Facebook released a position paper on the importance
of flaky tests [76] and recently ran a call for research projects focused on flaky tests [52].
Several papers and blog posts from Google [54, 69, 134, 136, 240] and Microsoft [78, 106, 107]
have reported several challenges with flaky tests, even estimating the monetary cost of flaky

1



tests on developer productivity [80]. Other organizations, including Apple [103], Fitbit [2],
Gradle [220], Huawei [90], Mozilla [42, 165, 201], Netflix [149], Salesforce [56], Saucelabs [66],
and ThoughtWorks [197], also publicly report their problems with flaky tests. In fact, at
Facebook, Harman and O’Hearn [76] have even proposed to adopt the position that all tests
are flaky (ATAF) and that researchers should rethink testing techniques knowing that they
will be used in an ATAF world.

The work in this dissertation tackles three main aspects of flaky tests. First, this disser-
tation presents novel techniques to detect flaky tests [108, 112, 217] so that developers can
preemptively prevent the problem of flaky tests from affecting their regression testing results.
Second, this dissertation presents novel techniques to characterize flaky tests [106, 111] to
help developers debug flaky-test failures and to help researchers invent new solutions to the
flaky-test problem. Lastly, this dissertation presents novel techniques to tame the problem
of flaky tests [107, 109] by accommodating the flakiness, so that flaky tests do not mislead
developers during regression testing. Besides flaky tests, I have also worked on test-input
generation [215, 231, 239], automatic program repair [179], code-clone detection [228], pa-
rameterized unit tests [110], and record and replay [113], but the focus for this dissertation
is solely on the work related to flaky tests.

1.1 THESIS STATEMENT

The thesis statement of this dissertation is the following.

Proactively detecting, characterizing, and taming flaky tests can help mitigate
the problems of flaky tests.

Every time developers make a code change, they perform regression testing where they run
tests after the change. During the process of regression testing, a test failure is supposed to
indicate that the change has introduced a regression. However, in the presence of flaky tests,
the developers may realize after manual inspection that the test failure is because the test
is flaky and that the failure is actually unrelated to the code change. The developers have
essentially “detected” a flaky test, but it is happening at an inopportune time. Detecting,
characterizing, and taming flaky tests at this time is what we would refer to as reactively
detecting, characterizing, and taming flaky tests.

Much existing work [23, 86, 114, 134, 144, 176, 178] has found that providing developers
with feedback regarding problematic code is most helpful if provided as soon as possible
in the development process. For example, for the static bug-detection tool, Infer [86], at
Facebook, Harman and O’Hearn [76] found that bugs reported to developers at “post land”

2



(after code has been merged into the main development branch) had a close to 0% fix rate;
yet bugs reported at “diff time” (when developers submit code changes) had a fix rate of
over 70%. In the case of flaky tests, it is likely far more useful to notify developers soon after
they made a change that introduced test flakiness, rather than to notify developers weeks or
months after they made the change. In fact, the standard testing practice at organizations,
such as Mozilla [201] and Netflix [149], already aims to find whether newly added tests are
flaky as soon as possible.

The work in this dissertation proposes techniques and develops tools to proactively detect,
characterize, and tame flaky tests before they manifest as flaky-test failures so that devel-
opers would experience reactive detection, characterization, and taming much less often. To
help with this goal, I have co-authored 9 publications on flaky tests, and this dissertation
focuses on the 7 publications where I was the lead author. Specifically, three of the publica-
tions [108, 112, 217] help developers detect flaky tests, two of them [106, 111] help developers
characterize flaky tests, and finally, two of the publications [107, 109] help developers tame
the problems of flaky tests.

1.2 CATEGORIES AND EXAMPLES OF FLAKY TESTS

Prior studies on flaky tests identified many categories for why tests can be flaky [42, 126].
One state-of-the-art flaky-test detection tool is iDFlakies [108], which runs tests in various
orders to detect flaky tests and partitions flaky tests into two categories. One category is
order-dependent (OD) tests that can deterministically pass or fail based on the order in
which the tests are run. Such tests are deterministic in that their failure rates are either 0%
or 100% for each order, and they have at least two orders whose failure rates differ. A failure
rate is defined as the ratio of the number of failed runs over the number of total runs for a
particular test order. We represent a test order as a sequence of tests ⟨t1, t2, . . . , tl⟩. In Java,
each test order is executed by a Java Virtual Machine (JVM) that starts from the initial
state (e.g., all shared pointer variables initialized to null) and then runs each test, which
potentially modifies the shared state. Each test is run at most once in one JVM run. For
completeness of categorization, we also define tests that are not flaky—they either always
pass (all orders have 0% failure rate) or always fail (all orders have 100% failure rate).

The other category is non-deterministic (NOD) tests that are flaky but not OD. Such tests
have at least one order where the test fails non-deterministically (failure rate is neither 0%
nor 100%). We further break down these NOD tests to non-deterministic, order-independent
(NDOI) tests and non-deterministic, order-dependent (NDOD) tests. Specifically, NDOI
tests are NOD tests where all orders’ failure rates do not significantly differ, e.g., all orders

3



Table 1.1: Categorization of tests. F are failure rates per order for a test. DIF is true iff
any rate statistically significantly differs from others.

Non-deterministic (NOD) Deterministic
(∃f ∈ F. 0% < f < 100%)∧ (∀f ∈ F. f = 0% ∨ f = 100%)∧
DIF (F) [NDOD] (∃f ′, f ′′ ∈ F. f ′ ̸= f ′′) [OD]
(∃f ∈ F. 0% < f < 100%)∧ (∀f ∈ F. f = 0%) ∨ [not flaky, pass]
¬DIF (F) [NDOI] (∀f ∈ F. f = 100%) [not flaky, fail]

of a test have a 1% failure rate. A statistical test can be used to determine if any one order’s
rate significantly differs from the others. Conversely, NDOD tests are NOD tests where at
least one order’s failure rate significantly differs from other orders’ failure rates, e.g., a test
that has a 99% failure rate in one order but 0% in another order.

Some prior studies of flaky tests [42, 61, 107, 126] categorized NOD tests into fine-grained
categories (e.g., concurrency, network, I/O), but the authors manually examined the source
code of the tests or conducted surveys of developers after the tests were fixed and the causes
of flakiness were removed. The NOD-related categories that we present may be more coarse-
grained than the ones studied in prior work. However, unlike the categories studied in prior
work, the categories that we present do not require manual examinations or surveys and can
be automatically obtained. Table 1.1 shows the precise definitions for our OD category and
our coarse-grained NOD-related categories. The rest of this section shows examples of OD,
NDOI, and NDOD tests.

1.2.1 Example of Order-Dependent (OD) Test

OD tests are flaky tests that can pass or fail depending on only the order in which the
tests are run [237], i.e., OD tests can be made to deterministically pass or fail by fixing the
order of tests [59]. Detecting OD tests is important in general, because test frameworks can
change the test order, even when running all the tests, thereby causing the failures of OD
tests to affect developers. Moreover, techniques that aim to shorten the time of regression
testing—including test-suite reduction [170, 183, 185, 223], test selection [20, 64, 116, 146,
157, 169, 187, 234], and test parallelization [51]—select only a subset of tests to run and
could additionally expose failures of OD tests.

Our iFixFlakies work [186] has studied the causes of failures for OD tests. We find that
the vast majority of OD tests are related to pairs of tests, i.e., each OD test would pass or
fail due to the sharing of some global state with just one other test. Our iFixFlakies work
has also defined multiple types of tests related to OD tests. Each OD test belongs to one of
two categories:

4



1 // OD Victim (in ShutdownListenerManagerTest class)
2 @Test
3 public void assertIsShutdownAlready() {
4 shutdownListenerManager.new InstanceShutdownStatusJobListener().dataChanged(
5 "/test_job/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");
6 verify(schedulerFacade, times(0)).shutdownInstance();
7 }
8 // Polluter (also in ShutdownListenerManagerTest class)
9 @Test

10 public void assertRemoveLocalInstancePath() {
11 JobRegistry.getInstance().registerJob("test_job", jobScheduleController, regCenter);
12 shutdownListenerManager.new InstanceShutdownStatusJobListener().dataChanged(
13 "/test_job/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");
14 verify(schedulerFacade).shutdownInstance();
15 }
16 // Cleaner (in FailoverServiceTest class)
17 @Test
18 public void assertGetFailoverItems() {
19 JobRegistry.getInstance().registerJob("test_job", jobScheduleController, regCenter);
20 ... // 12 more lines
21 JobRegistry.getInstance().shutdown("test_job");
22 }

Figure 1.1: Example OD victim, polluter, and cleaner tests from the Elastic-Job [43] project.

1. brittle, which is a test that fails when run by itself but passes in a test order where the
test is preceded by a state-setter; and

2. victim, which is a test that passes when run by itself but fails in a test order where
the test is preceded by a (state-)polluter unless a (state-)cleaner runs in between the
polluter and the victim. In other words, a test v is a victim if it passes in the order
⟨v⟩ but fails in another order; the other order usually contains a single polluter test
p (besides many other tests) such that v fails in the order ⟨p, v⟩. If the test suite
contains a cleaner test c, then v passes in the order ⟨p, c, v⟩. Note that test orders
may contain more tests besides polluters and cleaners for a victim v, but these other
tests do not modify the relevant state and do not affect whether v passes or not in any
order. Precise definitions for these tests are in our prior work [186].

Most of the work in this dissertation focuses on victim tests because most OD tests are
victims rather than brittles (e.g., 91% of the 110 truly OD tests in the iDFlakies dataset are
victims [85]), and brittles can often be treated as a simple special case of victims.

Figure 1.1 shows an example OD test that our flaky-test detection tool (iDFlakies) found in
a popular open-source project. The test, assertIsShutdownAlready, is an OD victim because
its passing depends on some tests not to run before it. One such test is assertRemoveLocal-
InstancePath, which is also shown in Figure 1.1. This test is a polluter because it starts

5



1 [TestMethod]
2 public void DelayedTaskStaticBasicTest() {
3 int delay = 1000; int i = 0;
4 Scheduler.ScheduleTask(DateTime.UtcNow.AddMilliseconds(delay),
5 new LoggedTask("TestDelayedTaskFrameworkTask", () => { i = 1; },
6 new Dictionary<string, string> { { "test", "value" } }));
7 Thread.Sleep(500);
8 Assert.IsTrue(i == 0);
9 Thread.Sleep(delay);

10 Assert.IsTrue(i == 1);
11 }

Figure 1.2: NDOI, AW flaky test from a Microsoft proprietary project.

a job manager that is shared with other tests (Line 11) but does not shut it down at the
end of the run. Running the polluter before the victim is problematic in this case be-
cause Line 6 of assertIsShutdownAlready checks whether the shared job manager is shut
down, and because the job manager is started and not shut down by the polluter, the
victim will fail if the polluter is run first. The victim passes by itself or in orders where
the tests that start the instance are run after the OD test. Figure 1.1 also shows an ex-
ample of a cleaner (assertGetFailoverItems) for the victim. assertGetFailoverItems is
a cleaner because it shuts down the instance started by polluters on Line 21. Therefore,
as long as assertGetFailoverItems runs between polluters and assertIsShutdownAlready,
then assertIsShutdownAlready will pass. In popular open-source projects, we find that up
to 50.5% of flaky tests are OD tests. More details about our findings regarding OD tests are
in Section 2.

1.2.2 Example of Non-Deterministic Order-Dependent (NDOI), Async-Wait (AW) Test

NDOI tests are flaky tests that can pass or fail depending on any reason other than solely
on the order in which the tests are run, i.e., how often these tests would fail is not affected in
any way by the order in which tests are run. Tests of this type are flaky due to asynchronous
calls, concurrency, timeouts, network/IO, etc. [126]. For example, these tests can be flaky
due to an async-wait (AW) issue, which is when a test execution makes an asynchronous
call and does not properly wait for the result of the call to become available before using
it. Note that the asynchronous call may be in the test code, code under test, or in a library
that the project depends on. Whether such flaky tests pass or fail depends on whether the
asynchronous call was able to finish or not.

Figure 1.2 shows an example of an AW test. DelayedTaskStaticBasicTest schedules a
task to run at a pre-defined time (the current time + 1000 milliseconds) on Line 4. The test

6



can be flaky due to two main reasons.

1. When the asynchronous task on Line 4 finishes executing before Line 8, then the test
will fail. In passing executions of this test, the value of i has not changed to 1, but
in the failing executions, delays before the assertion on Line 8 can actually be greater
than the time it takes to execute the asynchronous task on Line 4. In such cases, the
value of i when Line 8 executes is already 1 and the assertion will fail.

2. When the assertion on Line 10 finishes executing before the asynchronous task on
Line 4 finishes executing, then the test will fail. In passing executions of this test, the
value of i is changed to 1 before Line 10 executes, but in the failing executions, the
asynchronous task on Line 4 runs so slow that the delays on Lines 7 and 9 are not
enough to prevent Line 10 from executing before the asynchronous task finishes.

We find that the most common category of flaky tests in Microsoft proprietary projects
is the async-wait category [107]. More details regarding our findings about flaky tests in
Microsoft proprietary projects are in Section 5 and Section 8.

1.2.3 Example of Non-Deterministic Order-Dependent (NDOD) Test

One example NDOD test is shown in Figure 1.3. The shouldRetryWithDynamicDelayDate
test is from a project [166] that implements client-side response routing. This test is flaky
because some runs take longer than the timeout limit of 1500ms. We find that the test
is NDOD because Line 4 launches a server, and in runs where the test passes, other tests
running before this test trigger the Java just-in-time (JIT) compiler, thereby reducing the
latency to start the server. On the other hand, in runs where the test fails, the JIT compiler
is not triggered, thereby increasing the latency to start the server and resulting in the test
exceeding 1500ms. We confirmed our understanding by logging the time that it takes to run
the test and then running the test multiple times. With our changes, we see that after ∼5
runs, the runtime of this test would decrease from ∼1500ms to ∼1000ms.

We refer to the number of times that a flaky test fails consecutively as the test’s burst
length. In 4000 runs of the test suite containing this NDOD test, we find that this test’s
maximal burst length is 7 in one order, with the average maximal burst length being 3.1
across the 21 test orders that we ran. We also find that this test has a failure rate of 39.1%
when run by itself in isolation, while its failure rate is 10.9% when it is run in its test suite,
with the failure rate ranging from 0% to 20.1% depending on the test order. This test’s
failure rate varies a lot because some other tests running before it can exercise code that

7



1 @Test(timeout = 1500)
2 public void shouldRetryWithDynamicDelayDate() {
3 ... // test setup
4 atLeast(Duration.ofSeconds(1) ,() -> unit.get("/baz").dispatch(...).join());
5 }

Figure 1.3: NDOD test from the riptide [166] project.

triggers the JIT compiler, in which case the test often passes because it then takes closer to
1000ms. In popular open-source projects, we find that the majority of NOD tests are NDOD
instead of NDOI. More details about our findings regarding NOD tests are in Section 6.

1.3 DETECTION

As Section 1.1 points out, providing developers with feedback regarding problematic code
is most helpful if provided as soon as possible in the development process. Organizations
such as Mozilla [201] and Netflix [149] have already made changes to incorporate this insight
into their testing practice.

To help developers detect flaky tests as soon as possible, we develop a tool, called iD-
Flakies, that can (1) detect flaky tests by reordering and rerunning tests in a project and
(2) partially classify flaky tests as likely OD or NOD tests by checking various test orders.
We implement our tool as a Maven plugin for Java projects that use JUnit tests. The tool
offers five configurations to run the tests and detect flaky tests. The base configuration sim-
ply reruns the original order of the tests many times to check whether the result of any test
changes; any test that passes and fails for the same code version in the same test order is by
definition a flaky, NOD test. The other configurations reorder the test methods and classes
to focus on detecting OD tests, but these configurations can also detect NOD tests along
the way. Following Zhang et al. [237], iDFlakies reorders tests using random orderings or
reversing the original order of the tests. However, iDFlakies differs from Zhang et al.’s tool in
that iDFlakies’s random orderings do not interleave test methods from different test classes.
An ordering that interleaves tests from test classes would not be produced by popular testing
frameworks, such as JUnit [96], TestNG [204], Cucumber [30], and Spock [190].

We also develop a methodology to analytically obtain the flake rates of OD tests and
propose a simple change to the random sampling of test orders to increase the probability
of detecting OD tests [217]. A flake rate of a test is the probability that the test fails in
a randomly sampled test order from all possible orders and is defined as the ratio of the
number of test orders in which a test fails divided by the total number of possible orders.
Flake rates can help researchers analytically compare various algorithms (e.g., comparing

8



reversing a passing order to sampling a random order as shown in Section 3.3.4) and help
practitioners prioritize the fixing of flaky tests. Specifically, we study the following problem:
determine the flake rate for a given victim test with its set of polluters and a set of cleaners
for each polluter. Our analysis finds that some OD tests have a rather low flake rate, as low
as 1.2%.

Because random sampling of test orders may miss test orders in which OD tests fail, we
also propose a systematic approach to cover all consecutive test pairs to detect OD tests. We
present an algorithm that systematically explores all consecutive test pairs, guaranteeing the
detection of all OD tests that depend on one other test, while running substantially fewer
tests than a naive exploration that runs every pair by itself. Our algorithm builds on the
concept of Tuscan squares [68], studied in the field of combinatorics. Given a test suite,
the algorithm generates a set of test orders, each consisting of at least two distinct tests
and at most all of the tests from the test suite, that cover all of the consecutive test pairs,
while trying to minimize the cost of running those test orders. Our analysis shows that the
algorithm runs substantially fewer tests than naive exploration.

One important obstacle to performing research on flaky tests is obtaining a dataset of cur-
rent flaky tests in real-world projects, similar to datasets such as SIR [36] and Defects4J [98]
that helped research studies on regression testing, automated debugging, and program re-
pair. Some prior work studies only flaky tests from older code versions [18] or focuses on
only flaky tests that had been fixed [126]. Other work does not classify flaky tests into OD
or NOD tests, or performs studies on only a relatively small number of projects [237].

To offer a dataset of current flaky tests in real-world projects, we apply our flaky-test
detection techniques on a large number of open-source projects, and create a dataset of such
flaky tests. Through many pieces of this dissertation’s work and open-source contributions
from others, our dataset has grown to over 2000 flaky tests detected and over 500 flaky
tests fixed. We make our tools and dataset publicly available [8, 85, 105], allowing other
researchers to use them in their research experiments on flaky tests.

Overall, this dissertation makes the following main contributions for detecting flaky tests.

• Tool. We develop and make publicly available a tool called iDFlakies to detect flaky
tests and classify them into two categories; our tool can be easily integrated into Maven
projects that use JUnit.

• Probability analysis. We develop a methodology to analytically obtain the flake
rates of OD tests and propose a simple change to the random sampling of test orders
to increase the probability of detecting OD tests. Our analysis finds that some OD
tests have a rather low flake rate, as low as 1.2%.

9



• Systematic test-pair exploration. We present an algorithm that systematically
explores all consecutive test pairs, guaranteeing the detection of all OD tests that de-
pend on one other test, while running substantially fewer tests than a naive exploration
that runs every pair by itself.

• Dataset. We describe a collection of artifacts, including Docker images and test-run
logs, that we use to create a dataset of flaky tests [85].

• Study. We present a study of flaky tests in open-source Java projects. Our findings
include how prevalent OD and NOD types of flaky tests are, how to automatically
detect these tests, when flaky tests are introduced, what changes cause tests to be
flaky, and how should developers use flaky-test detection tools.

1.4 CHARACTERIZATION

The presence of flaky tests imposes a significant burden on developers using CI pipelines.
In a survey conducted on 58 Microsoft developers, we find that they considered flaky tests
to be the top 2 most important reasons, out of 10 reasons, for slowing down software deploy-
ments. A further detailed survey conducted on 18 of the developers showed that they value
debugging and fixing existing flaky tests as one of the most important course of action for
Microsoft to take regarding flaky tests [106]. These debugging and fixing efforts are often
complicated by the fact that the test failures may only occur intermittently, and are some-
times reproducible only on the CI pipeline but not on local machines. When we re-run flaky
tests locally 100 times, we find that 86% of them pass in all runs, i.e., they manifest as flaky
only in the CI pipeline. This result is not surprising since reproducing flaky-test failures
entails triggering a particular execution among many possible non-deterministic executions
for a given flaky test. Non-determinism can arise from the non-availability of external I/O
resources, such as network or disk, or from the order of thread and event scheduling. Prior
work [126, 237] uncovering these factors has examined in detail the extent to which these
factors contribute towards flakiness, and developers often find it too difficult and expensive
to identify the root cause of flakiness.

To help developers with this problem, we have proposed a tool called RootFinder [106]
that analyzes the logs of passing and failing executions of the same test to suggest method
calls that could be responsible for the flakiness. We also describe our framework, which
encompasses RootFinder, that can be used to instrument flaky tests and automatically
obtain passing and failing execution logs for RootFinder to help developers debug flaky-test

10



failures. We implemented RootFinder with Microsoft developers and evaluated the tool in
an industrial setting using production data obtained from Microsoft proprietary projects.

Beyond our work on flaky tests in proprietary projects, we also study flaky tests in open-
source projects. We believe that two key challenges have limited the amount of in-depth
work on NOD tests. The first challenge is the machine cost for rerunning tests. Many
NOD tests may fail rather infrequently (e.g., once in 4000 test runs, as we observe from our
experiments) or only under specific circumstances, so it takes substantial time and reruns
to observe even one failure, let alone a few failures to study when and how they occur. The
second challenge is the human cost for debugging NOD tests. In contrast to OD tests that
fail deterministically and could be somewhat easier to reproduce and debug, NOD tests fail
non-deterministically, potentially infrequently, and can take a lot of time to debug, especially
for researchers unfamiliar with some open-source code that has flaky tests. For example,
in our study [111], inspecting each new flaky test took one of the authors about a day on
average to precisely understand the root cause of non-determinism. To help developers gain
a more in-depth understanding of NOD tests, we present a study that is organized around
four main research questions. Our study uses popular, open-source projects and is aimed at
improving our understanding of how to rerun, detect, debug, and prioritize flaky tests.

Overall, this dissertation makes the following main contributions for characterizing flaky
tests.

• Tool. We develop and make publicly available a prototype tool [168], called RootFinder,
that analyzes the logs of passing and failing executions of the same test to suggest
method calls that could be responsible for the flakiness.

• Framework. An end-to-end framework, developed within Microsoft that uses RootFinder
to root-cause flaky tests.

• Proprietary project study. A qualitative study of flaky tests in Microsoft propri-
etary projects. Our qualitative study provides insights on root causing flaky tests with
in-depth examples that demonstrate the root causes of flaky tests.

• Open-source project study. Our empirical evaluation of flaky tests in open-source
Java projects provides actionable guidelines and practical suggestions for developers
and researchers to rerun, detect, debug, and prioritize flaky tests.

1.5 TAMING

To demonstrate how developers should tame flaky tests, let us consider the example from

11



Section 1.2.1 where a server not being shut down would cause assertIsShutdownAlready
to encounter an order-dependent test failure when it is run after another test. The main
ways to help developers tame this OD test are to reduce the chance of OD-test failures
or completely remove the chance of OD-test failures. For reducing the chance of OD-test
failures, developers can accommodate the OD-test failures by running the tests in only some
orders. For removing the chance of OD-test failures, developers can fix these tests by cleaning
the relevant parts of the shared state between the tests. Developers can also fix the code by
having the tests not share any state, such as changing the server not to be shared between
tests. However, doing so may not always be possible, or it can incur substantial costs.

For our example with assertIsShutdownAlready, accommodating this OD test may be
done by making it so that assertIsShutdownAlready must always run before tests that
would start the server but not shut it down. By doing so, the OD tests are allowed to run
in only some orders, but the benefit is that these tests may run faster because the tests are
allowed to reuse states. Namely, by accommodating these tests, the tests would only need
to initialize and shut down the server once instead of multiple times. Running tests in only
some orders is particularly popular at some organizations such as Microsoft [107]. In this
dissertation, we present one piece of the work on accommodating OD tests (Section 7) and
another piece of the work on accommodating async-wait tests (Section 8).

On the other hand, for fixing, we may have every test create and test on their own instance
of the server. By changing the code, assertIsShutdownAlready would now be able to run
in any order, which enables the use of traditional regression testing techniques, and still get
reliable results. One of our past projects [186] proposes a technique to automatically fix OD
tests and developers from popular open-source projects have accepted more than 64 of these
fixes that we submitted from this work.

In general, we find that there are developers who prefer fixing OD tests but there are also
those who prefer just accommodating such tests. Regardless of what the developer prefers,
one constant between the two ways of taming is that OD tests should not fail due to the
test order changes but fail only when there is really a fault in the developer’s changes.

Overall, this dissertation makes the following main contributions for taming flaky tests.

• Study effect of flaky tests on regression testing techniques. A study of how
OD tests affect traditional regression testing techniques such as test prioritization, test
selection, and test parallelization. When we apply regression testing techniques to test
suites containing OD tests, 82% of the human-written and 100% of the automatically
generated test suites contain one or more OD tests that fail.

• Approach to accommodate OD tests. A general approach to enhance tradi-

12



tional regression testing techniques to be dependent-test-aware. We apply our general
approach to 12 traditional, regression testing algorithms, and make them and our ap-
proach publicly available [5]. An evaluation of the 12 enhanced algorithms shows that
the orders produced by the enhanced algorithms can have 80% fewer OD-test failures,
while being only 1% slower than the orders produced by the unenhanced algorithms.

• Study lifecycle and categories of flaky tests. We study the lifecycle and categories
of flaky tests in Microsoft proprietary projects. Our study results suggest the need for
an approach to accommodate AW tests. As part of our study, we are the first to
investigate the reoccurrence, runtimes, and time-before-fix of flaky tests. The data
that we use for our study is available online [34].

• Approach to accommodate AW tests. We propose an automated approach, called
FaTB, to balance test flakiness and runtime. Our empirical experiments show that
FaTB can help AW tests run up to 78% faster, and the AW tests will still have the
same flaky-test-failure rates as before.

1.6 DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows.
Chapter 2: [Detecting] iDFlakies: A Framework to Detect and Partially Classify
Flaky Tests
This chapter presents iDFlakies, a tool to automatically detect and partially classify flaky
tests and a study of flaky tests in open-source Java projects.
Chapter 3: [Detecting] Probabilistic and Systematic Coverage of Consecutive
Test-Method Pairs to Detect Order-Dependent Flaky Tests
This chapter presents a probability analysis of detecting OD tests and a systematic approach
to guarantee the detection of OD tests that depend on one other test.
Chapter 4: [Detecting] A Large-Scale Longitudinal Study of Flaky Tests
This chapter presents our in-depth study on when flaky tests are introduced, what changes
cause tests to be flaky, and how developers should utilize their efforts to detect flaky tests.
Chapter 5: [Characterizating] Root Causing Flaky Tests in a Large-Scale Indus-
trial Setting
This chapter presents RootFinder, a technique developed with Microsoft collaborators to
automatically root cause flaky-test failures.
Chapter 6: [Characterizating] Understanding Reproducibility and Characteris-
tics of Flaky Tests Through Test Reruns in Java Projects

13



This chapter presents our in-depth study of non-deterministic tests and provides actionable
guidelines to deal with flaky tests.
Chapter 7: [Taming] Accommodating Order-Dependent Flaky Tests
This chapter presents our work on enhancing regression testing techniques to accommo-
date OD tests so that these tests encounter fewer spurious failures when regression testing
techniques are used.
Chapter 8: [Taming] Accommodating Async-Wait Flaky Tests
This chapter presents our work on FaTB, a technique developed with Microsoft collaborators
to speed up async-wait flaky tests while also reducing their spurious failures.
Chapter 9: Related Work
This chapter presents an overview of related work on the topics of detecting, characterizing,
and taming flaky tests.
Chapter 10: Conclusions and Future Work
This chapter concludes the dissertation and discusses future work that can be done following
the work in this dissertation.

14



CHAPTER 2: [DETECTING] IDFLAKIES: A FRAMEWORK TO DETECT
AND PARTIALLY CLASSIFY FLAKY TESTS

This chapter presents iDFlakies, a tool to automatically detect and partially classify flaky
tests. Using the tool, we also create and publicize a dataset of flaky tests in open-source Java
projects that we hope can help spur more research in the topic of flaky tests. In fact, this
dataset of flaky tests is already used in chapters 3, 4, 6, and 7 and another work of ours [186].
Using the dataset, we additionally present a study of flaky tests. Our study findings include
the prevalence of OD and NOD types of flaky tests and how to automatically detect these
tests. Section 2.1 presents the iDFlakies tool. Section 2.2 describes the end-to-end framework
that researchers and practitioners can use to easily extend and apply iDFlakies to detect
flaky tests and classify them into two types. Section 2.3 presents our study setup, and
Section 2.4 presents the results of our study. Section 2.5 then presents the threats to validity
of our work, and Section 2.6 concludes this chapter.

2.1 IDFLAKIES

We develop a tool called iDFlakies that detects flaky tests and classifies each test as either
OD or NOD (as defined in Section 1.2); iDFlakies does not further classify the NOD tests
into more precise causes of flaky tests [42, 126]. As inputs, iDFlakies conceptually takes a
test suite, a configuration for ordering the tests, and the number of times to run the test
suite based on the configuration. The available configurations are described in Section 2.1.1.
As output, iDFlakies produces the detected flaky tests, the type of each flaky test (OD or
NOD), and the exact order in which each flaky test fails. To detect flaky tests, iDFlakies
repeatedly runs the test suite based on the configuration specified by the user. We refer to
a single run of the test suite as a round. The default configuration orders the tests using
random-class-method with 20 rounds. In our evaluation, we find that the random-class-
method configuration detects the most flaky tests.

We implement iDFlakies as a Maven plugin that can be integrated into any project that
builds using Maven [131] and runs tests using JUnit [96] (specifically, iDFlakies supports
JUnit versions 3 to 5). A Maven project is organized into one or more modules, and each
module contains its own code and tests. When we refer to modules in this dissertation, we
do not refer to the Java Platform Module System [88], but instead refer to Maven modules,
which are (sub)directories that organize code under test and test code, with no particular
visibility/access guarantees imposed by the compiler or runtime.

Like most Maven plugins, iDFlakies runs separately on each module. iDFlakies uses our

15



Figure 2.1: A sample run of iDFlakies using the random-class-method configuration with 8
rounds, detecting an OD test and an NOD test.

own custom test runner to control the order of running JUnit test methods, hence, iDFlakies
can work on only Maven projects whose tests are written using JUnit. There are three main
steps in iDFlakies. The setup step checks whether all tests of a module pass or not; if not,
iDFlakies stops further exploration for that module. If all tests pass, the module proceeds
to the next step. The running step runs the module’s test suite based on the user-specified
configuration and the number of rounds. For each round that contains some test failure(s),
iDFlakies performs the classification step. The classification step reruns failing and passing
orders of a test to classify it as OD or NOD.

During the setup step, iDFlakies checks whether all tests pass in the original order. To
determine this order, iDFlakies runs Maven’s unit-test plugin, Surefire [132] and collects
the standard output (stdout) from running Surefire and the .xml files outputted by Surefire.
From the standard output, iDFlakies extracts the order in which Surefire ran the test classes,
and from the .xml files, iDFlakies extracts the order in which Surefire ran the test methods
within each test class. Even if the tests pass with Surefire, they could fail with our plugin
that uses our custom test runner. Thus, our tool runs the tests in the original order using
our custom runner, and checks if the result of every test is PASS or SKIP. SKIP indicates that
a developer intentionally ignores the test. When run with our test runner, a test could fail in
the original order because the test is flaky, but also because of several other factors, including
our testing environment being wrong, our tool having limitations, or the code under test
being actually broken. We cannot easily distinguish these factors. In an attempt to get all
tests to pass, even in the presence of some NOD tests, our tool runs the original order up
to a user-specified number of times (by default three). If every run has some failing test(s),

16



our tool currently discards the module. In the future, we plan to improve how iDFlakies
handles failing tests, e.g., it could remove failing tests from the test suite and proceed with
the remaining tests. In our evaluation, the original order does pass for the majority of the
modules (945 modules pass, 476 modules do not pass).

Figure 2.1 shows an example run of iDFlakies, using the random-class-method configura-
tion and 8 rounds. In the setup step, the tool runs the original order and all four tests pass.
In the running step, the tool runs these tests 8 times based on the specified configuration.
In the end, it detects two flaky tests: an OD test t1 from the ATest class (ATest.t1) and an
NOD test t3 from the BTest class (BTest.t3).

To classify each failed test, the classification step reruns two test orders: (1) the truncated
failing order with all tests from the failing order up to and including the failing test; and
(2) the truncated original order with all tests from the original order up to and including the
failing test. If the test fails in the truncated failing order and passes in the truncated original
order, our tool classifies the test as OD. If the test passes in the truncated failing order or
fails in the truncated original order, our tool classifies the test as NOD. The classification
reruns of the truncated failing order are critical to classify each test as OD or NOD; when
a test fails in an order different from the original order (in which the test passed), the tool
cannot immediately determine whether the test fails due to the test order change or due
to some other flakiness. The reruns of the truncated original order are not cost-beneficial,
and in our evaluation failed in only 3 of 7441 classification runs, so we recommend that only
truncated failing orders be run.

In our example, BTest.t3 fails in round 3. In the classification step, when rerunning
the truncated failing order, BTest.t3 passes. Therefore, the tool classifies BTest.t3 as an
NOD test, because it failed and passed in the same order. In contrast, ATest.t1 fails in
rounds 7 and 8. In round 7, when rerunning the truncated failing order, ATest.t1 fails
again, and when rerunning the truncated original order, ATest.t1 passes. Therefore, the
tool classifies ATest.t1 as an OD test.

Even if a test fails twice in the same order, it is no guarantee that the test is really OD,
because other factors could have made an NOD test to fail twice. For example, the test
shown in Figure 1.3 could time out twice in a row due to the machine load, independent of
the test order. iDFlakies can recheck a test failure again even if it previously classified the
test. A test classified as OD can be later reclassified as NOD in a future round. However,
a test classified as NOD can never be reclassified as OD. In our example, the same test
ATest.t1 fails in round 8 and is classified again as an OD test.

17



2.1.1 Configurations

iDFlakies has five configurations for ordering tests:
(1) original-order repeatedly runs tests in the original order and classifies any failing test
as NOD. This configuration cannot detect OD tests, because the order is always the same.
(2) random-class (RandomC) repeatedly runs test classes in a random order but keeps
methods in each class in the same order as in the original order (e.g., orders in rounds 2 and
5 from Figure 2.1). Maven Surefire can already randomize the order of test classes, but it
neither runs the test suite repeatedly nor classifies flaky tests as OD or NOD.
(3) random-class-method (RandomC+M) repeatedly runs test methods in a random or-
der, hierarchically randomizing first the order of the test classes and then the methods within
test classes but not interleaving methods from different classes. The 8 rounds in Figure 2.1’s
running step illustrates this configuration.
(4) reverse-class (ReverseC) reverses the order of all test classes from the original order
but keeps the test methods in the same order as the original order (e.g., order 5 from
Figure 2.1); iDFlakies runs this configuration only once to limit the time for experiments
(although repeated runs could detect some more NOD tests but no new OD tests).
(5) reverse-class-method (ReverseC+M) reverses the order of all test classes and meth-
ods from the original order (e.g., order 8 from Figure 2.1); similar to reverse-class, this
configuration runs only once.

All configurations, except the original-order, reorder some tests from the original order and
can detect OD tests. For these configurations, if the tool finds a failing test, it proceeds to the
classification step (Section 2.1.2). The original-order configuration skips the classification
step because all failing tests from this configuration are classified as NOD tests.

2.1.2 Classification

When iDFlakies finds a test failure in an order (called failing order) different from the
original order (in which the test passed), it needs to classify whether the test is OD or NOD.
For this classification, iDFlakies can run the test again in the failing order and in the original
order. If the test both fails again in the failing order and passes again in the original order,
iDFlakies classifies the test as an OD test. Otherwise, iDFlakies classifies it as an NOD test.

The test classification can happen in two stages. When a test fails for the first time,
its classification is unknown, so the classification step must be run. If the same test fails
later, its prior classification is known (OD or NOD), so one need not run the classification
step again. However, we allow a certain percentage of failures to be rechecked, i.e., the

18



classification step is rerun although the prior classification is known. If this percentage is
100%, the classification step runs for every failing test, with a potential high runtime cost. If
this percentage is 0%, no test is rechecked, increasing the chance to mis-classify some NOD
tests as OD. If this percentage is in between, then each failing test is selected with that
percentage to be rechecked. In our experimentation, we use 20% to control the runtime cost
but still have some benefit of increased accuracy. We find that 29 tests out of 242 (29 +
213 OD tests) are first mis-classified as OD tests and later re-classified as NOD tests. For
greater accuracy in classification, we recommend setting this percentage to 100% when using
our tool with spare machine time available (e.g., overnight or over the weekend).

If iDFlakies ever classifies a test as NOD, including during rechecking, it overall classifies
the test as NOD, even if some classifications were OD. In other words, the tool classifies
as NOD all tests that fail non-deterministically for some order, even if they fail largely
deterministically in other orders and thus have characteristics of both types of flaky tests.
Many NOD tests fail in more than one round (in our evaluation, 125 out of 209 NOD tests
fail more than once), so even if the test is incorrectly classified as OD in one round, later
rechecking can likely correctly re-classify the test as NOD.

2.1.3 Rounds and Timeouts

iDFlakies can be set to run for a specified number of rounds (Rounds) for each module
of a project, a specified amount of time (Timeout) for an entire project, or the minimum of
the two (Both). We expect that developers would use Rounds, because they know how long
their test suite runs, but we used Both in our large-scale experiments, because we did not
know a priori how long various test suites run.

Rounds. Given a number of rounds, the tool runs each module for that number of rounds
before proceeding to the next module. Section 2.4.4 discusses the trade-off between running
modules “depth-first” vs. “breadth-first”.

Timeout. Given a total amount of time, the tool computes the number of rounds to run as
⌊Ttimeout/Toriginal⌋, where Toriginal is the time the original order took to run the entire project.

Both. Given both a number of rounds and a timeout, iDFlakies first calculates the number
of rounds with the given Timeout, and then chooses the minimum of that calculated number
and the given number of rounds.

19



Figure 2.2: Overview of the end-to-end framework.

2.2 END-TO-END FRAMEWORK

In addition to our iDFlakies tool, we also develop a framework for using iDFlakies on
various projects. At a high level, the framework takes as input a list of project URLs and
commits, and outputs a database with various information including how long a module’s
test suite takes to run, in which configurations a module’s test suite is run, and the OD and
NOD tests detected for each configuration. Figure 2.2 shows an overview of the framework.
It has three main steps: (1) setup of the projects, (2) running iDFlakies on the projects to
detect flaky tests, and (3) summarizing the results for the user. The code for all three steps
is publicly available [85].

2.2.1 Setup Step

Given a list of project URLs and Git SHAs corresponding to a commit for each project,
our framework first constructs a Docker image [37] for each project and commit pair. Each
image provides an isolated environment for each project and eases the reproduction of our
experimentation. Our Docker images are also publicly available [85].

Our framework first builds a base Docker image on top of Ubuntu 16.04 by installing
the basic necessary software such as Git, Java, and Maven. In particular, our framework
currently uses Java 8 and Maven 3.5.4. On top of this base Docker image, the framework
builds a Docker image for each project by cloning the version of the project’s repository
specified by the commit SHA. The framework then builds the commit SHA and runs its
tests, specifically with mvn clean install -DskipTests -fn -B followed by mvn test -fn
-B. Our framework aims to run as many modules as possible, and the -fn option instructs
Maven to not stop at the first failing module but still execute the other modules. Modules
that fail mvn test do not proceed to the running step.

20



2.2.2 Running Step

The running step runs iDFlakies for each project in its own Docker container. The frame-
work starts up a Docker container for each Docker image and first modifies the project’s
pom.xml files (the build configuration files for a Maven project) to include iDFlakies. Next,
the framework determines the number of rounds to run iDFlakies; in the Timeout or Both
modes (Section 2.1.3), the framework finds the time that Maven took to run all the tests in
the setup step and uses that time to compute the number of rounds. The framework then
proceeds to run iDFlakies for each tool configuration that the user specified.

2.2.3 Summarizing Step

While the running step logs various information from the projects into log files, the sum-
marizing step parses these logs to create a SQL database. The database contains several
tables that allow easily querying the details for each module, for all modules of a project, or
even across projects. The user can obtain information such as the time a module’s test suite
takes to run, the various configurations the module was run with, the number of rounds that
iDFlakies runs for each configuration, the rounds that contain at least one failing test and
the names of those failing tests, the results of the classification steps, which round detected
which flaky test, and whether each test was classified as OD or NOD. All of the logs used to
create the database are also saved, including test orders, test results, stack traces of failed
tests, output from tests, and build output. More details about the database and logs are on
our website [85].

2.3 STUDY SETUP

All projects in our study are Java projects that build with Maven [131] and use JUnit [96].
We check whether a project builds with Maven by looking for a pom.xml file at the root of
the project’s repository. We collected the projects from three sources: (1) 44 projects from
related work [18], (2) 150 most popular Java projects from GitHub [63] up until October
2018, and (3) 500 most popular Java projects from GitHub that were updated in November
2018. We determine the popularity of GitHub projects using the number of stars.

The projects from related work [18] are prominent Java projects that have flaky tests.
Instead of using the same, mostly old, versions of the projects used in prior work [18], we use
a more recent version, because we may report the flaky tests that we detect to the project
developers, and researchers may want to study not-yet-fixed flaky tests, e.g., such that tools

21



for automated fixing do not overfit to the history. In total, we use 44 projects from the two
papers [18]. When we union those projects with the top 150 most popular projects from
GitHub, we obtain 183 projects that contain a total of 2921 modules and 1880362 tests.

We break our projects into two sets, comprehensive and extended. The comprehensive set
includes all 183 projects from sources (1) and (2), and we evaluate all five configurations
of iDFlakies on these 183 projects. We find random-class-method to be the most effective
configuration for detecting flaky tests. The extended set includes all of the projects from
source (3), and to limit the cost of our experimentation, we evaluate only the random-class-
method configuration on these projects. The extended set consists of 500 projects disjoint
from the projects from the comprehensive set. These 500 projects contain a total of 2250
modules and 93722 tests. The extended set has fewer tests than the comprehensive set
although the extended set has more projects, because it has relatively smaller projects.

Of all 5171 modules from the 683 projects, our framework is able to explore 945 modules
for flaky tests. Our framework cannot explore the other 4226 modules (from 597 projects)
because 462 modules could not be built by Maven, 2830 modules do not declare JUnit as a
dependency in their pom.xml files or have no tests, 476 modules’ tests do not pass in any of
the three original-order rounds, and 458 modules encounter some limitations of iDFlakies.

In summary, among the 945 modules that our framework can explore, it detects 38 modules
(from 31 projects) with at least one OD test and 82 modules (from 63 projects) with at least
one NOD test, for a union of 111 modules (from 82 projects) with at least one OD or NOD
test (and some modules have both OD and NOD tests). Our project website [85] provides
more details for all of the projects used in our study.

2.4 STUDY RESULTS

The main goal of our study is to detect flaky tests in open-source projects and to compare
the configurations that one could use to detect these tests. More specifically, our study
addresses the following main research questions:
RQ1: What is the breakdown of OD and NOD tests in open-source projects?
RQ2: What is the probability of a round (test-suite run) containing at least one flaky-test
failure?
RQ3: What ordering configurations detect the most flaky tests?

The reason for studying RQ1 is to understand which types of flaky tests are more prevalent
among those detected in open-source projects. The reason for studying RQ2 is to understand
how often flaky tests impact developers’ development cycle and to understand the need for
better solutions to detect flaky tests. The reason for studying RQ3 is to help developers

22



understand the potential trade-offs of different ordering configurations and better utilize
their resources (e.g., developers’ time and machine resources) in detecting flaky tests.

As described in Section 2.3, our dataset contains two sets: for comprehensive, we run all
five configurations on the 183 projects; for extended, we run only the random-class-method
configuration on the 500 projects. RQ1 (Section 2.4.1) uses both sets of our dataset, while
RQ2 and RQ3 (Section 2.4.2 and Section 2.4.3, respectively) use only the comprehensive set,
because they compare the configurations.

2.4.1 RQ1. Breakdown of Flaky-Test Types

Our evaluation detects a total of 422 flaky tests from 111 modules in 82 projects. Of 422
flaky tests, 213 (50.5%) are classified as OD tests and 209 (49.5%) as NOD tests, based
on the observed runs. While the overall percentage of OD tests is slightly higher than the
percentage of NOD tests, the two are rather close. Note that our study heavily focuses on
randomizing test orders to detect OD tests, because automatically distinguishing/classifying
OD tests from NOD tests can be done fairly well. Section 2.4.3 describes the breakdown
of the flaky tests detected for each test reordering configuration. The projects in our study
likely have many more NOD tests that could be detected by changing some aspects of our
experiments. For example, running multiple test suites in the same machine (not each in its
own machine) would allow competing for machine resources to more likely cause failures of
NOD tests.

2.4.2 RQ2. Probability of a Round Containing a Flaky-Test Failure

The probability that an individual flaky test fails—measured as the ratio of the number
of rounds in which a test fails over the number of rounds in which the test was run—varies
a lot, from under 1% to over 50% in our experiments. In practice, a developer running tests
usually cares not about individual tests but the status of the entire test suite, i.e., whether
all the tests pass or some fail. Given this concern, we study the probability of a round
failing, i.e., containing at least one flaky-test failure. Figure 2.3 shows for each configuration
the percentage of failing rounds further broken down into the percentages for rounds that
contain at least one OD or NOD test.

The percentage of failing rounds can be calculated assuming the test failures to be either
(1) correlated with one another or (2) independent of one another. If failures are correlated,
then rounds with multiple failures affect the percentage as much as rounds with one failure.
If failures are independent, then one round with multiple failures could have been multiple

23



2.7%2.7% 3.2%
2.2%

1.0%

12.6%

2.4%

10.4%
11.7%

1.3%

11.7%

50.0%

5.3%

46.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Original Random C Random C+M Reverse C Reverse C+M

Configuration

P
ro

ba
bi

lit
y 

of
 a

 r
ou

nd
 d

et
ec

tin
g 

fla
ky

 te
st

s

Flaky Type
OD
NOD
any

Figure 2.3: Probability of a configuration to detect at least one flaky test for modules that
have at least one flaky test.

rounds with fewer failures per round. Due to the difficulty of precisely determining whether
failures are independent, we compute percentages for round failures simply based on the
observed rounds. Namely, we compute the percentages as the ratio of the number of rounds
where one or more flaky tests fail over the total number of rounds for each configuration
(but only for modules that have flaky tests). If a failing round contains both OD and NOD
tests, then that round counts as one for both types of flaky tests as well as for “Any”. In
Chapter 3 and Chapter 6, we further study how often failures of different flaky tests are
related to one another.

Figure 2.3 visualizes the results. We see that the reverse-class-method configuration has
the highest probability of producing a failing round, 50.0% overall probability of detecting
one or more flaky tests just from running one round. More precisely, reverse-class-method
has a 46.8% probability of producing a failing round due to OD tests and a 5.3% probability
of producing a failing round due to NOD tests. For quickly determining whether a test suite
may contain flaky tests, our results suggest that the developers should run reverse-class-
method. In Chapter 3, we expand on this recommendation by running the reverse-class-
method of the last order instead of another random order if all tests in the last order pass.
We also find that developers who run their tests only in the Maven-specified, original order
have a low overall probability of producing a failing round, 2.7%.

Of particular interest are the percentages of rounds that fail due to OD tests for random-

24



class and random-class-method. Intuitively, an OD test can fail because either a “bad” test is
run before it (polluter) or a “good” test is not run before it (state-setter). Consider the case
where an OD test fails due to some “bad” test(s) running before the OD test and “polluting”
the shared state, causing the OD test to start running in an undesirable state [16, 17, 73].
Assume that there is one such polluting test and one OD test. Given a uniformly random
ordering of the tests, there is a 50% probability of the polluting test to be ordered before
the OD test. If there are more polluting tests, the probability is even higher that at least
one polluting test runs before the OD test. However, with the exception of the reverse-
class-method configuration having a 46.8% probability of a failing round, our reordering
configurations have the percentages much lower than 50%. These low percentages suggest
that the test suite has some “cleaner” tests, which clean the polluted state such that the OD
test can then run successfully, and these cleaner tests are frequently ordered to run between
the polluting test(s) and the OD test.

The other case is a missing “good” test (state-setter): if an OD test needs another test to
run before it to set up a desirable state for that OD test, then not having that set up test
run before the OD test causes the OD test to fail. The probability of failure should be again
50% unless there are many tests that can set up the OD test. We further explore the notions
of “bad” and “good” tests in another work [186] that is not included in this dissertation.

2.4.3 RQ3. Configurations Detecting Most Flaky Tests

Table 2.1 shows the breakdown of the number of flaky tests detected by the different
configurations for each project from our comprehensive set. The table shows the breakdown
for both OD and NOD tests, except for the original order that can detect only NOD tests.
The table also shows the number of rounds run for the original-order and random-class-
method configurations; the number of rounds for random-class is similar to the number for
random-class-method. While these numbers would be ideally the same, there are various
reasons for different numbers, including timeouts, tool crashes, and repeated experiments.
The numbers of rounds for reverse-class-method and reverse-class are much lower; in fact,
iDFlakies runs each of those two configurations for only one round in one experiment, but
we performed multiple experiments while developing iDFlakies and kept most of the logs to
provide the largest dataset for analysis of flaky tests.
OD tests: As shown in Table 2.1, among all configurations, the random-class-method de-
tects the greatest number of unique OD tests, 162 (i.e., 88.0% of all OD tests detected
across all configurations). This result matches our expectations: randomly reordering test
methods provides the most reordering flexibility among configurations, giving more oppor-

25



Table 2.1: The number of flaky tests that each configuration detects in the comprehensive
set. “All” is the number of unique tests.

Original RandomC RandomC+M ReverseC ReverseC+M All
Project Slug - Module Round NO OD NO Round OD NO OD NO OD NO OD NO All
activiti/activiti 88 0 0 0 66 20 0 0 0 0 0 20 0 20
alibaba/fastjson 67 0 12 0 158 13 2 3 0 4 0 13 2 15
apache/hadoop - m1 14 0 0 0 14 2 0 18 10 0 0 20 10 30

- m2 14 0 22 1 7 22 1 0 0 0 0 22 1 23
- m3 15 0 1 0 10 1 0 1 0 1 0 1 0 1
- m4 15 1 0 0 14 2 0 0 0 4 7 6 8 14

apache/hbase 14 1 0 0 13 0 1 0 0 0 1 0 1 1
apache/incubator-dubbo - m1 32 0 0 1 53 0 0 0 0 0 0 0 1 1

- m2 33 0 2 7 76 4 2 0 0 1 0 4 9 13
- m3 39 0 0 0 37 1 0 0 0 1 0 1 0 1
- m4 42 0 1 0 91 4 0 0 0 2 0 4 0 4
- m5 47 0 0 0 38 3 0 0 0 0 0 3 0 3
- m6 131 2 0 0 49 0 0 0 0 0 0 0 2 2

apache/jackrabbit-oak 16 0 0 0 14 2 0 0 0 2 0 2 0 2
apache/struts 114 0 0 0 342 4 0 0 0 0 0 4 0 4
crawlscript/webcollector 4140 1 0 1 16503 0 1 0 0 0 0 0 1 1
doanduyhai/achilles 356 0 0 0 278 0 1 0 0 0 0 0 1 1
dropwizard/dropwizard 76 0 0 1 248 1 1 0 0 0 0 1 1 2
elasticjob/elastic-job-lite - m1 288 2 0 0 839 0 0 0 0 0 0 0 2 2

- m2 307 3 0 0 826 0 1 0 0 0 0 0 3 3
- m3 335 0 2 0 815 7 1 0 0 2 0 7 1 8

google/jimfs 42 1 0 0 108 0 0 0 0 0 0 0 1 1
jfree/jfreechart 166 0 0 0 290 1 0 0 0 0 0 1 0 1
jodaorg/joda-time 206 1 0 0 146 0 0 0 0 0 0 0 1 1
kevinsawicki/http-request 2317 0 0 0 2013 28 0 0 0 28 0 28 0 28
knightliao/disconf 344 0 0 0 1359 0 1 0 0 0 0 0 1 1
looly/hutool 842 0 0 0 650 0 1 0 0 0 0 0 1 1
orbit/orbit 35 0 0 1 123 0 0 0 0 0 0 0 1 1
oryxproject/oryx 60 1 0 0 131 0 1 0 0 0 0 0 1 1
querydsl/querydsl 14 3 0 0 0 0 0 0 0 0 0 0 3 3
spotify/helios 25 1 0 1 71 0 1 0 0 0 0 0 1 1
spring-projects/spring-boot - m1 8 1 0 0 12 0 0 0 0 0 0 0 1 1

- m2 12 0 0 0 13 2 0 0 0 2 0 2 0 2
square/otto 815 1 0 0 3243 0 0 0 0 0 0 0 1 1
square/retrofit - m1 87 0 0 2 331 0 2 0 0 0 0 0 2 2

- m2 87 0 0 4 331 0 5 0 0 0 0 0 7 7
tootallnate/java-websocket 666 21 0 30 1653 0 47 0 0 0 1 0 52 52
undertow-io/undertow 15 0 0 4 65 1 3 0 0 0 0 1 4 5
wildfly/wildfly 10 0 0 0 35 44 0 0 0 0 0 44 0 44
wro4j/wro4j 34 0 0 0 116 0 2 0 0 0 0 0 2 2
Total 11968 40 40 53 31181 162 74 22 10 47 9 184 122 306

tunities for different reorderings to expose OD tests. In general, Table 2.1 shows that
reordering test methods rather than just test classes helps with detecting flaky tests; both
random-class-method and reverse-class-method detect more flaky tests than random-class
and reverse-class, respectively (while the corresponding configurations explore a similar num-
ber of rounds).

Considering that the random-class-method configuration runs many more rounds than the
reverse-class-method configuration, it is expected that random-class-method detects more
(OD and NOD) flaky tests. Indeed, the reverse-class-method configuration detects only 47
OD tests (25.5% of all OD tests detected across all configurations). Interestingly, the reverse-
class-method configuration detects 4 tests not detected by the random-class-method config-

26



uration. However, the random-class-method configuration detects 119 tests not detected by
the reverse-class-method configuration. As a result, we strongly recommend developers to
first run the reverse-class-method configuration once to quickly detect a portion of the OD
tests and then use the random-class-method configuration to detect more OD tests.

Overall, we find that the random-class-method configuration performs the best, although
the other configurations also sometimes detect flaky tests not detected by random-class-
method. Our findings suggest that it is desirable to research new approaches that can help
quickly find the test orders that would detect the most OD tests. Such new approaches could
be substantially better than randomly selecting test orders. For example, we present a cost-
effective, systematic way to explore all consecutive test pairs, guaranteeing the detection of
all OD tests that depend on one other test in Chapter 3.
NOD tests: Table 2.1 and Figure 2.3 show that most configurations have similar probability
to detect NOD tests. The percentages for the two reverse configurations differ from the other
configurations, but these two configurations have much fewer rounds and thus by chance
could have much higher or lower probabilities. Even if some configuration has a higher
probability to detect at least one failure in a round, it may be repeatedly detecting the same
NOD tests. A benefit of rerunning original-order is that every failure is immediately known
to be an NOD test. In contrast, failures from randomized orders need to be classified using
the classification step of iDFlakies.

Detection of many NOD tests from randomized orders (and the reverse-class-method clas-
sification) shows that the classification step is important for properly classifying a flaky
test as an OD test or an NOD test. Of the 122 NOD tests in our comprehensive set, we
find that iDFlakies classifies 91 as NOD tests using the classification step; the remaining
31 unique NOD tests need no classification step because iDFlakies classifies them as NOD
using the original-order configuration. For NOD tests detected by both original-order and
random-class-method, we compare the probability of a round detecting the test but find no
generalizable differences. Specifically, a Wilcoxon signed-rank test shows that the probabil-
ities are statistically different, with p < 0.05, for the (26) tests in the comprehensive set but
not statistically different for the (33) tests including both comprehensive and extended sets.
In Chapter 6, we further explore whether running the tests in different reorderings leads to
differences that can more easily expose flakiness in NOD tests.

Our results suggest that simply rerunning tests in the original order where they pass is
not a good configuration for detecting flaky tests—it cannot detect any OD test, and it does
not have a much higher probability to detect even NOD tests. It is better to reorder the
tests to increase the probability of detecting any type of flaky tests, not just OD tests. In
our experiments, the randomizing configurations, along with the classification step, detect

27



more NOD tests than rerunning the tests many times in the same original passing order
(but with the caveat that randomizing configurations had more rounds). Our tool currently
cannot further analyze or classify the cause of flakiness for these NOD tests; we leave that
topic as important future work.

2.4.4 Results Discussion

Running iDFlakies. Currently, iDFlakies runs tests in a multi-module Maven project in a
depth-first manner: given a user-specified number of rounds (or a user-specified timeout from
which the tool calculates the number of rounds), iDFlakies first runs that number of rounds
for one module before proceeding to the next module. An alternative would be breadth-first:
our framework would first run iDFlakies on every module once before running iDFlakies on
every module again for the second round, and so on. However, breadth-first would invoke
iDFlakies, and consequently Maven, each time it needs to run through all modules for one
round. Invoking iDFlakies and Maven adds extra overhead in checking what modules exist,
what needs to be rebuilt, what the tests are, etc. Comparing advantages and disadvantages
of depth-first and breadth-first, depth-first avoids the extra overhead of invoking Maven
multiple times and more closely matches the usual Maven approach to plugins, with a plugin
finishing work on a module before proceeding to the next module. The disadvantage is that
depth-first requires knowing the number of rounds, so iDFlakies can finish running tests for
one module before proceeding to the next one. The advantage of breadth-first is that it allows
developers to run the framework with no a priori timeout, running overnight or whenever a
machine has idle time. The developer can then stop the framework at any time and receive
all of the flaky tests detected. The disadvantage of breadth-first is the extra overhead needed
for Maven. Currently, we do not know which way of running modules is faster and provides
more benefits in terms of detecting more flaky tests; we plan to implement breadth-first and
compare empirically with depth-first in the future.

Regression Testing. iDFlakies runs tests in many different orders aiming to detect the
most flaky tests. However, rerunning tests takes a long time and is worth doing only if a
developer is purposefully trying to detect a substantial number of flaky tests and has the
resources for this task. Another way to use the findings from our study (e.g., that changing
the order of the tests increases the chances of detecting flaky tests) is to incorporate the
reorderings with continuous integration and regression testing. The developer can run the
tests in different orders after every change when tests are naturally rerun as part of the
development process, and flaky-test detection from iDFlakies would effectively come “for

28



free”. In fact, we find that 8 of the 683 projects from our study already configure their
Surefire (setting the option runOrder to random) to run test classes (but not test methods)
in random order.

First Failure. Our framework counts all tests that fail during a failing round as flaky
tests. However, multiple flaky tests that fail in the same failing round can all be failing due
to the same root cause. As such, multiple flaky tests can all be fixed in the same way, and
the number of fixes may be smaller than the number of flaky tests. For example, in a run
with multiple failing tests, all failing tests may be classified as OD, but the tests after the
first failure simply depend on the first failing test. When that first failing test is fixed, these
later OD tests may also all be fixed. In fact, in our iFixFlakies work [186], we indeed find
such an OD test. Namely, if this test fails, then 43 other OD tests would also fail, but if this
test passes, then the other 43 OD tests would also pass.

Ratio of Types of Flaky Tests. Our results show that the percentages of flaky tests
classified as OD and NOD are quite close (50.5% and 49.5%, respectively). However, prior
work [126] classifying fixed flaky tests found a much lower percentage of flaky tests being
OD, 12%. iDFlakies uses random orderings to focus on detecting OD tests. iDFlakies likely
misses many NOD tests and can be improved by adding more variations to test runs to
detect more NOD tests.

FixMethodOrder. We find that 23 of the OD tests detected by iDFlakies are in test
classes annotated with @FixMethodOrder. This annotation indicates that the test methods
in a test class must run in a certain order, e.g., in the ascending order based on the test-
method names. iDFlakies still detects and reports such OD tests although running them
through JUnit would not reorder the tests. However, it is still beneficial to explore different
orderings of test methods in such annotated test classes. First, it could be that there are
actually no dependencies among the tests, so the annotation is no longer needed and can
be removed. Second, it is important to still detect OD tests to help developers know which
exact tests are OD. For example, we observe that while iDFlakies detected several OD
tests in @FixMethodOrder-annotated test classes from the Activiti/Activiti project [6] at
commit SHA b11f757a, the developers introduced a patch that removed the ordering of such
dependencies and the @FixMethodOrder annotation in a later commit SHA, 5a1cb8ae.

29



2.5 THREATS TO VALIDITY

Our iDFlakies tool and framework may contain faults that could have affected our results.
To mitigate such threat, we implement extensive logging for our framework and manually
investigate a sample of logs generated on a variety of projects. We are more confident in our
tool but less confident in the results of the framework due to its complexity. For example, the
output of a SQL database to store and process the results of our framework can add much
complexity (e.g., joining of tables, creating SQL queries) without providing much benefit. To
improve upon this issue, subsequent work of ours using the iDFlakies flaky-test dataset (e.g.,
chapters 3, 4, 6, and 7) simply relies on CSV files and no longer relies on a SQL database.

The exact results of our study, namely the flaky tests detected and their rate of failures,
may not be easily reproducible due to the nature of our experimentation using random
orders and the nature of flaky tests non-deterministically passing and failing. We attempt
to mitigate this threat by logging the (random) orders in which iDFlakies runs the tests so
that others can reproduce the flaky-test behavior by running the same orders. The logs for
all rounds are publicly available [85].

Our classifications of flaky tests into OD or NOD tests may occasionally be incorrect. For
example, an NOD test could fail due to a timeout or network issue, and rerunning in the
classification step could lead to it failing again in the same order, misleading iDFlakies to
classify the test as an OD test. We attempt to mitigate this threat by having the framework
recheck a substantial number of flaky tests’ classifications.

Moreover, the actual number of flaky tests in the projects that we study may be (much)
higher than what we report. For example, we find more OD tests in Chapter 3 and more
NOD tests in Chapter 4 and Chapter 6 using the same projects. Also, we currently run only
unit tests from mvn test and not integration tests from mvn verify because the latter can
take much longer.

Our findings that random-class-method detects the most flaky tests among all configura-
tions that we study may not generalize to projects other than those we study. We attempt
to mitigate this threat by obtaining a sizable number of popular Java projects from GitHub
and prior studies. Nevertheless, projects written in other languages [167], or even Java
projects not using Maven or JUnit, may not yield similar results. We use the number of
stars on GitHub to obtain popular Java projects, but they may not be representative of the
test suites in all Java projects.

30



2.6 SUMMARY

We have presented our end-to-end framework, which automates experimentation to detect
and partially classify flaky tests using iDFlakies for Maven-based Java projects with JUnit
tests. We have applied our framework on 683 projects. We provide a dataset of 422 flaky
tests that we then use for our study on flaky tests. From our dataset, 50.5% of flaky tests
are OD, while 49.5% are NOD, based on the observed runs. We also find that running
the random-class-method configuration can detect the most flaky tests overall. Both our
framework and dataset are publicly available [85], and we hope that they can help involve
more researchers in the topic of flaky tests, e.g., to develop better techniques to detect flaky
tests, reduce non-determinism or even fix it altogether, label test failures as flaky or not, or
prevent future flaky tests.

31



CHAPTER 3: [DETECTING] PROBABILISTIC AND SYSTEMATIC
COVERAGE OF CONSECUTIVE TEST-METHOD PAIRS TO DETECT

ORDER-DEPENDENT FLAKY TESTS

This chapter presents a probability analysis of detecting OD tests and a systematic ap-
proach to guarantee the detection of OD tests that depend on one other test. Section 3.1
presents a more in-depth OD test example than the one presented in Section 1.2.1. Sec-
tion 3.2 presents the preliminaries relevant for the contributions of this chapter. Section 3.3
presents our probability analysis of detecting OD tests and a simple change to iDFlakies
to increase the probability of detecting such tests. Section 3.4 presents our systematic ap-
proach to guarantee the detection of OD tests that depend on one other test, and Section 3.5
concludes this chapter.

3.1 IN-DEPTH EXAMPLE OF ORDER-DEPENDENT (OD) TEST

Figure 3.1 shows a snippet of a victim test, testMRAppMasterSuccessLock (in short testV),
from the widely used Hadoop project [9]. The test suite for this test has 392 tests. This test
is from the MapReduce (MR) framework and aims to check an MR application. This test
is a victim because it passes when run by itself but has two polluter tests. If the victim is
run after either one of its polluter tests (and no cleaner runs in between the polluter and
the victim), then the victim fails with a NullPointerException. Figure 3.2 shows a snippet
of one of these two polluter tests, testSigTermedFunctionality (in short testP).

These tests form a polluter-victim pair because they share a global state, namely all
“active” jobs stored in a static map in the JobHistoryEventHandler class. (In JUnit 4,
only the heap state reachable from the class fields declared as static is shared across tests;
JUnit does not automatically reset that state, but developers can add setup and teardown
methods to reset the state.) To check an MR application, testV first sets up some state
(Line 2), then creates an MR application (Line 3), and starts the application (Line 7).
The NullPointerException arises when the test tries to stop the MR application (Line 10).
Specifically, the appMaster accesses the shared map data structure that tracks all jobs run
by any application. When testV is run after testP, then appMaster will attempt to stop a
job created by the polluter, although the job has already been stopped.

This static map is empty when the JVM starts running, and it is also explicitly cleared by
some tests. In fact, we find 11 cleaner tests that clear the map, and the victim passes when
any one of these 11 tests is run between testP and testV. Interestingly, for the other polluter
test, testTimelineEventHandling (in short testP'), the victim fails for the same reason, but

32



1 public void testMRAppMasterSuccessLock() { // testV for short
2 ... // setup MapReduce job, e.g., set conf and userName
3 MRAppMaster appMaster =
4 new MRAppMasterTest("appattempt_...", "container_...", "host", -1,
5 -1, System.currentTimeMillis(), false, false);
6 try {
7 MRAppMaster.initAndStartAppMaster(appMaster, conf, userName);
8 } catch (IOException e) { ... }
9 ... // assert the state and some properties of appMaster

10 appMaster.stop();
11 }

Figure 3.1: Victim OD test from Hadoop’s TestMRAppMaster class.

1 public void testSigTermedFunctionality() { // testP for short
2 JHEventHandlerForSigtermTest jheh =
3 new JHEventHandlerForSigtermTest(Mockito.mock(AppContext.class), 0);
4 jheh.addToFileMap(Mockito.mock(JobId.class));
5 ... // have jheh handle a few events
6 jheh.stop();
7 ... // assert whether the events were handled properly
8 }

Figure 3.2: Polluter test from Hadoop’s TestJobHistoryEventHandler class.

testP' has 31 cleaners—the same 11 as testP and 20 other cleaners. Our manual inspection
finds that the testP' polluter has other cleaners because the job created by testP' is named
job_200_0001, while the job created by the testP polluter is a mock object. The 20 other
cleaners also create and stop jobs named job_200_0001 and therefore act as cleaners for
the testP' polluter but not the testP polluter. This example illustrates the complexity of
victims and polluters and how these tests interact with cleaners.

Unlike failure rates, which focuses on one specific test order and are defined in Section 3.3.2,
we next explore how to compute the flake rate for a victim test, i.e., the probability that the
test fails in a randomly sampled test order of all tests in the test suite. For this example,
the 392 tests could, in theory, be run in 392! (∼ 10848) test orders (permutations), but in
practice, JUnit never interleaves test methods from different test classes. These tests are split
into 48 classes that actually have ∼ 10234 test orders that JUnit could run. The relevant 34
tests (1 victim, 2 polluters, and 31 cleaners) belong to 8 test classes: 2 polluters belong to one
class (TestJobHistoryEventHandler), 11 cleaners belong to the same class as the polluters,
1 cleaner belongs to the same class as the victim (TestMRAppMaster), and the remaining 19
cleaners belong to six other classes. For this victim, (uniformly) randomly sampling the
orders that JUnit could run gives a flake rate of 4.5%. In Section 3.3.4, we propose a simple
change to increase the probability of detecting OD tests by running a reverse of each passing
test order. For this victim, the conditional probability that the reverse order fails is 4.9%.

33



3.2 PRELIMINARIES

We next formalize the concepts that we have introduced informally and define some
new concepts. Let T = {t1, t2, . . . , tn} be a set of n tests partitioned in k classes C =

{C1, C2, . . . , Ck}. We use class(t) to denote the class of test t. Each class Ci has ni = |{t ∈
T | class(t) = Ci}| tests.

We use ω(T ′) to denote a test order, i.e., a permutation of tests in T ′ ⊆ T , and drop T ′

when clear from the context. We use ωi to denote the i-th test in the test order ω, and |ω|
to denote the length of a test order as measured by the number of tests. We use t ≺ω t′

to denote that test t is before t′ in the test order ω. We will analyze some cases that allow
all n! permutations, potentially interleaving tests from different classes. We use ΩA(T ) to
denote the set of all test orders for T . Some testing tools [237] explore all these test orders,
potentially generating false alarms because most testing frameworks [30, 96, 190, 204] do
not allow all these test orders.

We are primarily concerned with class-compatible test orders where all tests from each
class are consecutive, i.e., if class(ωi) = class(ωi′), then for all j with i < j < i′, class(ωi) =

class(ωj). We use ΩC(T ) to denote the set of all class-compatible test orders for T . The
number of such class-compatible test orders is k!

∏k
i=1 ni!. Section 3.3.2 presents how to

compute the flake rate, i.e., the percentage of test orders in which a given victim test (with
its polluters and cleaners) fails.

Section 3.4 presents how to systematically generate test orders to ensure that all test pairs
are covered. A test pair ⟨t, t′⟩ consists of two distinct tests t ̸= t′. We say that a test order
ω covers a test pair ⟨t, t′⟩, in notation cover(ω, ⟨t, t′⟩), iff the two tests are consecutive in
ω, i.e., ω = ⟨. . . , t, t′, . . .⟩. Considering consecutive tests is important because a victim may
not fail if not run right after a polluter, i.e., when a cleaner is run between the polluter and
the victim. A set of test orders Ω covers the union of test pairs covered by each test order
ω ∈ Ω. In general, test orders in a set can be of different lengths. Each test order ω covers
|ω| − 1 test pairs.

We distinguish intra-class test pairs, where class(t) = class(t′), and inter-class test pairs,
where class(t) ̸= class(t′). Of the total n(n − 1) test pairs, each class Ci has ni(ni − 1)

intra-class test pairs, and the number of inter-class test pairs is 2
∑

1≤i<j≤k ninj. Each class-
compatible test order of all T tests covers ni − 1 intra-class test pairs for each class Ci and
k − 1 inter-class test pairs.

We aim to generate a set of test orders Ω that cover all test pairs1. Note that because
1This problem should not be confused with pairwise testing [151], which typically aims to cover pairs of

values from different test parameters.

34



each test is run at most once in one JVM run, covering test orders and test pairs has to be
done with a set of test orders and cannot be done with just one very long order, e.g., using
superpermutations [82]. If we consider ΩA(T ) that allows all test orders, we need at least n
test orders to cover all n(n− 1) test pairs. When we have only one class or all classes have
only one test, then all test orders are class-compatible. However, consider the more common
case when we have more than one class and some class has more than one test. If we consider
ΩC(T ) that allows only class-compatible test orders, we need at least maxki=1 ni test orders
to cover all intra-class test pairs and at least M = 2

∑
1≤i<j≤k ninj/(k − 1) test orders to

cover all inter-class test pairs; because M > maxki=1 ni, we need at least M class-compatible
test orders to cover all test pairs.

More precisely, we aim to generate a set of test orders Ω that has the lowest cost for test
execution. The cost for each test order ω can be modeled well as a sum of a fixed cost
Cost0 (e.g., corresponding to the time required to start a JVM and load required classes)
and a cost for each test (e.g., the time to execute the test method): Cost(ω) = Cost0 +∑

t∈ω Cost(t). The cost for a set of test orders is then simply the sum of individual costs
Cost(Ω) =

∑
ω∈ΩCost(ω). For example, a trivial way to cover all test pairs is with a set

of test orders where each test order is just a test pair: Ωp = {⟨t, t′⟩ | t, t′ ∈ T ∧ t ̸= t′};
however, the cost is unnecessarily high: Cost(Ωp) = n(n− 1)Cost0+2(n− 1)Cost(T ), where
Cost(T ) =

∑
t∈T Cost(t).

To simplify, we can assume that each test in T has the same cost, say, Cost1, and then
Cost(Ωp) = n(n− 1)Cost0 + 2n(n− 1)Cost1. In the optimal case, each test order would be
a permutation of n tests covering n − 1 test pairs, and the number of test orders would be
just n(n − 1)/(n − 1) = n. Therefore, the lowest cost is Cost(Ωopt) = nCost0 + n2Cost1,
demonstrating that the factor for Cost0 can be substantially reduced, while the factor for
Cost1 is nearly halved ( n

2(n−1)
). However, in most realistic cases, due to the constraints of

class-compatible test orders and the big differences in the number of tests across different
classes, we cannot reach the optimal case.

3.2.1 Dataset for Evaluation

Besides deriving some analytical results, we also run some empirical experiments on flaky
tests from Java projects. As described in Chapter 4, our recent work [112] ran the iDFlakies
tool on most test suites in the projects from the iDFlakies dataset [85] using the configu-
rations recommended by our iDFlakies work [108] (Section 2.4.3). Specifically, we ran 100
randomly sampled test orders from ΩC(T ) and 1 test order that is the reverse order of what
Maven Surefire [132] runs by default. Note that unlike our work in Section 3.3.4, where

35



we propose running a reverse test order of every test order where all tests passed, the one
reverse order that we ran in our recent work [112] is run only once and not for every passing
test order.

Each project in the iDFlakies dataset is a Maven-based, Java project organized into one
or more modules, which are (sub)directories that organize code under test and test code.
Each module contains its own test suite. For the remainder of this chapter, we use the 121
modules in which our recent work [112] found at least one flaky test (but not necessarily OD
test). To illustrate diversity among these 121 modules, the number of classes ranges from 1
to 2215, with an average of 61, and the total number of tests ranges from 1 to 4781, with an
average of 287. The number of tests per class ranges from 1 to 200, with an average of 4.8.

When we run some of the test orders generated by our systematic test-pair exploration as
described in Section 3.4.2, we detect a total of 249 OD tests in 44 of the 121 modules. Of
the 249 OD tests, 57 are brittles and 192 are victims. Compared to the OD tests detected
in our prior work [108, 111, 112] that used the iDFlakies dataset, we find 44 new OD tests
that have not been detected before. Of the 44 OD tests, 1 is brittle and 43 are victims. One
of the newly detected victim tests (testMRAppMasterSuccessLock) is shown in Section 3.1.

3.3 ANALYSIS OF FAILURE RATE AND SIMPLE ALGORITHM CHANGE

We next discuss how to compute the flake rate for each OD test. Let T be a test suite with
an OD test. Prior work [108, 111, 112, 237] would run many test orders of T and empirically
compute the flake rate for each test as a ratio of the number of test failures and the number
of test runs. However, failures of flaky tests are probabilistic, and running even many test
orders may not suffice to obtain the true flake rate for each test. Running more test orders
is rather costly in machine time; in the limit, we may need to run all |T |! permutations to
obtain the true flake rate for OD tests. To reduce machine time needed for computing the
flake rate for OD tests, we first propose a new procedure, and then derive formulas based on
this procedure. We finally show a simple change for sampling random test orders to increase
the probability of detecting OD tests.

3.3.1 Determining Test Outcome Without Running a Test Order

We use a two-step procedure to determine the test outcome for a given OD test. We
assume that some prior runs already detected the OD test, and the goal is to determine the
test outcome for some new test orders that were not run.

36



In Step 1, we classify how each test from T relates to each OD test in a simple setting that
runs only up to three tests. Specifically, we first determine whether an OD test t is a victim
or a brittle by running the test in isolation, i.e., just ⟨t⟩, by itself 10 times: if t always passes,
it is considered a victim (although it may be an NOD test); if t always fails, it is considered
a brittle (although it may be an NOD test); and if t sometimes passes and sometimes fails,
it is definitely an NOD, not OD, test. This approach was proposed for iFixFlakies [186],
and using 10 runs is a common practice in proprietary software development for checking
whether a test is flaky [137, 201].

We then find

• for each victim, all of its single polluters in T and also all single cleaners for each
polluter, and

• for each brittle, all of its single state-setters in T .

To find polluters (resp. state-setters) of a victim (resp. brittle) test, iFixFlakies [186] takes
as input a test order (of entire T ) where the test failed (resp. passed) and then searches
the prefix of the test in that test order using delta debugging [230] (an extended version of
binary search). While iFixFlakies can find all polluters (resp. state-setters) in the prefix,
it does not necessarily find all polluters in T , and it takes substantial time to find these
polluters using delta debugging. The experiments show that in 98% of cases, binary search
finds one test to be a polluter, although some rare cases need a polluter group that consists
of two tests.

We propose a simpler and faster approach to find polluters (resp. state-setters) for the
most common case: for each victim v (resp. brittle b) and each test t ∈ T \ {v} (resp.
t ∈ T \{b}), we run a pair of the test and the victim (resp. brittle), i.e., ⟨t, v⟩ (resp. ⟨t, b⟩). If
the victim fails (resp. brittle passes), then the test t is a polluter (resp. state-setter). Further,
for each victim v, its polluter p, and a test t ∈ T \ {v, p}, we run a triple of ⟨p, t, v⟩, and if v
passes, then t is a cleaner for the pair of v and p. Note that for the same victim v, different
polluters may have different cleaners such as the example presented in Section 3.1.

In Step 2, we determine whether each OD test passes or fails in a given test order using only
the abstraction from Step 1, without actually running the test order. We focus on victims
because they are more complex than brittles; brittles can be viewed as special cases with
slight changes (requiring a state-setter to run before a brittle to pass, rather than requiring
a polluter not to run before a victim to pass). Without loss of generality, we consider one
victim at a time. Intuitively, the victim fails in a test order if a polluter is run before the
victim without a cleaner between the polluter and the victim. Formally, we define the test
outcome as follows.

37



Definition 3.1 (Test Outcome from Abstraction). Let T be a test suite with one victim
v ∈ T , polluters P ⊂ T , and a family of cleaners Cp ⊂ T indexed by each polluter p ∈ P .
The outcome of v in a test order ω is defined as follows:

fail(ω) ≡ ∃p ∈ P. p ≺ω v∧ ̸ ∃c ∈ Cp. p ≺ω c ∧ c ≺ω v; pass(ω) ≡ ¬fail(ω). (3.1)

This definition is an estimate of what one would obtain for all (repeated) runs of |T |!
permutations, for three main reasons:

• tests may behave differently in test orders than in isolation [111] (and an OD test may
even be an NOD test in some orders [111]);

• polluters, cleaners, and state-setters may not be single tests but groups (iFixFlakies [186]
reports that groups are rather rare); and

• a test that fails in some prefix may behave differently for the tests that come after it
in a test order than when the test passes (again, iFixFlakies [186] reports this issue to
be rare, finding just one such case).

Despite these potential sources of error, our evaluation shows that our use of abstraction
obtains flake rates similar to iDFlakies for orders that iDFlakies ran. Most importantly, our
use of abstraction allows us to evaluate many more orders without actually running them,
thus taking much less machine time.

3.3.2 Computing Failure Rate

We next define flake rate, derive formulas for computing flake rate for two cases, and show
why we need to sample test orders for other cases.

Definition 3.2 (Failure rate). For a test suite T with exactly one victim, given a set of test
orders Ω(T ), the flake rate is defined as the ratio:

f(T ) = |{ω ∈ Ω(T ) | fail(ω)}| / |Ω(T )|; (3.2)

we use the subscript fA and fC when we need to refer specifically to the flake rate for ΩA(T )

and ΩC(T ) (defined in Section 3.2), respectively.

We derive the formula for flake rate based on the number of polluters P and cleaners C for
two special cases. In general, computing the flake rate can ignore tests that are not relevant,

38



i.e., not in {v} ∪ P ∪
∪

p∈P Cp. It is easy to prove that f(T ) = f(T ′) if T and T ′ have the
same victim, polluters, and cleaners—the reason is that the tests from T \ T ′ are irrelevant
in any order and do not affect the outcome of v. The further analysis thus focuses only on
the relevant tests.
Special Case 1: Assume that (A1) all polluters have the same set C of cleaners: C =

Cp,∀p ∈ P ; and (A2) all of the victim, polluters, and cleaners are in the same class: ∀t, t′ ∈
{v}∪P ∪C.class(t) = class(t′); it means that ΩA(T ) = ΩC(T ) and fA = fC . Let π = |P | and
γ = |C|. The total number of permutations of the relevant tests is (π + γ + 1)!. While we
can obtain |{ω ∈ Ω(T ) | fail(ω)}| purely by definition, counting test orders where the victim
fails, we prefer to take a probabilistic approach that will simplify further proofs. A victim
fails if

• it is not in the first position, with probability (π + γ)/(π + γ + 1), and

• its immediate predecessor is a polluter, with probability π/(π + γ), giving the overall
flake rate f(T ) = π/(π + γ + 1).

This formula is simple, but real tests often violate A1 or A2. Of the 249 tests used in our
experiments, 13 violate both A1 and A2, 207 violate only A2, and 29 do not violate either.
Special Case 2: Keeping A1 but relaxing A2, assume that the victim is in class C1 with
π1 polluters and γ1 cleaners, and the other k − 1 classes have πi polluters and γi cleaners,
2 ≤ i ≤ k, where in general, either πi or γi, but not both, can be zero for any class except
for the victim’s own class where both π1 and γ1 can be zero. Per Special Case 1, we have
fA(T ) = (

∑k
i=1 πi)/(

∑k
i=1 πi +

∑k
i=1 γi + 1). Next, consider class-compatible test orders,

which do not interleave tests from different classes. The victim fails if (1) it fails in its own
class, with probability π1/(π1 + γ1 + 1), or (2) the following three conditions hold: (2.1) the
victim is the first in its own class, with probability 1/(π1 + γ1 +1), (2.2) the class is not the
first among classes, with probability (k − 1)/k, and (2.3) the immediately preceding class
ends with a polluter, with probability πi/(πi + γi) for each class i and thus the probability∑k

i=2(πi/(πi + γi))/(k − 1) across all classes. Overall,

fC(T ) =
π1 +

1
k

∑k
i=2

πi

πi+γi

π1 + γ1 + 1
. (3.3)

This formula is already more complex. Note that we can have either fA(T ) ≥ fC(T ) or
fC(T ) ≥ fA(T ), based on the ratio of polluters and cleaners in the victim’s own class vs. the
ratio of polluters and victims in other classes, i.e., neither set of test orders ensures a higher
flake rate. We show in Section 3.3.3 that both cases arise in practice.

39



General Case: In the most general case, relaxing A1 to allow different polluters to have
a different set of cleaners, while also having all these relevant tests in different classes, it
appears challenging to derive a closed-form expression for fA(T ), let alone for fC(T ). We
thus resort to estimating flake rates by sampling orders from ΩA(T ) or ΩC(T ), and counting
what ratio of them fail based on Definition 3.1 in Section 3.3.3.

3.3.3 Comparing Failure Rate for Different Sets of Test Orders

While tools such as iDFlakies [108] incorporate the requirement of not interleaving tests
from different classes in a test order, some other tools [237] do not incorporate this require-
ment, so they allow all test orders. Recall that ΩA(T ) denotes the set of all test orders
and ΩC(T ) denotes the set of test orders that satisfy the requirement. The reason to run
ΩA(T ) is to try to maximize the detection of all potential OD tests at the risk that some
detected failures would be false positives. In particular, a test failure observed in some non-
class-compatible order may not be reproducible in any class-compatible prefix of that order,
e.g., due to the various ways to customize JUnit [96] (with annotations such as @Before,
@BeforeClass, @Rule) or similar testing frameworks. The reason to run only ΩC(T ) is to
detect OD-test failures that developers can observe from running the tests and are therefore
motivated to fix.

While both sets of test orders can detect all true positive OD tests, it is not clear which
set of test orders are more likely to detect true positive OD tests. Intuitively, running ΩA(T )

test orders can more likely detect failures if cleaners and victims are in the same class, while
polluters are in different classes; in such cases, polluters are less likely to come in between
cleaners and the victim. For example, for the victim presented in Section 3.1, the ΩA(T )

flake rate is 10.5%, while the ΩC(T ) flake rate is 4.5%. On the other hand, running ΩC(T )

test orders can more likely detect failures if polluters and victims are in the same class,
while cleaners are in different classes. Similar reasoning applies to brittles: if state-setters
are more often in the same test class as the brittle, then the brittle is less likely to fail than
if state-setters are more often in other classes.

To compare these sets of test orders on real OD tests, we use the 192 victim and 57 brittle
tests described in Section 3.2.1. We collect all single test polluters for each victim and all
single test cleaners for each polluter-victim pair. We also collect all single test state-setters
for brittles. We then use either the formulas presented in Section 3.3.2 or many uniformly
sampled test orders to obtain the flake rates, fA(T ) and fC(T ), for each test. Specifically,
our formulas apply for 236 of the 249 tests. For the remaining 13 tests (all victims), we
sample 100000 test orders from each of ΩA(T ) and ΩC(T ) to estimate their flake rates.

40



Figure 3.3: Distribution of flake rate for two sets of test orders.

Figure 3.3 summarizes the results. For each set of test orders, the figure shows a boxplot
that visualizes the distribution of flake rates for 249 OD tests. The fA(T ) flake rates have a
slightly higher mean (38.4%) than the fC(T ) flake rates (38.0%). Statistical tests for paired
samples of the flake rates—specifically, dependent Student’s t-test obtains a p-value of 0.47
and Wilcoxon signed-rank test obtains a p-value of 0.01—show that the differences could be
statistically significant (at α = 0.05 level). However, if we omit the 13 tests that required
samplings, the means are 38.3% for fA(T ) and 38.6% for fC(T ), and the difference is not
statistically significant (dependent Student’s t-test obtains a p-value of 0.55, and Wilcoxon
signed-rank test obtains a p-value of 0.19).

Prior work [59, 108, 111, 237] has not performed any explicit comparison between the two
sets of test orders. Our results demonstrate that running ΩA(T ) might be more likely to
detect true positive OD tests. However, using such test orders may contain false positives.
Future work on detecting OD tests should explore how to address false positives if ΩA(T )

test orders are run.

3.3.4 Simple Change to Increase Probability of Detecting OD Tests

Inspired by our probability analysis, we propose a simple change to increase the probability
of detecting OD tests. The standard algorithm for sampling S random test orders simply
repeats S times the following steps:

1. ω ← sample a random test order from possible test orders (ΩA(T ) or ΩC(T ));

2. obtain result r ← run(ω);

3. if r is FAIL, then print ω.

(A variant [108] may store previously sampled test orders to avoid repetition, but the number
of possible test orders is usually so large that sampling the same one is highly unlikely, so
one can save space and time by not tracking previously sampled test orders.)

41



Our key change is to select the next test order as a reverse of the prior test order that
passed: 4. if r is PASS, then ωR ← reverse(ω). The intuition for this change is that a passing
order may have the polluter after the victim. Therefore, reversing the passing order would
have the polluter before the victim, and thus the reverse of the passing order should have a
higher probability to fail than a random order that may have the polluter before or after the
victim. Note that the reverse of a class-compatible test order is also a class-compatible test
order, so this change applies to ΩC(T ). The other changes are to run ωR, print if it fails,
and properly count the test orders to select exactly S samples of test orders.

We next compute the probability that the reverse of a passing order fails.

Special Case 1: Consider the Special Case 1 scenario from Section 3.3.2 with π polluters
and γ cleaners. For the standard algorithm, f(T ) = fA(T ) = fC(T ) = π/(π+γ+1). For our
change, the conditional probability that the second test order fails given that the first test
order passes is P (fail(ωR)|pass(ω)) = P (fail(ωR) ∧ pass(ω))/P (pass(ω)). We already have
P (pass(ω)) = 1− f(T ) = (γ + 1)/(π + γ + 1).

To compute P (fail(ωR) ∧ pass(ω)), we consider two cases based on the position of the
victim in the passing test order ω.

1. If the victim is first, with the probability of 1/(π+ γ+1), then the second test should
be a polluter, with the probability of π/(π + γ), so we get π/((π + γ)(π + γ + 1)) for
this case.

2. If the victim is not first, it cannot be the last in ω because otherwise, ωR would not
fail, so the victim is in the middle, with the probability of (π+ γ− 1)/(π+ γ+1). We
also need a cleaner right before the victim, with probability γ/(π + γ), and a polluter
right after the victim, with probability π/(π + γ − 1). Overall, we get the probability
πγ/((π + γ)(π + γ + 1)) for this case.

We can sum up the two cases to get P (fail(ωR) ∧ pass(ω)) = π(γ + 1)/((π + γ)(π + γ + 1)).
Finally, the conditional probability that the reverse test order fails given the first test

order passes is P (fail(ωR)|pass(ω)) = ( π(γ+1)
(π+γ)(π+γ+1)

)/( γ+1
π+γ+1

) = π/(π + γ). This probability
is strictly larger than f(T ) = π/(π + γ + 1), because π > 0 must be true for the victim to
be a victim.

Special Case 2: For the Special Case 2 scenario from Section 3.3.2, the common case
is π1 + γ1 > 0 (i.e., the victim’s class C1 has at least one other relevant test). Based on
the relative position of the victim in class C1, we consider three cases: the victim runs

42



first, in the middle, or last in class C1. After calculating the probability for the three cases
separately and summing them up, we get the probability that the reverse test order fails
and the first test order passes as P (fail(ωR) ∧ pass(ω)) = π1+kπ1γ1+π1Sγ+γ1(π1+γ1+1)Sπ

k(π1+γ1)(π1+γ1+1)
where

Sπ =
∑k

i=2
πi

πi+γi
and Sγ =

∑k
i=2

γi
πi+γi

. In Section 3.3.2, we have computed P (pass(ω)),
so dividing P (fail(ωR) ∧ pass(ω)) by P (pass(ω)) gives the conditional probability that the
reverse test order fails given the first test order passes. Due to the complexity of the formulas,
it is difficult to show a detailed proof that P (fail(ωR)|pass(ω)) > f(T ), so we sample test
orders instead.

When we sample both ΩA(T ) and ΩC(T ) for 100000 random test orders on all 249 OD tests
without reverse (i.e., the standard algorithm) and with reverse when a test order passes (i.e.,
our change), we find that our change does statistically significantly increase the chance to
detect OD tests. Specifically, for ΩA(T ), test orders without reverse obtain a mean of 38.6%,
while test orders with reverse of passing test orders obtain a mean of 45.3%. Statistical tests
for paired samples on the flake rates without and with reverse for ΩA(T ) show a p-value of
∼ 10−38 for dependent Student’s t-test and a p-value of ∼ 10−43 for Wilcoxon signed-rank
test. Similarly, for ΩC(T ), test orders without reverse obtain a mean of 38.0%, while test
orders with reverse of passing test orders obtain a mean of 45.3%. Statistical tests for paired
samples on the flake rates without and with reverse for ΩC(T ) show a p-value of ∼ 10−42 for
dependent Student’s t-test and a p-value of ∼ 10−42 for Wilcoxon signed-rank test.

Based on these positive results, we have changed the iDFlakies tool [108] so that, by
default, it runs the reverse of the previous order, instead of running a random order, if the
previous order found no new flaky test.

3.4 GENERATING TEST ORDERS TO COVER TEST PAIRS

We next discuss our algorithm to generate test orders that systematically cover all test
pairs for a given set T with n tests. The motivation is that even with our change to increase
the probability to detect OD tests, the randomization-based sampling remains inherently
probabilistic and can fail to detect an OD test.

3.4.1 Special Case: All Orders are Class-Compatible

We first focus on the special case where we have only one class, or many classes that each
have only one test, so all n! permutations are class-compatible. For example, for n = 2 we
can cover both pairs with Ω2 = {⟨t1, t2⟩, ⟨t2, t1⟩}, and for n = 4 we can cover all 12 pairs
with 4 test orders Ω4 = {⟨t1, t4, t2, t3⟩, ⟨t2, t1, t3, t4⟩, ⟨t3, t2, t4, t1⟩, ⟨t4, t3, t1, t2⟩}. Recall that

43



n is the minimum number of test orders needed to cover all test pairs, so the cases for n = 2

and n = 4 are optimal. The reader is invited to consider for n = 3 whether we can cover all
6 test pairs with just 3 test orders. The answer is upcoming in this section.

To address this problem, we consider Tuscan squares [68], objects studied in the field
of combinatorics. Given a natural number n, a Tuscan square consists of n rows, each of
which is a permutation of the numbers {1, 2, . . . , n}, and every pair ⟨i, j⟩ of distinct numbers
occurs consecutively in some row. Tuscan squares are sometimes called “row-complete Latin
squares” [154], but note that Tuscan squares need not have each column be a permutation
of all numbers.

A Tuscan square of size n is equivalent to a decomposition of the complete graph on n

vertices, Kn, into n Hamiltonian paths [207]. The decomposition for even n has been known
since the 19th century and is often attributed to Walecki [124]. The decomposition for odd
n ≥ 7 was published in 1980 by Tillson [207]. Tillson presented a beautiful construction
for n = 4m + 3 and a rather involved construction for n = 4m + 1 with a recursive step
and manually constructed base case for n = 9. In brief, Tuscan squares can be constructed
for all values of n except n = 3 or n = 5. We did not find a public implementation
for generating Tuscan squares, and considering the complexity of the case n = 4m + 1 in
Tillson’s construction, we have made our implementation public [8].

We can directly translate permutations from Tuscan squares into n test orders that cover
all test pairs in this special case (where all test pairs are either only intra-class test pairs
of one class or only inter-class test pairs of n classes). These sets of test orders have the
minimal possible cost: Cost(Ωn) = n(Cost0 + Cost(T )), substantially lower than Cost(Ωp)

for running all test pairs in isolation. For n = 3 and n = 5, we have to use 4 and 6 test
orders, respectively, to cover all test pairs. For example, for n = 3 we can cover all 6 pairs
with 4 orders {⟨t1, t2, t3⟩, ⟨t2, t1, t3⟩, ⟨t3, t1⟩, ⟨t3, t2⟩}.

3.4.2 General Case

Algorithm 3.1 shows the pseudo-code algorithm to generate test orders that cover all test
pairs in the general case where we have more than one class and at least one class has more
than one test. The main function calls two functions to generate test orders that cover
intra-class and inter-class test pairs.

The function cover_intra_class_pairs generates test orders that cover all intra-class test
pairs. For each class, the function compute_tuscan_square is used to generate test orders of
tests within the class to cover all intra-class test pairs. These test orders for each class are
then appended to form a test order for the entire test suite T . The function pick, invoked on

44



Algorithm 3.1: Generate test orders that cover all intra-test-class and inter-test-
class test-method pairs

Input: T # test suite, a set of test methods partitioned into test classes
Output: Ω # output is a set of test orders
Function cover_all_pairs():

Ω = {} # empty set
cover_intra_class_pairs()
cover_inter_class_pairs()

Function cover_intra_class_pairs():
map = {} # map each class to all its intra-class orders
for C ∈ classes(T ) do

map = map ∪ {⟨C, ωC⟩ |ωC ∈ compute_tuscan_square(C)}
end
while map ̸= {} do

ω = ⟨⟩ # empty order
Cs = {C | ∃ωC . ⟨C, ωC⟩ ∈ map}
for C ∈ Cs do

ωC = pick({ωC | ⟨C, ωC⟩ ∈ map})
map = map \ {⟨C, ωC⟩}
ω = ω ⊕ ωC # append order

end
Ω = Ω ∪ {ω}

end
Function cover_inter_class_pairs():

pairs = {⟨t, t′⟩ | t, t′ ∈ T ∧ class(t) ̸= class(t′)}\ # from all inter-class pairs..
{⟨t, t′⟩ | ∃ω ∈ Ω. cover(ω, ⟨t, t′⟩)} # ..remove covered by intra-class orders

while pairs ̸= {} do
ω = pick(pairs) # start with a randomly chosen not-covered pair
pairs = pairs \ {ω}
while true do

tp = ω|ω|−1 # previously last test
ts = {t | ⟨tp, t⟩ ∈ pairs ∧ class(t) /∈ classes(ω)}
if ts = {} then

break
tn = pick(ts) # next test to extend order
pairs = pairs\{⟨tp, tn⟩}
ω = ω ⊕ tn

end
Ω = Ω ∪ {ω}

end

multiple lines, chooses a random element from a set. The outer loop iterates as many times
as the maximum number of intra-class test orders for any class. When the loop finishes, Ω
contains a set of test orders that cover all intra-class and some inter-class test pairs. Each
test order that concatenates tests from l classes covers l−1 inter-class test pairs. (Using just
these test orders, we already detected 44 new OD tests in the test suites from the iDFlakies

45



dataset.) Each intra-class test pair is covered by exactly one test order. Modulo the special
cases for ni = 3 and ni = 5, each covered inter-class pair appears in exactly one test order
in Ω, because Tuscan squares satisfy the invariant that each element appears only once as
the first and once as the last in the permutations in a Tuscan square.

The function cover_inter_class_pairs generates more test orders to cover the remaining
inter-class test pairs. It uses a greedy algorithm to first initialize a test order with a randomly
selected not-covered test pair and then extend the test order with a randomly selected not-
covered test pair as long as an appropriate test pair exists. Extending the test order as long
as possible reduces both the number of test orders and the number of times each test needs
to be run.

We evaluate our randomized algorithm on 121 modules from the iDFlakies dataset as
described in Section 3.2.1. We use the total cost, which considers the number of test orders
and the number of tests in all of those test orders. The number of test orders is related
to Cost0, while the number of tests is related to Cost1 as defined in Section 3.2. We run
our algorithm 10 times for various random seeds. The coefficient of variation [26] for each
module shows that the algorithm is fairly stable, with the average for all modules being only
1.1% and 0.25% for the number of test orders and the number of tests, respectively.

Compared with Ωp that has all test orders of just test pairs, our randomized algorithm’s
average number of test orders and the average number of tests are only 3.68% and 51.8%,
respectively, that of all the Ωp test orders. The overall cost of the test orders generated
by our randomized algorithm is close to the optimal, because the number of test orders is
reduced by almost two orders of magnitude, and 51.8% of the number of tests is close to the
theoretical minimum of 50% that of Ωp test orders for Cost1.

3.5 SUMMARY

Order-dependent (OD) tests are one prominent category of flaky tests. Prior work [108,
111, 237] has used randomized test orders to detect OD tests. In this chapter, we have pre-
sented the first analysis of the probability that randomized test orders detect OD tests. We
have also proposed a simple change for sampling random test orders to increase the proba-
bility of detecting OD tests. We have finally proposed a novel algorithm that systematically
explores all consecutive pairs of tests, guaranteeing to find all OD tests that depend on one
other test. Our experimental results show that our algorithm runs substantially fewer tests
than a naive exploration that runs all pairs of tests. Our runs of some test orders generated
by the algorithm detect 44 new OD tests, not detected in prior work [108, 111, 112] on the
same evaluation dataset.

46



CHAPTER 4: [DETECTING] A LARGE-SCALE LONGITUDINAL STUDY
OF FLAKY TESTS

This chapter presents our in-depth study on when flaky tests are introduced, what changes
cause tests to be flaky, and how developers should utilize their efforts to detect flaky tests.
Some software organizations, e.g., Mozilla [201] and Netflix [149], run some tools—which we
call flaky-test detectors—to detect flaky tests as soon as possible. However, detecting flaky
tests is costly due to their inherent non-determinism, so even state-of-the-art detectors are
often impractical to be used on all tests for each project change.

To help researchers and developers decide when they should use detectors, this chapter
answers the following research questions:

RQ1: How effective are flaky-test detectors if run only when tests are introduced?

RQ2: How do flaky-test categories affect the effectiveness of running flaky-test detectors
only when tests are introduced?

RQ3: When should one run flaky-test detectors?

Our study finds that ∼75% of flaky tests (184 out of 245) are flaky when added, indicating
substantial potential value for developers to run detectors specifically on newly added tests.
However, running detectors solely on newly added tests would still miss detecting ∼25%
of flaky tests. The percentage of flaky tests that can be detected does increase to ∼85%
when detectors are run on newly added or directly modified tests. The remaining 15% of
flaky tests become flaky due to other changes and can be detected only when detectors are
applied on more than just newly added or directly modified tests. Our study is the first
to empirically evaluate when tests become flaky and to recommend guidelines for applying
detectors in the future.

The remainder of this chapter is organized as follows. Section 4.1 presents our study
setup, and Section 4.2 presents our study methodology. Section 4.3 then presents our study
results, and Section 4.4 presents our case studies of tests that are not flaky when they are
introduced. Finally, Section 4.5 presents the threats to validity, and Section 4.6 concludes
this chapter.

4.1 STUDY SETUP

Flaky tests should ideally be detected as soon as the change that introduces the flakiness
is made. Developers at Mozilla [201] and Netflix [149] are already trying to detect flaky tests

47



right when tests are added or modified by repeatedly running such tests in isolation multiple
times. Aside from rerunning tests in isolation, various other approaches have been proposed
to detect flaky tests [59, 73, 84, 108, 184, 237]. We next describe the detection approaches
that we use to obtain a dataset of flaky tests (Section 4.1.1), the flaky-test dataset that
we use for our study (Section 4.1.2), and how we categorize flaky tests to reproduce their
failures (Section 4.1.3).

4.1.1 Flaky-Test Detection Approaches

As flaky tests become a growing problem for developers, two flaky-test detection ap-
proaches have been proposed for some common categories:

1. Prior work [59, 73, 84, 108, 237] has proposed various ways to detect flaky tests whose
test result depends on the order in which the tests are run; such tests are known as
order-dependent (OD) flaky tests. Examples of OD tests are presented in Section 1.2.1
and Section 3.1.

2. Prior work [184, 201] has also proposed various ways to detect flaky tests whose test
result depends on the implementation of a non-deterministic specification; we refer to
such tests as implementation-dependent (ID) flaky tests.

For our study, we select one tool for each flaky-test detection approach, specifically iD-
Flakies [108] for detecting OD tests and NonDex [184] for detecting ID tests. Our se-
lection of detectors is based on our goal to evaluate both detectors on a common set of
projects. Therefore, we select detectors that share the same programming language and
build infrastructure. For detecting OD tests, most of the detectors that we find are for Java
projects [59, 73, 84, 108, 237] and some of the detectors are for Maven-based projects. We
select iDFlakies [108], because it is co-authored by us (presented in Chapter 2) and we are
thus familiar with it. For detecting ID tests, we select NonDex [184] because it is the only
detector for Maven-based, Java projects.

iDFlakies. As described in Chapter 2, iDFlakies [108] is a testing tool developed for de-
tecting flaky tests in Maven-based, Java projects. To detect flaky tests, iDFlakies repeatedly
runs projects’ test suites, by permuting the order of tests in a test suite, and compares test
results across repeated runs. If a test has both pass and fail results for at least two runs, the
detector flags the test as flaky. To increase the likelihood of detecting flaky tests, iDFlakies
provides different ways to change the order in which tests are run. iDFlakies can detect
three main categories of flaky tests:

48



• Order-dependent brittle (OD Brit) – tests that fail when run in isolation but pass when
run after some specific tests;

• Order-dependent victim (OD Vic) – tests that pass when run in isolation but fail when
run after some specific tests;

• Non-deterministic (NOD) – tests that non-deterministically pass or fail with no changes
to test execution order or implementation of test dependencies.

NonDex. NonDex [184] is a tool for detecting incorrect assumptions by developers on
specifications. Some APIs have underdetermined specifications [120], i.e., the specifications
allow multiple implementations to return different results for the same input, even if each
implementation is itself deterministic and always returns the same result for the same input.
Such specifications allow implementations to be changed later to achieve various goals, e.g.,
to optimize performance or reliability. When developers use such APIs with assumptions
that are not documented in the specifications, the developers may inadvertently create flaky
tests. For example, imagine a test that uses a HashSet and makes an assumption regarding
the order in which elements of the HashSet are iterated. While one Java version could provide
a deterministic iteration order, there is no guarantee that another Java version provides the
same order, e.g., the iteration order of HashSet in Java 7 may differ from that in Java 8.
Since HashSet’s specification never specifies the iteration order of elements, a test may fail in
Java 8 but pass in Java 7 if the implementation of HashSet between the two versions changes
the iteration order.

NonDex is a detector for tests that make such assumptions. Specifically, NonDex detects
a flaky test by exploring different allowed behaviors of under-specified APIs while the test is
running. For example, in the case of HashSet, NonDex explores whether different iteration
orders of the HashSet may cause the test to fail. By exploring different allowed behaviors
of underdetermined APIs through repeated runs of a test, NonDex can detect two main
categories of flaky tests:

• Implementation-dependent (ID) – tests that are dependent on a specific implementation
of an API whose specification admits other implementations;

• Non-deterministic (NOD) – tests that non-deterministically pass or fail with no changes
to test execution order or implementation of test dependencies.

49



4.1.2 Flaky Tests Used in Our Study

As described in Section 4.1.1, both detectors that we select to detect flaky tests work on
Maven-based, Java projects. One detector that we use in this study is our iDFlakies tool,
which also comes with a dataset of flaky tests that we detected with the detector in our
prior work [108]. For this study, we use the same set of projects on the same commit1 as
the iDFlakies dataset. We refer to this commit for each project as the project’s iDFlakies-
commit. Specifically, the dataset has 683 projects that are all selected from GitHub [63]
based on their popularity among Java projects. Each Maven-based project is organized into
one or more modules, which are the basic units that Maven-based tools, including iDFlakies
and NonDex, run.

We use iDFlakies version 1.0.2, which can be configured to permute tests in a module’s test
suite in several ways. Following the recommendation from our prior work [108] (described in
Chapter 2), we first run the ReverseC+M configuration once (which runs all test methods
in the reverse order of the default Maven order) and then proceed to run the RandomC+M
configuration 100 times (which runs all test methods in a random order each time)2. The
iDFlakies dataset consists of a Comprehensive dataset (projects on which all configurations
of iDFlakies were evaluated) and an Extended dataset (a larger set of projects on which
only the RandomC+M configuration was evaluated). For this study, we select all of the
modules of all projects in the Comprehensive dataset except for seven projects that take
more than three days to run—leaving us with 21 projects. We also run iDFlakies on each
module where a flaky test is detected in the iDFlakies dataset, regardless of whether the
module belongs to a project from the Comprehensive or Extended set of projects. We do
not directly use the flaky tests from the iDFlakies dataset, because the test suites of some
modules where iDFlakies detected flaky tests for the dataset were run up to 16503 times,
enabling the dataset to contain flaky tests that require many runs to be detected. To limit
the machine cost of our experiments, we want flaky tests that are likely to be detected in
100 runs, which, as described in Section 4.2.2, is the number of runs that we use for each
applicable categorization step to reproduce flaky-test failures.

For NonDex, we set it to run for 10 times for each module’s test suite. We do not provide
a random seed to NonDex, which means that NonDex generates its own random seed for
each of the 10 runs. We also set NonDex to the ONE level, where NonDex changes the order
of any object only when it is first accessed, and this order is not changed by NonDex for the

1Only for the alibaba/fastjson project, the commit that we use (SHA 5c6d6fd4) differs because the
original commit (SHA 57d0434) used in the iDFlakies dataset is no longer available [53].

2Note that the simple change described in Section 3.3.4 to increase the probability of detecting OD tests
came after our study and is not in the iDFlakies version that we used for this study.

50



rest of the run. We use the ONE level, because compared to other levels of NonDex, the
ONE level modifies the execution of tests the least, and failures found from this level are
therefore more likely to be real flaky tests than the ones found by the other levels. With
these settings for NonDex, we use version 1.1.2 and run the tool on all modules of all projects
from the iDFlakies dataset.

Running iDFlakies and NonDex as described detects a total of 306 flaky tests from 55
projects. Table 4.1 shows the overall characteristics of these 55 projects, and Table 4.2
shows the number of flaky tests detected per project. The projects have a wide range of
sizes (from only 387 to 958112 lines of Non-Test code3), and their test suites can be quite
big (up to 8471 tests4).

Using Kendall’s rank correlation coefficient, we investigate the relationship between the
project characteristics (Table 4.1) and the number of flaky tests detected (Table 4.2). Be-
cause flaky tests are a subset of all tests, the cardinalities of the two sets have an obvious
relationship: the former can never exceed the latter. However, it is not obvious to which
degree the number of flaky tests is correlated with the total number of tests.

We find moderate positive correlations between the number of flaky tests in a project
and all three project characteristics in Table 4.1; lines of Non-Test code (τ = 0.322, p =

7.8× 10−4), lines of Test code (τ = 0.408, p = 2.1× 10−5), and number of tests (τ = 0.365,
p = 1.4× 10−4). We also investigate the correlations for individual categories of flaky tests.
We find that the correlations are only significant (at α = 0.05) for the number of ID flaky
tests and lines of Non-Test code (τ = 0.261, p = 0.04), lines of Test code (τ = 0.332,
p = 0.01), and number of tests (τ = 0.316, p = 0.02).

Because the number of flaky tests is positively correlated with the project characteristics
in Table 4.1, and these characteristics differ widely for the projects in our study, we also
investigate whether the number of flaky tests increases proportionally with the project char-
acteristics. We conduct a test for equality of proportions and find that flaky tests and project
characteristics do not grow proportionally (p < 2.2× 10−16). A visual investigation of the
corresponding scatter plots in Figure 4.1 confirms that the number of flaky tests grows at
a lower rate than project characteristics, but it still grows. To combat the growing number
of flaky tests, we conclude that developers should strive to detect and fix flaky tests when
they are introduced.

3Lines of code (LOC) have been counted using cloc (https://github.com/AlDanial/cloc). “Test” LOC
have been counted as Java LOC in files whose names include the word “Test”. “Non-Test” LOC have been
counted as all Java LOC in a project, except for test LOC as specified before.

4Tests have been counted as test methods run according to Maven Surefire reports.

51



Table 4.1: Characteristics of the projects used in our study.
iDFlakies Lines of Code Test

Project Slug from GitHub SHA Non-Test Test Count

activiti/activiti b11f757a 93,827 53,958 2,045
alibaba/fastjson 5c6d6fd4 105,454 64,700 4,781
apache/hadoop cc2babc1 958,112 688,013 5,358
apache/hbase 801fc05e 422,013 267,346 2,844
apache/incubator-dubbo 737f7a7e 69,473 32,681 2,156
apache/struts 13d90530 112,028 45,774 4,003
apereo/java-cas-client 574b74fa 7,547 2,862 160
c2mon/c2mon d80687b1 55,931 21,494 284
codingchili/excelastic 6bb7884b 1,228 261 12
ctco/cukes b483e1a8 7,631 1,154 54
davidmoten/rxjava2-extras d0315b6e 7,467 5,324 389
doanduyhai/achilles e3099bdc 30,289 17,827 613
dropwizard/dropwizard 07dfaed6 23,926 27,790 1,559
eclipse-ee4j/tyrus d86e0cb0 30,615 25,944 554
elasticjob/elastic-job-lite b022898e 8,277 7,947 562
espertechinc/esper 590fa9c9 461,075 30,656 1,604
feroult/yawp b3bcf9c9 16,751 5,631 362
fhoeben/hsac-fitnesse-fixtures a64c18d9 11,801 7,076 341
flaxsearch/luwak c27ec08c 4,609 3,350 205
fluent/fluent-logger-java da14ec34 739 899 18
fromage/redpipe 0aff891d 5,796 1,983 64
google/jimfs ced6093f 7,882 9,484 454
hexagonframework/spring-data-ebean dd11b976 2,984 508 48
javadelight/delight-nashorn-sandbox da35edc0 1,029 1,459 79
jfree/jfreechart 520a4be6 94,000 39,847 2,176
jhipster/jhipster-registry 00db3661 2,580 965 53
kagkarlsson/db-scheduler 4a8a28e6 2,433 1,417 48
kevinsawicki/http-request 2d62a3e9 1,391 2,721 163
ktuukkan/marine-api af000384 8,598 7,274 926
logzio/sawmill e493c2e2 5,923 4,595 271
looly/hutool 91565d05 54,678 7,704 611
nationalsecurityagency/timely 3a8cbd33 18,290 5,422 166
openpojo/openpojo 9badbcc4 12,019 10,982 1,185
orbit/orbit c4904af2 15,907 6,532 192
oryxproject/oryx 72ae4bb3 14,428 5,743 393
pholser/junit-quickcheck 9361b6da 8,338 16,893 1,081
pippo-java/pippo ae898b6c 16,348 3,488 211
querydsl/querydsl 2bf234ca 72,487 37,317 8,471
ripe-ncc/whois 79e90f41 55,115 66,283 2,563
sonatype-nexus-community/nexus-repository-helm 60a9e8de 1,562 682 18
spinn3r/noxy d53a4942 2,794 1,286 35
spotify/helios aebf68dc 28,039 18,434 569
spring-projects/spring-boot daa3d457 126,310 133,285 7,337
spring-projects/spring-data-envers 5637994b 387 251 10
spring-projects/spring-ws e8d89c9e 29,727 19,252 1,367
tbsalling/aismessages 7b0c4c70 5,118 1,021 44
tools4j/unix4j 367da7d2 10,779 6,401 454
tootallnate/java-websocket fa3909c3 7,679 3,239 146
undertow-io/undertow d0efffad 107,888 29,315 852
vmware/admiral e4b02936 130,480 61,289 1,383
wikidata/wikidata-toolkit 20de6f7f 20,156 11,089 787
wildfly/wildfly b19048b7 366,899 148,605 1,102
wro4j/wro4j 185ab607 20,187 20,098 1,288
wso2/carbon-apimgt a82213e4 75,958 26,459 1,292
zalando/riptide 8277e11f 5,526 7,147 337

Total — 3,768,508 2,029,157 64,080

52



1

10

100

100 1,000 10,000 100,000 1,000,000
Number of Non-Test LOC (Table 1) (log scale)

N
um

be
r 

of
 F

la
ky

 T
es

ts
 (

Ta
bl

e 
2)

 (
lo

g 
sc

al
e)

1

10

100

100 1,000 10,000 100,000 1,000,000
Number of Test LOC (Table 1) (log scale)

N
um

be
r 

of
 F

la
ky

 T
es

ts
 (

Ta
bl

e 
2)

 (
lo

g 
sc

al
e)

1

10

100

10 100 1,000 10,000
Number of Tests Run (Table 1) (log scale)

N
um

be
r 

of
 F

la
ky

 T
es

ts
 (

Ta
bl

e 
2)

 (
lo

g 
sc

al
e)

Figure 4.1: Relation of project characteristics and flaky test counts for projects with one or
more flaky tests.

4.1.3 Flaky-Test Categorization Approaches

To study whether flaky tests are flaky when introduced (RQ1), and thus whether flaky-test
detectors should run only when tests are introduced, we find the commit where each flaky test
that we detect on the iDFlakies-commit first becomes flaky. As iDFlakies randomly permutes
test orders, the flaky-test failures that it finds on the iDFlakies-commit in a particular test
order may be expensive to find on a different commit due to the number of possible orders for
the tests (n!, where n is the number of tests in the test suite of a particular commit). While
we can sample a large number of orders on a single commit (the iDFlakies-commit), it is
not scalable to use this approach across potentially many commits to identify the commit in
which a flaky test first becomes flaky—which we call Flakiness-introducing commit (FIC)—
for each test. Instead of running iDFlakies on each revision, we rely on three targeted
approaches to allow us to faster check whether flaky tests are flaky (and when they first
become flaky) and to study whether the point of introducing flakiness differs across different
categories of flaky tests.

Specifically, we run isolation (running each test by itself) to detect OD Brit tests, NonDex
(as described in Section 4.1.1) to detect ID tests, and One-by-one (running each test after
every other test) to detect OD Vic tests. Although NonDex and iDFlakies are designed to
detect specific categories of flaky tests (ID and OD, respectively), they can also both detect
NOD tests. As described in Section 4.2.2, we use these same categories of flaky tests to
study whether some kinds of flaky tests are easier to detect when tests are introduced than
other kinds (RQ2).

Isolation. Prior work [15, 16, 142, 201] has proposed isolating tests from one another dur-
ing their runs. Running tests in isolation is a common way for developers to detect flaky

53



tests. Its popularity largely stems from the fact that tests of the OD Brit category deter-
ministically fail when run in isolation (and moreover, if one aims to avoid rather than detect
flaky tests, then running tests in isolation can avoid failures from the OD Vic category).
Furthermore, because each test is run in isolation (rather than in various permutations with
other tests), the cost of this approach is relatively low. This approach also helps detect NOD
tests, because the tests can be run more times in less time compared to other tools, such as
OD test detectors, that typically run many permutations of the test suite.

This approach for detecting flaky tests also resembles the strategy used by developers at
Mozilla [201] and Netflix [149]. By including this approach, we benefit from its complemen-
tary detection abilities compared to the other tools and its representativeness for pragmatic
approaches commonly used by developers. One caveat for running tests in isolation is that
the number of runs needed to detect any particular flaky test is unclear, and typically devel-
opers arbitrarily choose the number of times to run (e.g., for Mozilla, tests are run 10 times
with no particular justification for the number 10). For our runs, we choose a much higher
number of times to run (100) than what Mozilla developers use by default [201]. For running
a specific test in isolation, we simply use an already existing feature in Maven Surefire [132],
namely mvn test -Dtest=TestClass#testMethod.

One-By-One. While iDFlakies can effectively detect flaky tests, iDFlakies has one major
limitation for our study. Namely, depending on the test suite size, randomized runs may
(a) take substantial time, and (b) cover only a small fraction of the relevant permutations.
Recall that one of our research questions is whether flaky tests are flaky when the tests
are first introduced to the test suite (RQ1). Therefore, not covering all permutations is
particularly problematic to our study because we may consider tests to not be flaky when
introduced due to the necessary permutations not being covered (and not solely due to tests
not being flaky when they were introduced). Specifically, when we do not observe a failure
of an OD Vic test at a particular commit, the reason may simply be that the random orders
tried by iDFlakies do not include any order that exposes the OD Vic test, and not because
the test is not flaky at that particular commit. To address this limitation of iDFlakies, we
run every potentially flaky test after every other test from the test suite. That is, we pair
every potentially flaky test t with every other test, t′, and run all pairs ⟨t′, t⟩. We call this
way of running tests as running them one-by-one (OBO). We rely on OBO as a potentially
more expensive, yet also more deterministic way than iDFlakies to confirm whether tests
are OD at a particular commit. One caveat of using OBO compared to iDFlakies is that
OBO may miss OD Vic tests that require multiple tests to run before t to fail (e.g., for t to
fail, it must run ⟨t′′, t′, t⟩, while both ⟨t′, t⟩ and ⟨t′′, t⟩ pass). However, according to our prior

54



Other commits

TIC

FIC

iDFlakies-commit

Newer
commits

Older
commits

... ...... ...
Find     
flaky tests

1

Categorize 
flaky tests

2

Check if
test is flaky 

3

iDFlakies

OBO
NonDex
Isolation

NonDex

OBO
NonDex
Isolation

Confirm that
test is flaky 

4

OBO
NonDex
Isolation

Each categorized flaky test (mapped to its TIC)

All flaky tests

Each test not 
flaky in TIC,
git bisect + 

inspections to 
find FIC

Figure 4.2: High-level overview of our study methodology. For Step 1, we use two different
tools to detect flaky tests. For Step 2, we categorize each of these flaky tests. For Step 3,
we identify the Test-introducing commit (TIC) and confirm whether the test was flaky in
that commit. For Step 4, we identify the Flakiness-introducing commit (FIC) for each test
that is not flaky in its TIC.

work [186], it is rarely the case that multiple tests are required for an OD Vic test to fail,
and it is suggested that future work focuses on just individual tests to find OD Vic tests.

As far as we are aware, there is no existing tool that would support our OBO approach by
running a specific test after every other test5. By default, Maven Surefire [132] allows one
to specify which specific tests to run, but it does not enable one to specify the order of the
tests. Therefore, to run tests in OBO, we build on top of Maven Surefire version 3.0.0-M6
to enable it to customize the order in which tests are run. Using our custom plugin, we
first obtain the full list of tests for each test suite and then for any particular flaky test, we
invoke our Surefire plugin with every other test coming before that particular test, resulting
in an OBO test execution.

4.2 METHODOLOGY

This section describes how we use the flaky-test dataset described in Section 4.1.2 and the
flaky-test categorization approaches described in Section 4.1.3 to answer our RQs.

4.2.1 RQ1: How Effective Are Detectors if Run Only When Tests Are Introduced?

The main goal of our study is to understand when one should run flaky-test detectors
5Zhang et al. [237] did suggest to detect order-dependent tests by running them in pairwise where every

test is run with every other test. However, their tool does not allow one to easily specify a specific test to
run with every other test.

55



such as iDFlakies [108] and NonDex [184]. Specifically, to reduce the cost of running these
tools, should one run them only when new tests are added, and how would it impact the
effectiveness of these tools, namely the number of flaky tests detected? To study this ques-
tion, for each flaky test detected by iDFlakies or NonDex as described in Section 4.1.2, we
apply the targeted approaches described in Section 4.1.3 to detect whether the test was flaky
in its Test-introducing commit (TIC). If the test is not flaky in its TIC, we proceed to run
the targeted approaches on subsequent commits to obtain the Flakiness-introducing commit
(FIC) that introduced the flakiness. If a test’s TIC is the same as its FIC, it simply implies
that the test is already detectable as flaky when it is introduced (TIC). Figure 4.2 shows a
high-level overview of the process we used to find the TIC and FIC for all flaky tests detected
by iDFlakies or NonDex.

Obtaining TICs. For each flaky test (uniquely identified by its fully qualified Java class
and method name) that iDFlakies or NonDex detect on the iDFlakies-commit, we traverse
the project’s history to find the TIC. While finding the TIC is seemingly simple, there are
two key challenges:

• the location of a test could have changed, e.g., to a different module or package, and

• test method names can occur in multiple classes.

To address both challenges, we first search by the test method name and then filter the
results. Specifically, we use git pickaxe to search for all commits that add a line containing
the test method name. Doing so helps us identify commits in which the test could be added,
even if the test’s location (i.e., file path) in TIC differs from the test’s location in iDFlakies-
commit. However, the check for the test method name is insufficient to differentiate common
method names (e.g., testList) from different classes. To address this issue, after checking
the method name, we check the name of the file that contains an added line with the method
name. We continue traversing the commits from the oldest to the newest until we find a
match for both the method and file name (i.e., the simple class name) of the flaky test,
or we run out of commits without finding an appropriate TIC. Running this procedure
automatically finds the TIC for the majority of our tests. This procedure can fail to find the
TIC for some tests due to reasons such as a test method defined in a superclass but executed
by a subclass, or a test class renamed after the test method name was added. In such cases,
we manually find the TICs to ensure a complete dataset.

Obtaining FICs. Once we have found the TIC, we check to see if the test is flaky on
that commit by using our Isolation, NonDex, and One-by-one targeted approaches. If we

56



find the test to be flaky on the TIC, then we have also found the FIC— it matches the
TIC. For each flaky test that we are unable to detect as flaky on the TIC, we proceed
to find the commit that introduces the flakiness (FIC). In theory, we could simply use git
bisect [62] to binary search for the intermediate commit between TIC and iDFlakies-commit
that introduces the flakiness. Specifically, at each commit of the binary search, git bisect
would run the targeted approach that categorized the flaky test at the iDFlakies-commit.
If the flakiness can be detected in a particular commit, then the next commit to search for
would be closer to the TIC. If the test cannot be detected as flaky in a particular commit,
then the next commit to search for would be closer to the iDFlakies-commit. Finally, git
bisect outputs a commit as the FIC once it observes two consecutive commits where the
first commit cannot detect the test to be flaky, but the second commit can.

However, the binary search that git bisect employs often gets misled and outputs a
wrong commit for a variety of reasons: the project may not compile at some intermediate
commit between TIC and iDFlakies-commit (although it does compile on both of those
commits)6; the test may not exist in some intermediate commit (again, although it does
exist in both the starting and ending commits); or the test may have a different category of
flakiness, e.g., switching from NOD to OD, which increases the number and type of test runs
that we need to perform to get a reliable signal about the flakiness status of the test. As a
result, we use a semi-automated approach, by first running git bisect to get a suggested
intermediate commit, then (manually) double checking if such commit is indeed the commit
that introduced flakiness, and if not, we manually continue the search for the FIC. We
eventually manually confirm all of the FICs that we find by confirming that the test is flaky
in that FIC but not flaky on any parent of the FIC (and for this confirmation, we use many
more runs than usual to increase the probability to properly categorize the test).

4.2.2 RQ2: How Do Flaky-Test Categories Affect the Effectiveness of Running Flaky-Test
Detectors Only When Tests Are Introduced?

Because different flaky-test detectors are better suited to detect different categories of flaky
tests, it is important to understand the high-level reason why each of the flaky tests that
we studied is flaky. The goal of RQ2 is to extend the question in RQ1 to better understand
how different flaky-test categories may affect when one should run flaky-test detectors. To
study this question, we categorize each flaky test found by iDFlakies or NonDex based on
the procedure shown in Figure 4.3. We perform this categorization on the iDFlakies-commit

6We have adjusted our git bisect script to use the exit code 125 as recommended for code that does
not compile, but even that did not help in many cases to identify the appropriate intermediate commit.

57



Run test suite 
with iDFlakies

Run test suite 
with NonDex

Run t in 
isolation 100x

Run t with 
NonDex 100x

Run all
pairs ⟨t',t⟩

Flaky: OD 
(brittle)

Flaky: UD

  Run any one 
  failing ⟨t',t⟩ 100x

Run t with NonDex 
fixed failed seed 100x

Flaky: ID

Flaky: OD 
(victim)

Each candidate 
flaky test t

t sometimes 
fails

t always fails

t never 
fails

t sometimes 
fails

t never 
fails

t sometimes 
fails

t always fails

t sometimes 
passes

t always fails

t never fails Flaky: ND

t sometimes 
passes

4

321

5

Figure 4.3: Procedure for categorizing flaky tests on the iDFlakies-commit.

for each test (before using the approach outlined in Section 4.2.1 to search for Flakiness-
introducing commits).

Running the procedure to find the category of flaky tests is important for several reasons.
First, it helps us to confirm that the test is indeed flaky, i.e., the test fails with iDFlakies
or NonDex, and the failures can be reproduced using the Isolation, NonDex, or One-by-one
approaches (Section 4.1.3). Second, it provides a lower-cost approach to search for FICs;
not knowing the actual category would require running likely irrelevant approaches on many
commits (e.g., finding the FIC for an OD Vic test would not benefit from running NonDex).
Third, it allows us to analyze whether the results about TIC and FIC vary with the test
category, because it could inspire using different strategies to detect flaky tests if one expects
a project to mainly have flaky tests of some categories.

Figure 4.3 shows the five steps we perform to categorize each flaky test into the following
categories:

• Order-dependent brittle (OD Brit) – tests that fail when run in isolation but pass when
run after some specific tests;

• Order-dependent victim (OD Vic) – tests that pass when run in isolation but fail when
run after some specific tests;

• Non-deterministic (NOD) – tests that non-deterministically pass or fail with no changes
to test execution order or implementation of test dependencies;

• Implementation-dependent (ID) – tests that are dependent on a specific implementation
of an API whose specification admits other implementations;

• Unknown-dependent (UD) – tests that are not dependent on the preceding factors.

58



As the figure shows, we take all flaky tests detected by iDFlakies or NonDex in their
iDFlakies-commit and first run each test t in isolation (Step 1). If t always fails, it is
categorized as OD Brit. If t sometimes fails but not always, it is categorized as NOD.
Lastly, if t never fails, we run NonDex on t with various random seeds (Step 2). If t fails at
least once, we proceed to rerun NonDex but now ensuring that NonDex uses the same seed
for all of the reruns (Step 3). This seed is arbitrarily chosen from all seeds with which t failed
in Step 2. Note that unless a seed is specified, NonDex, by default, generates a new random
seed for every run that it does. If t always fails when we rerun NonDex, t is categorized as
ID; otherwise, it is categorized as NOD. Back to Step 2, if t never fails, we proceed to run
OBO with t (Step 4). If t fails at least once in Step 4, we proceed to run any one failing
pair (i.e., ⟨t′, t⟩) many times (Step 5). We arbitrarily choose any pair that failed in Step 4.
If t always fails in Step 5, t is categorized as OD Vic. If t sometimes passes in Step 5, it is
categorized as NOD. Back to Step 4, if t never fails, t is categorized as Unknown-dependent
(UD); essentially, a test that was detected as potentially flaky by iDFlakies or NonDex, yet
we are unable to reproduce the flaky-test failure using either Isolation, NonDex, or OBO.

Our use of the targeted approaches could not confirm these UD tests as flaky, and hence,
we are not able to automatically categorize them further. When we investigate some of these
tests, we find that one reason for these tests is because they are OD Vics that require more
than one test to pollute the state, e.g., a test t that passes both in ⟨t′, t⟩ and ⟨t′′, t⟩ but fails
in ⟨t′′, t′, t⟩. Our prior work [186] has found that such cases are rather uncommon (only 3%
of all OD Vics require multiple tests to fail). Nevertheless, our inspection of some UD tests
finds that three OD Vic tests from apache/incubator-dubbo’s RegistryProtocolTest class
fail only when they are run following two polluters. Our OBO approach misses these tests
(as it searches for polluters but tries only one at a time), resulting in these OD Vic tests
being categorized as UD tests.

Another reason for UD tests is because iDFlakies uses “testrunner”, a custom Maven
plugin to run tests [202] so that it can control the order of all test methods, while all of our
targeted approaches use Maven Surefire [132] to run tests. Differences in these two plugins
and the JUnit versions supported by them cause some UD tests. Specifically, the testrunner
plugin uses only JUnit version 4.12 to run tests, while all of our targeted approaches use
Maven Surefire version 3.0.0-M6 (with our changes to support the OBO approach added),
which uses JUnit version 4.13 to run tests. Finally, besides the differences in the way tests
are run, the tests may be flaky but rather hard to reproduce, or there may be a bug in the
iDFlakies or NonDex tools that reported the tests as flaky. Some of these tests also may
appear flaky due to simple deficiencies of our experimental infrastructure; running a test
suite in two parallel runs (with two tools) can lead to spurious failures, e.g., if the test suite

59



tries to bind to a specific network port, or if one rogue test runs and fills up disk space. As
we are not familiar with the evaluated projects, we could not inspect in detail all hundreds
of failures, so we focus our evaluation only on the tests where we can reproduce flakiness in
our Isolation, NonDex, or OBO approaches.

To detect flaky tests in their TIC, we follow the same procedure shown in Figure 4.3 as
detailed above, but on the tests’ TICs instead of their iDFlakies-commits. Specifically, if a
test in its TIC fails at least once in steps 1, 2, or 4, then we conclude that the test is flaky
in its TIC.

4.2.3 RQ3: When Should One Run Flaky-Test Detectors?

The main goal of RQ3 is to study whether some code change characteristics could help
one identify FICs. After identifying the FIC as described in Section 4.2.1, we further inspect
which change from the FIC actually introduced flakiness. Commits that introduce flakiness
in the existing tests may have a variety of changes—in the test code itself (src/test in Maven
projects), in the code under test (src/main in Maven projects), or in the library dependencies
(specified in pom.xml files in Maven projects). For this RQ, we want to identify the precise
flakiness-introducing change. We compare the files changed in the flakiness-introducing
change with those changed by other commits in-between the introduction of the flaky test
(TIC) and the first commit in which the test is flaky (FIC). Doing so allows us to compare
the changes of FICs with other commits, and to understand if there are simple suggestions
that developers could follow to guide when they should run detectors. However, for commits
with many changes (e.g., a refactoring commit coupled with some flakiness introducing
change), this automated approach does not provide much detail into the precise change
that introduced the flakiness. In theory, we could use delta debugging [229] to automatically
identify the change (or, more precisely, a set of changes), but in practice, there are no readily
available tools for Java and Maven projects. Therefore, we use a combination of manual delta
debugging, coupled with the identification of the root cause of flakiness, to identify the exact
change(s) in the commit that introduce the flakiness. Specifically, we manually inspect the
code changes for each FIC to understand the semantic meaning of the changes and how such
changes cause the test to be flaky. We also study the syntactic code changes, such as the
location in which the changes were that cause the test to be flaky.

Obtaining Time Between TICs and FICs. Another goal of RQ3 is to understand
whether detectors, which often have a configurable number of times in which they run,
should be scaled to run more or less for specific tests as the number of commits or the

60



number of days between the current commit and the test’s TIC increases. For example, if
a test is added and one uses isolation with 100 runs for this test now, should one continue
to run isolation with 100 runs for this test on later commits? To study this question, we
find the number of commits and days between the commits of the tests whose TIC is not
the same as its FIC. We obtain the number of commits by counting the commits on the
ancestry path of the two commits and obtain the time difference by taking the difference of
the timestamps in the commits’ metadata.

4.3 STUDY RESULTS

4.3.1 RQ1: How Effective Are Flaky-Test Detectors if Run Only When Tests Are
Introduced?

Table 4.2 shows an overview of the number and category of flaky tests that our experi-
mental procedure (described in Section 4.2.1 and Section 4.2.2) detected in each project’s
iDFlakies-commit, as well as in each test’s respective TIC. Overall, our procedure detected
684 potentially flaky tests in 55 projects. These high numbers of tests and projects show
that the problem of flaky tests is widespread, even among well-tested projects developed by
open-source communities and companies, e.g., Apache, Google, Spotify, or VMWare. The
high number and diversity of projects also increase the generalizability of our results, as we
hope that these projects are a representative sample of all projects, particularly ones whose
primary language is Java. The number of flaky tests per project ranges from 1 (for several
projects) to 104 (for apache/incubator-dubbo). Of 684 tests, our procedure for categorizing
flaky tests (described in Section 4.2.2) confirmed 432 as flaky.

For each of the 432 flaky tests that our procedure detected and confirmed on the iDFlakies-
commit, we found the first commit that introduced that test (TIC) as described in Sec-
tion 4.2.1, and we then attempted to compile that revision of the module under test and to
run that test. We did not attempt to run UD tests on their TIC: if we could not reproduce
their flakiness even on the iDFlakies-commit, it is unclear what conclusions we would be
able to reach by attempting to reproduce the flakiness on a prior commit. We succeeded in
compiling the TIC and running the test for 245 flaky tests. Unfortunately, many other tests
could not compile for a variety of reasons; in many cases, the Maven build system reported
failures downloading dependencies that were no longer available (e.g., old SNAPSHOT versions
that were not intended for long-term use, or dependencies hosted on websites that are no
longer active), and in some cases, the problem was that the version of the Java programming
language required on the TIC is different than that required on the iDFlakies-commit. While

61



Table 4.2: Flaky tests detected in each project of our study. After detecting and categorizing
flaky tests in the iDFlakies-commit, we find the first commit that introduced each of those
tests (TIC), try to compile and run each test, and then determine if each test is flaky or not.
Due to difficulties in compiling old versions of projects, we are able to run only 245 of the
total 432 (=684-252) confirmed flaky tests on their TIC.

Flaky Tests (on iDFlakies-commit) Flaky Tests Detected/Run (TIC)

Project Total OD Vic OD Brit ND ID UD Total OD Vic OD Brit ND ID

activiti/activiti 23 12 8 1 2 20/21 12/12 8/8 0/1
alibaba/fastjson 34 1 33 28/33 0/1 28/32
apache/hadoop 27 3 1 9 14 3/3 1/1 2/2
apache/hbase 5 1 2 2 0/1 0/1
apache/incubator-dubbo 104 24 1 1 1 77 6/10 5/9 1/1
apache/struts 10 4 4 2 1/1 1/1
apereo/java-cas-client 1 1 1/1 1/1
c2mon/c2mon 5 2 1 2
codingchili/excelastic 1 1
ctco/cukes 1 1 1/1 1/1
davidmoten/rxjava2-extras 2 1 1 1/1 1/1
doanduyhai/achilles 29 1 1 1 1 25 2/2 1/1 1/1
dropwizard/dropwizard 14 1 12 1 6/13 0/1 6/12
eclipse-ee4j/tyrus 8 2 2 4 4/4 2/2 2/2
elasticjob/elastic-job-lite 9 5 2 2 6/9 4/5 2/2 0/2
espertechinc/esper 35 4 23 8 0/1 0/1
feroult/yawp 1 1 0/1 0/1
fhoeben/hsac-fitnesse-fixtures 11 1 10 11/11 1/1 10/10
flaxsearch/luwak 2 2
fluent/fluent-logger-java 6 2 1 3 2/3 2/2 0/1
fromage/redpipe 1 1 1/1 1/1
google/jimfs 1 1
hexagonframework/spring-data-ebean 1 1 1/1 1/1
javadelight/delight-nashorn-sandbox 2 2 2/2 2/2
jfree/jfreechart 1 1
jhipster/jhipster-registry 2 1 1 2/2 1/1 1/1
kagkarlsson/db-scheduler 10 1 9 1/1 1/1
kevinsawicki/http-request 28 28 0/1 0/1
ktuukkan/marine-api 12 12 12/12 12/12
logzio/sawmill 1 1
looly/hutool 1 1 1/1 1/1
nationalsecurityagency/timely 8 4 4 3/3 3/3
openpojo/openpojo 24 5 2 17 4/5 4/5
orbit/orbit 5 5 3/5 3/5
oryxproject/oryx 1 1 1/1 1/1
pholser/junit-quickcheck 13 13 12/12 12/12
pippo-java/pippo 2 2
querydsl/querydsl 7 5 2 2/3 2/2 0/1
ripe-ncc/whois 4 4 4/4 4/4
sonatype-...-community/nexus-...-helm 2 1 1 2/2 1/1 1/1
spinn3r/noxy 4 2 2 0/1 0/1
spotify/helios 2 2 0/2 0/2
spring-projects/spring-boot 15 3 1 1 7 3 1/1 1/1
spring-projects/spring-data-envers 2 2
spring-projects/spring-ws 7 2 5
tbsalling/aismessages 2 2 2/2 2/2
tools4j/unix4j 1 1 0/1 0/1
tootallnate/java-websocket 7 6 1 6/6 6/6
undertow-io/undertow 11 4 1 6 3/3 3/3
vmware/admiral 58 12 9 37 5/6 2/2 3/4
wikidata/wikidata-toolkit 5 2 3 2/5 2/2 0/3
wildfly/wildfly 80 43 7 1 25 4 16/39 3/25 5/6 8/8
wro4j/wro4j 12 3 2 7 4/4 2/2 2/2
wso2/carbon-apimgt 4 4 1/1 1/1
zalando/riptide 20 2 18 1/2 1/2

Total 684 155 23 64 190 252 184/245 48/80 15/19 29/33 92/113

62



we could extend our experiment to search for the first compilable commit (after the test’s
TIC) and then run the test on that commit, it would not precisely capture some of the key
questions that we consider, e.g., should one run flaky-tests detectors on new vs. modified vs.
unchanged tests.

Table 4.2 (right-hand side) summarizes the analysis results for the 245 flaky tests that
were runnable on their respective TIC. Of the 245 flaky tests, 184 tests (75%) are detected
as flaky tests on their TIC, but 61 tests (25%) are not detected as flaky tests on their TIC.
The large fraction of flaky tests detected as flaky in their TIC indicates that it is beneficial
to run flaky-test detectors for tests just added in a test suite. In fact, doing so could detect
75% of the flaky tests in our study exactly when it is the best for the tests to be fixed (in
their TIC). Nevertheless, there is still a relatively large fraction (25%) of flaky tests that are
not detected as flaky on their TIC, which raises the importance of further studying these
cases in depth.

We first consider how the fraction of tests being flaky or not on their TIC varies across
the projects. The fraction ranges from 0% (no test detected as flaky on their TIC) to 100%
(all tests detected as flaky on their TIC) across the projects. For the tests that we could
compile on their TICs, we find that 25 (54%) of the projects detect all of the tests as flaky on
their TICs. The largest number is for ktuukkan/marine-api and pholser/junit-quickcheck
where all 12 tests that are flaky in the iDFlakies-commit of these two projects are also flaky
in their respective TIC. (Note that the TIC for different tests can differ, and in fact, it does
differ among these 12 tests for both projects.) The smallest number is for several projects
with only one flaky test in the iDFlakies-commit, where that one test is also detected in its
TIC. Overall, there are 21 projects that have at least one test not detected in its TIC. 14 of
those projects have a mix of tests detected and not detected in their TIC. An outlier that
stands out is the project wildfly/wildfly, where 23 out of 39 tests are not detected on their
TIC. As we describe in Section 4.4.1, this outlier is largely because there are 22 OD Vics in
this project that are all not flaky when added, but all become flaky later due to one change.
The remaining 7 projects with at least one test not detected actually have none of their tests
detected in their TIC. Overall, our results show that many projects have tests that become
flaky some time after the test is introduced (TIC), so it is worthwhile to understand when
and how flakiness is introduced (FIC) as we do in Section 4.3.3 and Section 4.4.

4.3.2 RQ2: How Do Flaky-Test Categories Affect the Effectiveness of Running Flaky-Test
Detectors Only When Tests Are Introduced?

As the different state-of-the-art flaky-test detectors used in our study target different

63



categories of flaky tests, a natural question to ask is whether all detectors can be equally
successful in detecting flaky tests in their TIC. If some categories of flaky tests tend to not
be flaky in their TIC, but become flaky only later, then running the detector only on the
TIC may provide a false sense of safety, and distributing the efforts for flaky-test detection
across multiple commits may be more effective.

To better understand this problem, our experimental procedure (as illustrated in Fig-
ure 4.3 and described in Section 4.2.2) categorizes the flaky tests we study into four different
categories. In total, we were able to categorize 432 tests, the majority of 684 potentially flaky
tests, as definitely flaky tests, with a reproducible category. The remaining 252 flaky tests
are categorized as unknown-dependent (UD): our experiments with iDFlakies or NonDex
reported the tests as both passing and failing in various runs of the test suite, but it was
not possible to ever reproduce that flakiness outside of the full test suite, in our Isolation,
NonDex, or OBO approaches. More details about these 252 UD tests are in Section 4.2.2.

Considering the category of flaky tests, we find a great diversity across the projects and cat-
egories. In particular, of the 432 flaky tests that our procedure categorized in the iDFlakies-
commit, 155 tests were categorized as order-dependent victim (OD Vic), 23 tests were cate-
gorized as order-dependent brittle (OD Brit), 64 tests were categorized as non-deterministic
(NOD), and 190 were categorized as implementation-dependent (ID). Recall that order-
dependent flaky tests are deterministic in their outcome when run in isolation from the test
suite (and thus likely deterministic modulo the tests that have run prior to that test in
the test suite), and implementation-dependent flaky tests are deterministic in their outcome
when run in isolation for a specific seed. A detailed breakdown of each project’s number of
categorized tests is in Table 4.2.

The results of our categorization show that across all projects, OD Vics are less likely to
be flaky in the TIC (60%) than the overall average of 75%, while the other three categories
tend to be flaky more than average (79% of OD Brits, 88% of NODs, and 81% of IDs). Our
finding that OD Vics tend to be less likely to be flaky when they are added is likely because
OD Vics, unlike the other three categories, rely on another test to fail. Therefore, when
OD Vics are added without the other test to make them fail, they cannot be detected when
added. In contrast, our results suggest that OD Brits, NODs, and IDs, which are all tests
that, when each is run by itself, can result in a flaky-test failure, do have a high likelihood
to be detected in their TICs.

4.3.3 RQ3: When Should One Run Flaky-Test Detectors?

To better understand when a test becomes flaky, we analyze in detail (mostly manually

64



Table 4.3: Flaky tests not detected as flaky on their Test-introducing commit (TIC) and the
information about their Flakiness-introducing commit (FIC).

FIC Files Changed Commits from TIC-FIC Changing Days
TIC-
FICProject Test Category TC TS CUT B TC TS CUT B Any

activiti/activiti testErrorC... ID X X X 6 1, 784 2, 600 642 3, 294 1, 177
test_1 ID X X X 5 498 607 140 770 1, 217
test_date... ND X X 1 1 1 1 2
test_for... ID X X 1 16 13 3 20 7
test_list... ID X X X 1 3 4 4 1

alibaba/fastjson

test_rese... ID X X X X 1 1 1
apache/hbase testConcur... ID X X 2 412 525 74 726 122

testBindin... OD-Vic X X 1 20 29 7 38 22
testClearR... OD-Vic X X 20 29 7 38 22
testGetInv... OD-Vic X X 7 4 3 16 9

apache/incubator-dubbo

testGetInv... OD-Vic X X 7 4 3 16 9
customJson... ID X X X X 3 206 221 226 554 582
customJson... ID X X X X 3 206 221 226 554 582
customJson... ID X X X X 3 206 221 226 554 582
printsDidY... ID X X X 23 234 257 179 552 379
testLogbac... OD-Vic X 8 664 754 539 1, 615 1, 143
testPretty... ID X X X X 1 73 75 99 197 171

dropwizard/dropwizard

testPretty... ID X X X X 1 73 75 99 197 171
assertExec... ID X X X 6 130 166 32 225 82
assertPers... OD-Vic X X X 3 52 61 29 116 148elasticjob/elastic-job-lite
assertUpda... ID X X 4 78 118 47 145 72

espertechinc/esper testRegres... ID X 15 128 227 32 254 650
feroult/yawp testFlowDr... ND X 1 2 4 4 0
fluent/fluent-logger-java testReconn... ID X X 10 25 33 10 57 740
kevinsawicki/http-request basicProxy... OD-Vic X X X 3 8 16 10 38 28
openpojo/openpojo shouldSkip... OD-Vic X 10 11 5 21 20

testConstr... ID X X 3 23 76 71 143 408orbit/orbit testDefaul... ID X X 3 23 76 71 143 408
querydsl/querydsl execute2 ID X 3 127 142 61 206 188
spinn3r/noxy testBulkCl... ID X X X 0

testUndepl... ND X X 20 76 116 17 154 160spotify/helios verifySupe... ND X X X 42 652 1, 375 415 1, 924 830
tools4j/unix4j find_file... OD-Vic X X X 0
vmware/admiral testGetKub... ID X X X 1 29 50 8 99 36

testMwDail... OD-Brit X X X 30 243 447 93 522 475
testMwMost... OD-Brit X X X 30 243 447 93 522 475wikidata/wikidata-toolkit
testMwRece... OD-Brit X X X 30 243 447 93 522 475
testBindAn... OD-Vic X X 30 9, 929 17, 810 7, 301 23, 448 2, 648
testBindAn... OD-Vic X X 30 9, 929 17, 810 7, 301 23, 448 2, 648
testBindRe... OD-Vic X X 82 7, 342 11, 223 5, 732 15, 000 2, 048
testCompos... OD-Vic X X 51 1, 228 1, 526 1, 056 2, 273 333
testCompos... OD-Vic X X 51 1, 228 1, 526 1, 056 2, 273 333
testCreate... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testFireMu... OD-Vic X X 6 10, 058 18, 225 7, 413 23, 933 2, 717
testFireOb... OD-Vic X X 6 10, 058 18, 225 7, 413 23, 933 2, 717
testInitia... OD-Vic X X 10 10, 061 18, 228 7, 413 23, 936 2, 717
testJavaCo... OD-Vic X X 10 10, 061 18, 228 7, 413 23, 936 2, 717
testListBi... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testListBi... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testListBi... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testListNa... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testListWi... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testList OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testLookup... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testLookup... OD-Vic X X 95 10, 061 18, 228 7, 413 23, 936 2, 717
testOnlyEx... OD-Vic X X 75 5, 575 8, 017 4, 912 10, 816 1, 554
testPermis... OD-Brit X X 70 6, 332 9, 398 5, 344 12, 651 1, 764
testRebind... OD-Vic X X 82 7, 342 11, 223 5, 732 15, 000 2, 048
testReject... OD-Vic X X 23 596 651 512 1, 056 220

wildfly/wildfly

testReject... OD-Vic X X 23 596 651 512 1, 056 220
zalando/riptide shouldReco... OD-Vic X X X 2 7 8 7 12 1

65



with some automated tool support) all 61 tests that are not flaky on their TIC. In Section 4.4,
we describe in detail how some of these tests become flaky in their FIC. Analyzing each test
takes a few hours to first find the appropriate commit that introduces flakiness (FIC), and
then to comprehend which exact part of that commit causes flakiness.

TIC-FIC Characteristic Differences for All Flaky-Test Categories. Table 4.3 shows
the results of the analysis of what files the FIC changed (and where the change was that in-
troduced the flakiness). In particular, we distinguish the following types of commits: (1) the
commit changed the code of the test itself (note that this need not be just the test method
body but can also include modifying the @Before or @After parts in the test class or its
superclasses), (2) the commit did not change the test itself but did change other tests in the
test suite (which is relevant for studying OD Vic cases), (3) the commit did not change any
test code but did change the code under test, and (4) the commit did not change any source
code of the project under test but did change the build configuration, for instance, changing
dependencies in a pom.xml. Distinguishing these types of commits is important to determine
what strategy one could use to run flaky-test detectors on various commits. Running such
detectors is generally costly (i.e., they require multiple runs of the entire test suite or at least
some tests, using various random seeds or other causes of “noise” [22]), so projects typically
do not run these detectors on all tests for each and every commit. For example, Mozilla
runs its “test verification” [201] only on tests newly added or modified in a commit.

As described in Section 4.3.1, we find that 75% of flaky tests in our study are detected
as flaky on their TIC. From column “TC” (Test Class) in Table 4.3, we further find that 24
of 61 (39%) tests not flaky on their TIC become flaky in a commit that changes the code
of the class containing the flaky test. Combining these 24 tests and the 184 tests that are
flaky when they are added, we find that 208 of 245 (85%) tests can be detected by running
flaky-test detectors on newly added or existing, but directly modified tests. However, it still
leaves 15% of flaky tests that become flaky due to changes not being directly in the test
class itself but rather elsewhere in the test suite, code under test, or library dependencies.
As a result, if the goal is to automatically identify flakiness soon after it is introduced (or
ideally right when it is introduced), it is necessary to do more than simply running flaky-test
detectors on newly added or directly modified tests.

A straight-forward approach would be to run detectors on all tests and limit detector runs
to the proximity of the TIC, or perhaps to run detectors less as the distance to the TIC
increases. To assess the impact if one were to do so, we investigate when these tests become
flaky following the methodology outlined in Section 4.2.1. Once we know the FIC for a test,
we analyze the commit distance between its TIC and FIC, i.e., the number of commits and

66



days (Section 4.2.3) between the introduction of a test and when it becomes flaky.
When we analyze the commit distance across all 61 flaky tests that we detected in commits

after the TIC, we find a high average distance of 7089 commits between TICs and FICs with
the median distance being lower at 554 commits. Running flaky-test detectors for such a
large number of consecutive commits is likely prohibitively expensive for most organizations.
Therefore, we conclude that (1) flaky tests are often flaky when they are added and (2) flaky
tests that are not flaky when added typically do not become flaky for many commits after
their TIC.

As developers at some organizations, such as Mozilla [201] and Netflix [149], run detectors
on newly added or modified tests, we next explore how long it takes a flaky test class to
be changed if the flaky test class was not changed in the FIC. Specifically, 39% (24 out of
61) of the FICs included changes to the test class containing the flaky test; the other 61%
(37 out of 61) did not. Hence, only running flaky-test detectors on tests that are changed
could not have detected the FICs for 37 tests immediately. To understand the delay to
detect these 37 tests if detectors were run only on test classes that are changed, we search
for such changes in between the FIC and iDFlakies-commit. We find that changes to the
test class containing the flaky tests happened for only 8 of the 37 tests. For these 8 tests,
the commits are a median of 62 commits and 22 days after the FIC. The remaining 29
tests do not have any changes to the test class containing the flaky test after the FIC, so
these tests could not be detected if detectors were run on only modified test classes even
for all commits. If detectors are run on all tests for all commits that change test code, the
remaining 29 flaky tests would be detected in the median of only 3 commits or 3.6 days
after the FIC. However, because most commits have changes to some test code, as shown
in Table 4.3, running flaky-test detectors on all tests whenever tests are changed would still
be prohibitively expensive. Hence, we suggest that detectors should be run when tests are
added and later detectors may be suspended for a large range of commits to achieve a good
detection-to-cost ratio. The range of commits depends on developers’ budget for running
detectors. Excluding wildfly/wildfly tests (being 38% of tests), we find medians of 144
commits and 154 days between TIC and FIC. Thus, one may consider running detectors
periodically, say, every 150 commits.

TIC-FIC Characteristic Differences for Different Flaky-Test Categories. We next
explore how the characteristic differences of TICs and FICs may vary depending on the
category of the flaky test. Either on the test’s TIC or after a change to its test class, our
results show that 65% of OD Vics (48 from TIC + 4 from modifying test class / 80 runnable
on TIC), 95% of OD Brits (15 from TIC + 3 from modifying test class / 19 runnable on

67



0%

25%

50%

75%

100%

0 5000 10000 15000 20000 25000
Commit Distance Between TIC and FIC

C
um

ul
at

iv
e 

Fr
ac

ti
on

 o
f 

D
et

ec
ta

bl
e 

Fl
ak

y 
Te

st
s

Flaky Test Category

ID

ND

OD Brittle

OD Victim

(a) Including wildfly/wildfly.

0%

25%

50%

75%

100%

0 1000 2000 3000
Commit Distance Between TIC and FIC

C
um

ul
at

iv
e 

Fr
ac

ti
on

 o
f 

D
et

ec
ta

bl
e 

Fl
ak

y 
Te

st
s

Flaky Test Category

ID

ND

OD Brittle

OD Victim

(b) Excluding wildfly/wildfly.
Figure 4.4: Flaky-test detectability over commit distance between TIC and FIC.

TIC), 97% of NODs (29 from TIC + 3 from modifying test class / 33 runnable on TIC),
and 94% of IDs (92 from TIC + 14 from modifying test class / 113 runnable on TIC) can be
detected. It is promising that the majority of OD Brit, NOD, and ID tests become flaky right
after their test code has been added or changed, which shows that how Mozilla [201] and
Netflix [149] handle new or modified tests is a good strategy for detecting these categories
of flaky tests. However, the comparatively low ratio for OD Vic tests (65%) indicates that
this strategy may miss a nontrivial fraction of other flaky tests. (If wildfly/wildfly with its
many undetected tests on TIC is ignored, being an outlier, the percentage of tests detected
becomes 90%, which does better justify the strategy of running flaky-test detectors when
tests are added or modified.)

Figure 4.4 shows the cumulative distribution functions of flaky-test detectability over
commit distance (for any type of change) for the four different flaky-test categories targeted
by the detectors in our study. While Figure 4.4a includes all data, Figure 4.4b excludes
data from the wildfly/wildfly project as it is an outlier due to the extreme commit and
time spans between TIC and FIC, and the large fraction of flaky tests associated with one
identical TIC-FIC pair. From Figure 4.4a we can see that flaky tests of ID type have a much
lower commit distance (median 201.5 commits corresponding to a median time difference of
188 days) between TIC and FIC than flaky tests of type OD Vic (median 15000 commits,
5.6 years). According to this finding based on our unfiltered data, running detectors for ID
flaky tests (e.g., NonDex) would be most effective when concentrated on commits that are
relatively close to the TIC, whereas OD Vic detectors (e.g., iDFlakies) are better applied
more sparsely. However, if the ID, OD Brit, and OD Vic tests of wildfly/wildfly are

68



ignored, the conclusion changes: while the median numbers for ID tests change only slightly,
the median commit distance for OD Vic tests changes to only 38 commits and the median
time span to 21 days. For OD Brit tests, we cannot derive a clear tendency, either; Figure 4.4a
suggests that the commit distance lies between that for ID and OD Vic tests, but the
observation is based on only four data points. 75% of the NOD tests have an even lower
commit distance than ID tests. However, the observation is again based on just four data
points, and no robust detectors for NOD tests exist, so this result may not generalize and
would be difficult to reproduce in repetitions of our study. For these reasons, we do not draw
conclusions on OD Brit and NOD tests’ commit distances. Nonetheless, our results indicate
that efforts for flaky-test detection may be most effective shortly after a test’s introduction
(e.g., about 20 days for OD Vic test and 180 days for ID tests).

4.4 CASE STUDIES OF TESTS NOT FLAKY AT TEST-INTRODUCING COMMIT

We inspected all tests that are not flaky at their TIC and confirmed the FIC for each test.
We next present more details for a number of these tests. We select a diverse set of cases
from various categories of flaky tests and from various projects. These cases show that the
causes of flakiness, both where the flakiness is and what kind of change introduces it, are
rather diverse, so one cannot easily build a general technique to detect all of these causes.
For each case, we highlight (in bold) the specific reason for why we selected that case.

4.4.1 Order-Dependent Victim

Victim added before a polluter. Consider the test HttpRequestTest.basicProxyAuthen-
tication from the project kevinsawicki/http-request. The test is a victim that is added
in the commit bf07c2f, but this test does not become flaky until cb9e021. In the FIC,
the changes include adding the polluter, adding another test, and some changes to the
code under test. The polluter test (HttpRequestTest.customConnectionFactory) would call
setConnectionFactory with a customized ConnectionFactory, which consequently causes the
victim to fail because the ConnectionFactory set by the polluter is not the ConnectionFactory
that the victim expects.
Ignored test. Consider the test FindFileTimeDependentTest.find_fileCreatedBeforeNow
from the project tools4j/unix4j. In the commit 1c9524d, the test is added, in the sense
that the test method is added to the test class. However, the test is added with an @Ignore
annotation that instructs JUnit not to run the test. This test was committed into the project
repository before it was finished, and to indicate that it was not ready to use, the developer

69



marked it with an @Ignore annotation. Two commits later, in the commit dfc4c77, the test
was completed, and the @Ignore annotation was removed, so then the test becomes flaky.
Hence, this test may even be considered flaky when it was first “added” based on how one
defines added. Strictly speaking, the test was not flaky in its TIC, based on how we defined
the TIC (to be able to objectively find it by mining Git repositories without running all of
the tests in all of the commits that we consider).
A non-flaky test becomes a brittle and a polluter. Consider the 22 tests from the
project wildfly/wildfly that are OD Vics in iDFlakies-commit but not flaky on their TIC.
All 22 of these tests become victims for the same reason, namely, they all fail when another
test fails. Specifically, the test WritableServiceBasedNamingStoreTestCase.testPermissions
becomes OD Brit in the commit c22e231 due to a change in a dependency. More details
about this OD Brit test are in Section 4.4.2. When this test is run without its state-setter,
not only does it fail itself but it also pollutes the state such that 22 OD Vic tests that run
after it also fails! That is, if testPermissions fails as an OD Brit, then it does not run
some clean up code for the WildFlySecurityManager class, resulting in that class entering a
corrupt state that causes the OD Vics to fail.

4.4.2 Order-Dependent Brittle

Flakiness introduced due to a dependency change. Consider the test WritableService-
BasedNamingStoreTestCase.testPermissions from the project wildfly/wildfly. This test
is added in the commit f7a03d7 but becomes OD Brit in the commit c22e231. The FIC
changes are relatively small and only modify (1) one dependency (in pom.xml) and (2) one
file (CredentialSourceDependency.java). The file itself is in the code under test, not in the
test code, and even in a module (clustering) different from the test class’ module (naming);
however, the test could still be flaky due to the file change. Interestingly enough, our in-
spection shows that the flakiness is due to the dependency change and not due to the file
change. This example illustrates that even if a detector ran all tests when the source code of
a project changes, it would still miss some flakiness introduced due to dependency changes.
Precisely identifying flakiness cause and what part of code it belongs to. Con-
sider the test MwDumpFileProcessingTest.testMwDailyDumpFileProcessing from the project
wikidata/wikidata-toolkit. This case illustrates some interesting points in understanding
what changes introduce flakiness and what flaky-test detection strategy could detect that
flakiness. This test is added in the commit 1c192a3 and is not flaky then. The test becomes
OD Brit in the commit f7cb408. (As a side note, this commit was found automatically by
git bisect: confirming OD Brit tests is the easiest of all categories, because it requires just

70



running one test in isolation by itself with no other tool but Maven.) The test does not fail
when run in the test suite, because the test suite contains a “state-setter” [186] that happens
to run before the brittle, but the test does fail when run by itself.

The changes in the FIC are relatively large, modifying 15 files across 4 modules, and also
deleting 1 file and adding 1 file, but the majority of the changes in the commit are merely
for renaming or refactoring existing files. Our careful inspection shows that the relevant
parts of the commit are (1) changes in the test class and test method itself because of some
API change in a class that the test method calls, and (2) changes in another class that
actually introduces the flakiness for this test. Specifically, the commit happens to modify
the file MwDumpFileProcessingTest.java that contains the test class with the test method
of interest. In fact, the body of the test method itself is modified but mostly for refactoring
some method calls. If one used a detector that runs all modified tests in isolation, one would
detect this test immediately in the FIC. However, the change of the test code in this FIC is
not what introduces the flakiness. In fact, the commit could have been split into two: one
that performs the refactorings and the other that makes the behavior change, which happens
to be a real flakiness-introducing change. In such a scenario, the first hypothetical commit
would change the test but not make it flaky, and the second hypothetical commit would
be the one that actually introduces flakiness; hence, using a detector that runs all modified
tests in isolation would not run this test in the second commit and would not detect this
test in its (hypothetical, second) FIC.

The relevant change that introduces flakiness is in the file MockDirectoryManager.java,
which is not even in the same module as the brittle’s test class. The change makes some
(mocked) directory read-only by default, hence the test of interest fails when it attempts to
write to the directory. An interesting aspect is how one should even label where this change
is for our Table 4.3. The change is in src/main and not src/test, so it could be considered
to be in the code under test, but the change is in a class that is used only for testing:
the module is wdtk-testing, which provides utility classes for testing other modules in the
project, and the class name suggests that it is for mock testing. If we had a hypothetical
scenario as described in the previous paragraph, this could create issues for labeling the
second commit that would only change this file. As the actual FIC has many changes due
to the renaming and refactoring, we label the changes of the FIC as it is, namely, that it
changes the test class, test suite, and code under test of this flaky test.

4.4.3 Non-Deterministic

Flakiness introduced due to a change in the test code and ability to precisely

71



measure flakiness rate. Consider the test DateParseTest9.test_dates_different_time-
Zones from the project alibaba/fastjson. This test is added in 8061e09. The test becomes
flaky in the commit d296511. The test code is changed, so a flaky-test detection strategy
that runs modified tests could detect this flaky test. Interestingly, this test is an NOD flaky
test because it depends on the timezone in which the test is run. In the commit ec17139
(about three hours after becoming flaky), a change is made claiming to “fix” the test by
making it no longer depend on the timezone. However, the fix does not fully remove the
flakiness because it changes the test to not depend on the timezone in which the test is run
but instead to depend on a random seed (which itself depends on time) to set a timezone.
In fact, this test is an unusual case where we can precisely measure the probability in which
the test fails. This test’s outcome depends on the length of an array from which the random
number picks one index, and the test fails for some indexes but passes for others. On Java
version 1.8.0_25-b17, the array has size 613, and 67 indexes fail, so if indexes are chosen
uniformly, the probability of failure is 10.9%.
Flakiness due to Concurrency and Async Wait. Two other ND tests which do not fail
on their TIC are FlowDropsTest.testFlowDropsToSameSink from the project feroult/yawp
and SupervisorTest.verifySupervisorStartsAndStopsDockerContainer from the project
spotify/helios. In commits where these tests fail, they fail in only 1-2% of runs. We check
the FICs of these tests by confirming with 500 runs that the tests do fail on the FICs, while
the tests do not fail in the parent commits of the FICs. If a test fails in about 1% of runs,
and all runs are independent, then the probability that it fails at least once in 500 runs goes
up to 99.3% (1− 0.99500).

For the testFlowDropsToSameSink test, the flakiness is due to Concurrency (as defined by
Luo et al. [126]), namely, the randomness of thread scheduling in a library dependency. The
test at some point asserts that all objects are removed from a list. In the FIC (abae178), only
code under test (CUT) is changed, and based on the FIC’s change and commit message, some
asynchronous code is introduced to improve performance. The introduced asynchronous code
may improve performance, but it also causes the testFlowDropsToSameSink test to be flaky
because the removal of objects from the list may no longer happen before the assertion
(depending on the scheduling of threads).

For the verifySupervisorStartsAndStopsDockerContainer test, the flakiness is due to
Async Wait (as defined by Luo et al. [126]). The code change in the FIC (0232600) shows
that flakiness is introduced in both CUT and the test itself. In the parent of the FIC, the test
starts a Docker container, does some computation in the container, and stops the container
before checking whether the container is stopped. In the FIC, the stopping of the container
is changed to be asynchronous with a timeout. In most runs of this test, the stopping of the

72



container asynchronously can complete before the check, but the check can fail depending
on the load of the machine running the test.

4.4.4 Implementation-Dependent

Resolving compilation problems to identify precise FIC. Consider the test Kube-
ConfigContentServiceTest.testGetKubeConfigWithBearerToken from vmware/admiral. We
use this example not only to discuss how flakiness was introduced but also to illustrate some
challenges in compiling older versions of projects and searching for the FIC. This test is
added in the commit 0d6718d and is not flaky right then. Using git bisect, with some
manual inspection, we confirmed that the test is still not flaky at 2a96edc but is definitely
flaky at 6ccaa16. There are 39 commits in the range 2a96edc..6ccaa16, but the project does
not compile for any of them. For this case, we invested extra effort to identify a precise
commit in that range that introduced the flakiness.

One reason that the project does not compile is that one of the required modules (admiral-
photon) fails with an unmet dependency, com.vmware.xenon:xenon-common:jar:1.5.4_9-
SNAPSHOT. While we cannot find the compiled .jar file or source code for such missing
dependencies, fortunately, we could find the entire source history for the Xenon project in
vmware-archive/xenon on GitHub. We studied the dates in Xenon commits between ver-
sions 1.5.4_9-SNAPSHOT and 1.5.4_9, and the relationship of these dates with the dates of
vmware/admiral in the range 2a96edc..6ccaa16. The test class of interest was itself changed
in two commits in that range, so we focused on those two commits. Fortunately, we found
that both of those commits can use 1.5.4_9 instead of 1.5.4_9-SNAPSHOT, thereby allowing
us to restore the same code that the developers of vmware/admiral had when they built the
code. We were then able to compile the code, run the test, and confirm that the flakiness
starts from the commit 75b53f3, with its parent, 934e0a7, not failing with NonDex. This
example is relatively simple as a change in the test class introduced flakiness, and the cat-
egory of flakiness is the same in FIC as in the iDFlakies-commit. However, in terms of the
“archaeological” work needed to find the FIC, this example illustrates some of the challenges.
Adding an assertion makes flakiness manifest. Consider the test ZKTest.testBulk-
ClusterJoining from the project spinn3r/noxy. The test is added in 7029534. While it does
not fail by itself or with NonDex, interestingly enough, it does produce different values that
it prints on the standard output. The very next commit, b26d669, adds an assertion for
the value printed on the standard output, and the test then fails with NonDex (but does
not fail without NonDex). One could argue here that flakiness existed even in the TIC but
simply did not show up in test failures. Zhang et al. [237] call this phenomenon manifest

73



flakiness and argue that one should report only such cases where a test fails. In contrast,
Huo and Clause [84] and Gyori et al. [73] argue that one could report even tests that may
become flaky in the future. Indeed, if a goal is to detect (undesirable) flakiness as soon as
it is introduced, one would want to have techniques that report potential flakiness, at the
expense of some false alarms. For example, this specific example test could have been found
at TIC by reporting that the test prints different values with NonDex.
Flakiness introduced due to a change in the code under test. Consider the test
ConstructionTest.testConstruction from the project orbit/orbit. This test is added in
ebcc9ef. The test becomes ID in the commit 553f955. The change is in the code un-
der test (not in the test code), specifically in the file Stage.java. The change replaces
an invocation of a constructor, new JGroupsClusterPeer(), with an invocation through re-
flection, JGroupsClusterPeer.class.getConstructors()[0].newInstance(). More precisely,
the class object is created from a string to avoid direct compilation dependency on the class
JGroupsClusterPeer. The class JGroupsClusterPeer has two constructors, and the speci-
fication of getConstructors() does not specify in what order they should be returned, so
indexing at offset [0] can return the other constructor (with one argument), not the no-
argument constructor. At a glance, one may expect that newInstance() could not be invoked
on the other constructor, so it would raise an exception right then. However, the constructor
actually gets invoked with the null value for the argument (which is stored in a field and
then leads to an exception much later when the field is referenced). This example illustrates
how a change in the code under test can introduce flakiness and also how some of these cases
can be challenging to analyze and debug.

4.5 DISCUSSION

Our study has a variety of implications for researchers and developers alike. By detect-
ing and then categorizing flaky tests as order-dependent brittle, order-dependent victim,
implementation-dependent, non-deterministic, and unknown-dependent (Section 4.3.2), we
provide guidance to researchers creating new flaky-test detectors. In particular, we found
that 252 of the 684 flaky tests that we detected were unknown-dependent, and could not be
easily categorized outside of the test suite. This result shows the need for the community to
develop new flaky-test detectors that do not focus on order or implementation dependence.

Our study provides empirical evidence to support the adoption of techniques used in
proprietary software development for finding flaky tests—specifically, because 85% of flaky
tests are flaky when added or directly modified, developers can extensively run flaky-test
detectors on added or modified tests. However, we found that this result varies across

74



projects: in some projects, all flaky tests were flaky on their TIC, and in others, none were.
Hence, researchers studying the applicability of flaky-test tools should consider a diverse set
of projects. We carefully investigated all cases where tests were not flaky on their TIC, and
found a range of explanations for why these tests become flaky later on. Because no common,
simple explanation for why tests become flaky later exists, we suggest that developers run
flaky-test detectors not only when tests are added or modified, but also with a minimum
regular frequency (e.g., monthly). We make our entire dataset publicly available (including
the category of each flaky test, its TIC, and its FIC), so future research can use this data
for evaluations and to better detect and categorize these tests [1].

4.5.1 Threats to Validity

We next discuss threats to validity of our study following the classification by Wohlin et
al. [221].

Conclusion Validity. While the main conclusions of our study do not rely on inferential
statistics, we do apply such methods for some of our work. For the correlation analysis of
flaky test numbers and project characteristics, we chose Kendall’s τ , as it is non-parametric
and more robust than Spearman’s ρ [27]. We conduct an equality of proportions test to deter-
mine whether the number of flaky tests increases proportionally with various project charac-
teristics. To determine whether the number of flaky tests grows under- or over-proportionally
with characteristics, we investigate scatter plots (Figure 4.1) and find that the results from
investigating the plots confirm the validity of the proportionality test’s conclusion.

Internal Validity. Flaky tests are non-deterministic by nature, and hence create a number
of potential threats to the validity of our conclusions. We believe that we have identified
and taken steps to mitigate many of these concerns. For instance, it is possible that some
flaky tests were not detected by iDFlakies or NonDex on the iDFlakies-commit. We ran the
detectors following their recommended configurations, but acknowledge that these detectors
do not guarantee the detection of every flaky test. Furthermore, the flaky tests that we
study come from only two detectors. Unfortunately, there are no other publicly available
flaky-test detectors that are robust enough to run on our set of Java projects, and hence,
we could not extend and compare our results with those other detectors. Nevertheless, our
primary goal is to determine when flaky tests become flaky, so even if we studied only a
fraction of all flaky tests in our projects, we believe that this selection can be representative
so our results may generalize to the other flaky tests in these projects.

75



To determine when each flaky test first becomes flaky, we face the risk that it might be
flaky on an earlier commit than observed in our experiments. This issue can, again, be due
to the inherent non-determinism of flaky tests. We alleviate this concern by categorizing
flaky tests into categories that allow us to more precisely reproduce them. For example, for
every test that we categorize as an OD Vic (i.e., a specific “polluter” test running before
the victim causes the victim to fail) we also find which tests pollute the shared state. With
the polluter, we can deterministically reproduce the failure of the victim when we run it
after the polluter. Note that running OBO for detecting OD Vics can miss tests whose
failures depend on multiple other tests. Such cases have previously been found to be rare
though [186]. The NonDex tool similarly allows for a rather consistent reproduction of ID
flaky-test failures. Moreover, we manually inspected all of the cases where a test was not
found flaky on the TIC, providing even greater confidence in our identification of FICs.

The infrastructure that we built to locate TICs may also contain faults that could have
affected our results. To mitigate this threat, our infrastructure outputs all commits that it
considers to be a potential TIC of a flaky test. The dissertation author and a collaborator
randomly sampled the logs of these tests to confirm the TICs of the sampled tests. The
remaining parts of our experiments largely involve using Maven to run tests in isolation and
a simple, yet effective custom Maven Surefire to run tests in OBO. We do rely on iDFlakies
and NonDex to help us detect flaky tests, and these detectors themselves may also have faults
that could have impacted our results. We attempt to mitigate this threat by analyzing a
sample of the logs produced by Maven, iDFlakies, and NonDex, and automatically confirming
flaky tests detected by the latter two using the procedure in Figure 4.3.

Due to the fact that flaky tests non-deterministically pass or fail, our results may not
be easily reproducible, especially flaky-test failures. We attempt to mitigate this threat by
rerunning every potential flaky test detected by iDFlakies and NonDex, and categorizing
tests as UD when they are not reproducible to prevent such tests from affecting the results
of our research questions. By default, tools such as iDFlakies also reruns a suspected flaky
test in its failing and passing order before outputting its category. Nevertheless, it may still
be possible that the tests found to be OD from iDFlakies or our reruns are actually not OD
tests. Note that the inverse would not be possible because once a test is observed to pass
and fail in one order, it cannot be an OD test.

Construct and External Validity. The results from our study may not generalize to
a larger population of projects, flaky tests, or flaky-test detectors. As described in Sec-
tion 4.1.2, we attempt to mitigate this threat by selecting a large and wide variety of projects
to evaluate. Our projects are obtained from iDFlakies, therefore our results may be biased

76



the same way that our previous results may be biased [108] (e.g., finding OD tests more
frequent than they really are). However, the diversity of our results (e.g., high numbers of
both OD and ID tests) between different projects do suggest that our sample of projects
and tests may be representative of other projects. We acknowledge the limitation of our
presented results to the chosen detectors, but we are not aware of other publicly available
detectors that work for the large corpus of projects that we studied and offer the degree of
automation that is mandated by a large scale study like ours.

4.6 SUMMARY

Our study has first identified a large corpus of flaky tests, then categorized them by the
category of flakiness, and finally traced those tests back in time to determine when they
first become flaky. We have detected 245 flaky tests that we could compile and run on
their Test-introducing commit (TIC). We find that 75% of these tests are flaky when added,
indicating that there can be substantial value for developers to run flaky-test detectors
specifically on newly added tests. We also find that 85% of flaky tests are flaky when added
or directly modified, confirming the benefits of the approach taken by organizations such as
Mozilla [201] and Netflix [149]. However, the remaining 15% of flaky tests become flaky due
to other changes, suggesting the need for future work to better detect such tests.

One option would, on every revision, run detectors on the entire test suite (not just on the
newly added or directly modified tests) using a lot of randomization, e.g., a combination of
iDFlakies to randomize the test order, NonDex to randomize the choices of non-deterministic
libraries, and even more “chaos” mode tools to randomize other choices, e.g., the thread
schedules [22]. The test suite could be run only once, thus taking about the same amount of
time as if not using any randomization, but increasing the chance to detect some flaky tests
soon after they become flaky. While such an approach could indeed detect flaky tests, it
would make debugging of test failures more difficult: any test failure could be either due to
the recent code changes or due to the randomizations. The question of whether a test suite
should be by default run in a random order (similar to iDFlakies) led to a lengthy discussion
for the RSpec testing tool for Ruby [172], with both sides passionately arguing why their
position is the “right” default. In the end, the decision was to not have randomization by
default, decreasing the chance to detect flaky tests. In the future, we expect similar debates
to be reopened, and our study provides motivation for understanding the trade-off for what
to run at which points in development. To further improve on the early detection of flaky
tests, we need more advanced ways to determine when flaky tests become flaky, so we can
use the various detectors efficiently. We may also need to adopt proactive techniques that

77



find potentially flaky tests even if they cannot yet manifest in flaky-test failures. To help
with future research, we make our dataset of flaky tests with labeled TICs and FICs publicly
available [1].

78



CHAPTER 5: [CHARACTERIZATING] ROOT CAUSING FLAKY TESTS
IN A LARGE-SCALE INDUSTRIAL SETTING

This chapter presents RootFinder, a technique developed with Microsoft collaborators
to automatically root cause flaky-test failures. Section 5.1 presents some background on
Microsoft’s build and test system. Section 5.2 presents our end-to-end framework, which
includes RootFinder, to help developers root-cause flaky tests. Section 5.3 presents our
case study from applying the framework at Microsoft, and Section 5.4 presents the threats
to validity of our work. Finally, Section 5.5 presents some open research challenges, and
Section 5.6 concludes this chapter.

5.1 BACKGROUND ON MICROSOFT’S BUILD AND TEST SYSTEM

Microsoft uses a modern build and test service system in the cloud, called CloudBuild [49].
Similar to other systems such as Bazel [14] from Google and Buck [21] from Facebook,
CloudBuild builds code and runs tests incrementally and in a distributed manner. When
CloudBuild receives a build request with code changes, CloudBuild identifies all modules
that are impacted by the changes. CloudBuild then executes the tests only in those im-
pacted modules, and skips the remaining modules’ tests, because none of their dependencies
changed. Note that, within a module, CloudBuild always executes all tests in the same order
(sorted alphabetically). CloudBuild reruns failing tests once to see if the retry passes or not.
If the retry passes, then the test is identified as flaky and would not prevent changes from
being merged. If the retry fails, then the test is identified as a regression and the changes
cannot be merged. As of 2019, CloudBuild was used by ≈1200 projects inside Microsoft and
executes ≈350 million unit tests per day across all projects.

5.2 END-TO-END FRAMEWORK

We next present our framework for identifying the root causes of flaky test failures. The
framework consists of three main steps. Figure 5.1 shows an overview of our framework. Our
framework takes as input a flaky test and its dependencies (i.e., test binary, its dependent
source binaries, and relevant test data), so that the test can be executed on any machine.
Instrument tests and dependencies. Our framework first produces instrumented ver-
sions of the flaky test and all of its dependencies using an instrumentation framework, called
Torch [91, 125]. The instrumentation helps us log various runtime properties of the test

79



Figure 5.1: Overview of our framework to root cause flaky tests.

execution. Note that except for the overhead from logging runtime properties, the instru-
mented binaries retain the same functionalities as the original binaries, and therefore, tests
can seamlessly run on Torch-instrumented binaries.
Running tests. Using the instrumented version, we next run the flaky test 100 times on
a local machine in an attempt to produce logs for both passing and failing executions. The
logs generated by Torch contain various runtime properties at different execution points.
More details are described in Section 5.2.1. We run the test 100 times as doing so represents
a good trade off between obtaining logs for both passing and failing executions, and the
time spent on test runs. Note that these 100 runs are done offline—at a later time instead
of on CloudBuild machines as developers are making code changes and waiting for test
results. Our runs are offline because running the test 100 times under instrumentation can
be expensive, and we do not want to increase the build times for the developers.
RootFinder. As tests may exercise many methods during their execution, the logs produced
from the previous step can be rather large. To help developers comprehend these logs, we
present a tool called RootFinder that can automatically analyze these logs to highlight the
differences between passing and failing executions. These differences can be used to help
provide insights into why a test is flaky. More details are described in Section 5.2.2.

5.2.1 Torch Instrumentation

Torch [91, 125] is an extensible instrumentation framework for .NET binaries. Torch
takes a .NET binary and a set of target APIs, and instruments each target API call in the
binary. What API calls and how the API calls are instrumented depends on what Torch
instrumentation plugin is used. For instance, for profiling one may instrument a binary to
track latencies of certain APIs. By default, Torch comes with plugins for profiling, logging,

80



1 WebClient client = new WebClient();
2 String data = client.DownloadString(url);

(a) Original code

1 WebClient client = new WebClient();
2 TorchInfo ti = Torch.GetInstrumentationInfo();
3 String data = Torch_DownloadString(ti, client, url);

(b) Instrumented code

1 public static String Torch_DownloadString(TorchInfo ti, WebClient client, String url) {
2 String returnValue = null;
3 var context = Torch.OnStart(ti, client, url);
4 try {
5 returnValue = client.DownloadString(url);
6 } catch (Exception exception) {
7 Torch.OnException(exception, context);
8 throw exception;
9 } finally {

10 Torch.OnEnd(returnValue, context);
11 }
12 return returnValue;
13 }

(c) Proxy method

Figure 5.2: Torch instrumentation example.

fault injection, concurrency testing, thread schedule fuzzing, etc. One can extend these
plugins or write new plugins to suit one’s instrumentation goals.

During instrumentation, Torch replaces each API call with an automatically generated
proxy call, as shown in Figure 5.2. Note that Torch does not instrument the implementation
of a target API; only the call to the API is instrumented. The proxy generated by Torch calls
the original API; in addition, as shown in Figure 5.2(c), it calls three Torch callbacks—(1)
OnStart, called immediately before calling the original API, (2) OnEnd, called immediately
after the original API returns, and (3) OnException, called when the original API throws an
exception. OnStart returns a context that is passed to OnEnd and OnException; the context
provides information about the API call that invoked the Torch callbacks.

For identifying the root causes of flaky tests, we use Torch’s logging plugin to track and log
various runtime properties. We find that some APIs will behave differently in passing and
failing executions, and analyzing the differences will provide us insights on the root causes
of flakiness. Because such APIs are not known beforehand, we opt for logging information
for all API calls. Specifically, we log the following properties for all API calls:

1. Call information, including signature of the API, and its caller API (the API calling

81



the instrumented API). We also track the location of the API call in the binary and
source code.

2. Timestamp at each call. Timestamps at OnStart and OnEnd give the latency of the
API call.

3. Return value at OnEnd and exception at OnException, if any.

4. A unique ID of the receiver object of the API. This information helps identify APIs that
are operating on the same object and can help identify root causes such as potential
concurrency issues.

5. IDs of the process and thread executing the API.

6. ID of the parent thread, i.e., the thread that spawned the thread executing the API.
The information is important to understand dependencies of different threads and their
activities [125].

It is important for the instrumentation to have a small runtime overhead. Excessive
overhead can change runtime behavior and remove existing flakiness or introduce new flaki-
ness. The overhead comes from two different sources. First, computing some of the runtime
properties can be expensive. For example, finding signatures of an API and its object type
through reflection, or finding the parent API through stack trace can be expensive. Torch
avoids this cost by computing these static properties during instrumentation and passing
them to the OnStart callback as static parameters (as a TorchInfo object in Line 3 of Fig-
ure 5.2b). Second, due to our collection of runtime information for all APIs, the size of the
logs our framework generates can be prohibitively large. To avoid the large space usage,
Torch compresses the logs in memory and asynchronously writes them to disk1.

5.2.2 RootFinder

We develop a simple tool called RootFinder to parse Torch logs of passing and failing
executions to identify potential root causes of certain categories of flaky tests. At a high
level, RootFinder takes as input a method name that is likely to be the cause of the flaki-
ness, Torch logs of passing runs, and Torch logs of failing runs. Examples of input method
names that may be of interest include methods that return non-deterministic values such as

1We also experimented with more lightweight Event Tracing for Windows (ETW) logging [50]; however,
at a high logging event rate, ETW may skip logging randomly chosen events. We observed a high loss rate,
and hence did not have Torch use ETW for logging.

82



System.Random.Next (returns a non-negative random integer) or System.DateTime.Now (re-
turns a DateTime object representing the current date and time). By default, our framework
uses RootFinder with a predefined set of non-deterministic method calls, but developers can
also add or remove method calls as needed.

RootFinder works in two steps. In the first step, RootFinder processes each log file
independently and evaluates a set of predicates at each line of the log file. The predicates,
similar to the ones used in statistical debugging [118], determine if the behavior of the callee
method in a log line is “interesting” (several example predicates will be given shortly). The
outputs of the predicates are written to a predicate file. Each line in the predicate file
contains the following information about a predicate: (1) the epoch of the predicate, (2) the
name of the predicate, and (3) the value of the predicate at its epoch. We currently consider
predicates that are local to specific code locations, and therefore use epochs that can identify
partial orders of predicates evaluated at the same code location. More specifically, the epoch
is given by a concatenation of the unique code location of the method call2, current thread ID,
and a monotonically increasing sequence number that is incremented every time the method
is called at the current location. For instance, in Figure 5.4, the method Random.Next() at
unique location 9 is called multiple times (e.g., perhaps the line is in a loop or is called by
multiple threads)—once in log line 2 and again in log line 5. Assuming that both calls are
executed in the same thread with ID 10, the first call has the epoch 9:10:1, the second call
has the epoch 9:10:2, and so on. Partial orders of the epochs can be derived from their IDs
along with the threads’ parent-child relationship, which Torch dynamically tracks and logs.

Predicates: A predicate evaluates the state of the method call at the current epoch.
RootFinder currently implements the following boolean predicates:

• Relative: This predicate is true if the return value of a specific line number and thread
ID pair is always the same. This predicate is useful to identify if a method is always
returning the same value in repeated calls.

• Absolute: This predicate is true if the return value of the current epoch matches a
given value. This predicate is useful to check if a method returns an error value (e.g.,
null or an error code).

• Exception: This predicate is true if the method throws an exception.
2Unique code location uniquely identifies the location of a method call in the code. An example is the

name of the program source/binary file plus the line number/binary offset of the method call within the file.
For simplicity we use Source# as the unique location.

83



• Order: This predicate is true if an ordering of method calls matches a given list of
methods and optionally, whether a specified amount of time occurred between the
methods. This predicate is useful to identify thread interleavings.

• Slow: This predicate is true if the method call takes more than a specified amount
of time. (The threshold can be determined based on domain knowledge of the called
method, or by analyzing latencies of passing test runs.)

• Fast: This predicate is true if the method call takes less than a specified amount of
time.

After the predicate files are generated, RootFinder compares all predicate files (from
passing and failing runs) to identify ones that are true/false in all passing executions, but
are the contrary in all failing executions. Intuitively, these predicates are strongly correlated
to test failures and hence are useful to understand the underlying root cause of failures.
Specifically, RootFinder labels each predicate in the predicate files with one of the following
categories:

(1) Inconsistent-in-passing: Such a predicate either appears in only a subset of all passing
test runs or appears in all passing runs but with both true and false values. The log line
corresponding to such a predicate is likely irrelevant as to why a test is flaky. This is because
whether the predicate was true or false did not affect the outcome of the test runs (i.e., they
always passed).

(2) Inconsistent-in-failing: Such a predicate either appears in only a subset of all failing
test runs or appears in all failing runs but with both true and false values. As is the case of
the previous category, this predicate is also likely irrelevant as to why a test is flaky.

(3) Consistent-and-matching: Such a predicate appears in all passing and failing runs
and with the same value. This predicate is also likely irrelevant as to why the test is flaky
as it did not affect the final outcome of the test runs.

(4) Consistent-but-different: Such a predicate either (I) appears only in passing or only
in failing runs, or (II) is true in all passing runs but false in all failing runs (or vice versa). (I)
indicates that executions of a passing and a failing run diverge before the epoch where the
predicate was evaluated (which is why the predicate appears in one set and not the other),
while (II) indicates how a method consistently behaves differently in the passing and failing
runs. This predicate is highly likely to explain why a test is flaky because it precisely shows
how passing and failing test runs differ.

By default, the predicates outputted by RootFinder are sorted so that the predicates that
are most likely to explain why a test is flaky are shown first (i.e., Consistent-but-different

84



1 class TestAlertTest {
2 void TestUnhandledItemsWithFilters() {
3 TestAlert ta1 = CreateTestAlert();
4 TestAlert ta2 = CreateTestAlert();
5 ...
6 Assert.AreNotEquals(ta1.TestID, ta2.TestID);
7 }
8 TestAlert CreateTestAlert() {
9 int id = new Random().Next();

10 ...
11 return new TestAlert(TestID = id, ...);
12 }
13 }

Figure 5.3: Test method from a Microsoft product’s test suite.

predicates). Once the categories are sorted, RootFinder then sorts the predicates within
each category so that the predicates with the lowest log line numbers are outputted before
the ones with higher numbers. As presented in Section 5.3.2, our case studies find that
sorting predicates as described enables RootFinder to effectively output useful predicates.

The predicates outputted by RootFinder can aid the debugging efforts of nine out of ten
categories of flaky tests mentioned in prior work [126]. More specifically, for categories such
as Network, Time, IO, Randomness, Floating Point Operations, Test Order Dependency,
and Unordered Collections, RootFinder can directly compare the return value of failing and
passing Torch logs to identify predicates that are highly likely to explain why the test is flaky.
For the Async Wait and Concurrency categories, our framework currently relies on Torch’s
ability to first fuzz delays, and then for RootFinder to identify latency-related predicates,
such as Fast and Slow, to help developers root cause those categories. For the remaining
category, Resource Leak, our framework can eventually be extended to include memory leak
detection tools [135, 210], but we do not find many flaky tests in this category. More details
about the categories of flaky tests at Microsoft are in Section 8.3.5.

An Example. Figure 5.3 shows the simplified version of a test from a proprietary product
at Microsoft. TestUnhandledItemsWithFilters is flaky because new Random().Next() may
return the same value if the two calls are invoked close together. Specifically, if a Random
object is instantiated without a seed, the object will use the current system time as the
default seed. Therefore, two Random objects instantiated without a seed and close together
will be initialized with the same seed and return the same sequences of random numbers.

Figures 5.4 and 5.5 show a fragment of Torch logs from passing test runs and from failing
test runs, respectively. To keep this example simple, we omit information from Torch that is
irrelevant to this example, such as ID of thread executing API and ID of parent thread. As

85



Figure 5.4: Torch logs for passing test runs of the test in Figure 5.3. TUIWF is
TestUnhandledItemsWithFilters. Thread ID is the same for all lines.

Figure 5.5: Torch logs for failing test runs of the test in Figure 5.3. TUIWF is
TestUnhandledItemsWithFilters. Thread ID is the same for all lines.

shown on Line 2 and Line 5 of Figure 5.5, the StartTime values of the Random.Next() calls
are the same in each failing log, therefore the return values for both calls to Random.Next()
are the same within each failing log (e.g., 21, 17, and 5). In the passing logs, such as the
ones depicted in Figure 5.4, we can see that on Line 2 and Line 5, the StartTime values
are different and consequently, the return values of Random.Next() are also different. Recall
that the assertion on Line 8 of Figure 5.3 passes if the return values of Random.Next() are
different and fails otherwise.

RootFinder can help narrow down the the root cause of TestUnhandledItemsWithFilters.
In step 1 of RootFinder’s processing, RootFinder converts the passing logs in Figure 5.4 into
predicate files containing the predicate (9:2, Relative, False). This predicate means that
the method Random.Next() in Source# 9 and Seq# 2 returns a value that is different from
the return value of the immediate previous call of the same method at the same Source#.
Similarly, it converts the failing logs in Figure 5.5 into predicate files containing the predicate
(9:2, Relative, True). In step 2, RootFinder compares the predicates across passing and

86



failing runs, and identifies the (9:2, Relative) predicate as Consistent-but-different. This
predicate quickly points to a root cause (or a symptom that is strongly correlated to the root
cause) of the flakiness, as well as its code location (e.g., 9:2). When we apply RootFinder to
this example without any domain knowledge from developers, it took, on average, 2 seconds
to run and outputted 408 predicates in total. The predicate containing the root cause was
ranked first.

5.3 CASE STUDIES

Table 5.1: Characteristics of the specific flaky test examples in Section 5.3.2 and of all 44
flaky tests in our dataset.

Duration % of failed # of method # of unique # of threads # of objects
/ test executions/test calls/test method calls/test / test / test

Specific examples in Section 5.3.2
Time 1s 29% 4.7k 463 3 1151
Concurrency 10s 1% 18k 882 8 8200
Async Wait 2s 1% 0.2k 90 4 62
Resource Leak 4s 1% 0.6k 218 6 246
All 44 flaky tests
Median 5s 6% 2.5k 248 3 637
Average 45s 28% 335k 335 5 55418

We next present the results of applying our framework on large projects that use Cloud-
Build. To ensure that our results are not biased due to a single project, we collect all distinct
flaky tests recorded during a day in our production environment. Among these flaky tests,
we identified the tests that are compatible with the Torch instrumentation framework. More
specifically, CloudBuild supports unit tests written in both managed (such as C#) and un-
managed (such as C++) code [129]. Also, CloudBuild supports tests written for various
test frameworks such as MSTest [209], NUnit [153], and xUnit [225]. Our current imple-
mentation of the instrumentation framework supports only unsigned (binaries that do not
include digital signatures) and managed code, and is also tailored for tests that run using
the MSTest framework.

Overall, we collected 315 flaky tests that matched the described criteria. Our collected
flaky tests belong to different projects that provide services for both internal and external
customers, and also fall into different categories, such as database, networking, and security.
Among these flaky tests, we were only able to reproduce flakiness, i.e., produce logs for both
passing and failing executions in 100 runs for 44 tests. Our findings here that only 44 out
of 315 flaky tests are reproducible with Torch instrumentation suggests that improvements
to reproducing flakiness, particularly with instrumentation, can be highly impactful.

87



5.3.1 Study Dataset

We use a dataset consisting of 44 flaky tests. These tests belong to 22 software projects
from 18 Microsoft internal/external products and services. For each test, the dataset contains
100 execution traces, some of which are from failed executions. Each trace file consists of a
sequence of records containing various runtime information about all executed methods as
described in Section 5.2.1.

Table 5.1 shows some characteristics about the tests and traces. The characteristics show
the overall complexities of the tests. The average run duration of the tests is nontrivial
(45s), even though they are all unit tests. Each test runs a large number of methods (335k
total methods/test and 335 unique methods/test), mostly because a tested component often
depends on many underlying components. Furthermore, 80% of the tests use more than one
thread and on average, each test runs on 5 threads and operates on 55418 objects. In short,
these tests produce massive runtime logs, which can be extremely challenging to analyze.

Each runtime log in our dataset contains a wealth of information. For example, each log
contains all of the methods executed by the test, and the latencies, return values, thread
IDs, etc. of the executed methods. We make our dataset of these runtime logs publicly avail-
able [168] to help researchers build better solutions to the flaky-test problem and understand
the runtime behavior of flaky tests in a production system. Our dataset is anonymized so
that sensitive strings (such as method names containing Microsoft product names) are re-
placed with hash values.

5.3.2 Case Studies of Finding Root Causes

In this section, we provide in-depth examples of flaky tests and how RootFinder assisted
developers with debugging these particular flaky tests. The remainder of this section presents
three examples of flaky tests that our framework can find root causes for and one example
that our framework cannot. All examples are anonymized and simplified as needed.

Time. We find some tests to be flaky due to improper use of APIs dealing with time.
These flaky tests rely on the system time, which introduces non-deterministic failures, e.g.,
a test may fail when run in different time zones.

Figure 5.6 shows a simplified version of a test case, which ensures that a service and
its replica return the same response to a particular message. Specifically, the assertion on
Line 6 occasionally fails. The failures are because calls to Service and ServiceReplica’s
SendAndGetResponse may or may not use the same timestamps. If the invocations of Send-

88



1 [TestMethod]
2 public void TestReplicaService() {
3 ... // initialize payload
4 byte[] response = Service.SendAndGetResponse(payload);
5 byte[] replicaResponse = ServiceReplica.SendAndGetResponse(payload);
6 Assert.AreEqual(response, replicaResponse);
7 }
8 public class Service : NetworkService {
9 ... // initialize base

10 public byte[] SendAndGetResponse(Request req) {
11 ...
12 DateTime currentTime = DateTime.UtcNow;
13 Message message = new Message(req, currentTime);
14 return base.SendAndGet(message.Serialize());
15 }
16 }

Figure 5.6: A test that is flaky due to getting the system time.

AndGetResponse on Lines 4 and 5 happen within a short window of time, the timestamps
produced by DateTime.UtcNow on Line 12 can be the same due to the limited granularity of
the system timer. The granularity is seconds by default. If the timestamps are the same,
then the test passes; otherwise, it fails. We find many flaky tests at Microsoft exhibiting
similar behavior. This example fails 29% of the time in our experiments, but we also find
other tests exhibiting a similar root cause failing up to 88% of the time.

A useful predicate for this example should indicate that the timestamp in SendAndGet-
Response (Line 12) when invoked by Line 5 is always the same as the timestamp when
invoked by Line 4 in the passing logs, but the timestamps are always different in the failing
logs. When we apply RootFinder to this example without any domain knowledge from
developers, it took, on average, 11 seconds to run and outputted 1163 predicates in total.
The useful predicate was ranked at 81. In practice, when developers used RootFinder on
this example, the developers were able to input suspicious method names to quickly find the
useful predicate in a few minutes.

Concurrency. A flaky test’s root cause is concurrency when the test can pass or fail due
to different threads interacting in a non-deterministic manner (e.g., data races, deadlocks).

Figure 5.7 shows an example of a test that is flaky due to concurrency issues. The
TestDirtyResource method tests that a manager (created in Line 4) of a cluster properly
recycles used resources. Once the manager is created, it is setup by adding a machine to it,
that is in use, or “dirty” (Lines 5–6), along with more setup code (omitted for brevity). The
test then repeatedly creates and sends requests to the cluster to execute jobs (Lines 9–12)
and makes sure that the response obtained on Line 12 is correct (Lines 13–16). Finally, the

89



1 [TestMethod]
2 public async Task TestDirtyResource() {
3 ...
4 using (var emptyPoolManager = CreatePoolManager(...)) {
5 Resource pm = ResourceUtils.CreatePhysicalMachine(...);
6 await emptyPoolManager.AddOrUpdateResourceAsync(pm, HeartbeatStatus.InUse);
7 ...
8 for (int i = 0; i < 5; i++) {
9 var sessionId = Guid.NewGuid().ToString();

10 var request = new ResourceAllocateRequest(pm);
11 await emptyPoolManager.PreAllocateResourcesAsync(...);
12 var response = (await QueryAllocate(...)).FirstOrDefault();
13 Assert.IsNotNull(response);
14 Assert.AreEqual(request.Id, response.RequestId);
15 Assert.IsNotNull(response.ResourceId);
16 Assert.AreEqual(pm.ResourceId, response.ResourceId);
17 await emptyPoolManager.ReleaseResourcesAsync(response.ResourceId);
18 await emptyPoolManager.HeartbeatResourceAsync(pm, HeartbeatStatus.Ready);
19 await emptyPoolManager.ProcessResourcesHeartbeats(CancellationToken.None);
20 }
21 }
22 }

Figure 5.7: A test that is flaky due to concurrency.

resources used by the cluster to process the request are released (Line 17), and the newly
freed resource heartbeats its status to the manager (Line 18), and the manager processes it
(Line 19). We observed in our experiments that the assertion on Line 13 fails occasionally.

Upon investigating the failure, we find that the creation of the resource manager (Line 4)
also starts a background task that periodically marks resources as unavailable in case T

milliseconds (ms) has elapsed since the last heartbeat was processed. This test fails when
this background task runs T ms after another thread has processed Line 19 but before
Line 12, because the background task would mark the cluster resource as unavailable, which
would then cause the subsequent resource allocation request made using QueryAllocate on
Line 12 to return null. The null value will then cause the assertion on Line 13 to fail. This
example demonstrates a subtle flakiness condition that only manifests in a particular thread
interleaving, and moreover, only if the interleaving follows very precise timing constraints.

A useful predicate for this example should indicate that the background task from Line 4
always ran after Line 19 and it always runs T ms or longer after Line 19. When we apply
RootFinder to this example without any domain knowledge from developers, it took, on
average, 126 seconds to run and outputted 127187 predicates total. The useful predicate
was ranked at 3231. RootFinder did not rank the root cause predicate highly, because this
flaky test’s root cause is not only due to thread interleavings, but also the timing of the
interleavings.

90



1 DatabaseProvider ssp;
2 String currentDirectory = ...;
3 [TestMethod]
4 public void ResourceAllocation() {
5 ssp = new DatabaseProvider(currentDirectory);
6 ...
7 }
8 [TestCleanup]
9 public void TestCleanup() {

10 ClearConnections();
11 if (File.Exists(dbPath)) {
12 File.Delete(dbPath);
13 }
14 ...
15 }

Figure 5.8: A test that is flaky due to resource leaks.

Async Wait. Tests are flaky due to the Async-Wait issues when the test makes an asyn-
chronous call and does not properly wait for the result of the call to become available before
using it. Depending on whether the asynchronous call was able to finish at the right time
or not, such flaky test may pass or fail. Section 1.2.2 presents an example of an Async-Wait
flaky test. A useful predicate for this example should indicate that the task on Line 4 always
took longer in the failing runs. When we apply RootFinder to this example without any
domain knowledge from developers, it took, on average, one second to run and outputted
868 predicates in total. The useful predicate was ranked at 17.

Resource Leak. A flaky test’s root cause is Resource Leak when the test passes or fails
because the application does not properly acquire or release its resources, e.g., locks on files.

Figure 5.8 shows an example of a Resource Leak flaky test. ResourceAllocation checks
whether the necessary resources are properly allocated for an application. The application
internally uses a third-party database to store some information. The TestCleanup method
is executed after every test to delete the database, so that it may be re-initialized before the
next test. Although Line 12 tries to close the connection to the database, the third-party
library requires the garbage collector to run prior to this step to release the file handle to
the database file. If the garbage collector does not run first, then the file resource is held,
causing the subsequent attempts to delete the file on Line 12 to throw an exception. Since
our framework relies on Torch to capture information relevant to the root cause of the flaky
test, our framework is currently unable to assist developers for Resource Leak flaky tests
such as the one in this example.

91



5.3.3 Applying RootFinder on to Case Studies

When we apply RootFinder on the five examples described in Section 5.2.2 and Sec-
tion 5.3.2, we find that the root causes are summarized as predicates in the output for four
of the five examples, especially when developers provided domain knowledge to RootFinder.
These predicates can assist developers in identifying what values are the same or not in the
passing and failing executions, and provide them the code location that produced these val-
ues. When we present the findings of RootFinder to developers or use it ourselves, they/we
are able to more quickly reproduce the failures of the flaky test.

5.4 THREATS TO VALIDITY

Internal Validity. Our threats to internal validity are concerned with our study proce-
dure’s validity. RootFinder and our framework can contain faults that impact our results
and lessons learned. We attempt to mitigate this threat by having thorough code reviews
and testing of RootFinder and our framework. Furthermore, we rely on various other tools
in our framework, such as Torch. These tools could have faults as well and such faults could
have also affected our results. To mitigate this threat, some of the logs produced by Torch
and the root causes produced by RootFinder are manually analyzed and confirmed by at
least two of the authors.

External Validity. Our threats to external validity are concerned with all threats un-
related to our study procedure. Our lessons learned may not apply to projects other than
the ones in our study. We attempt to mitigate this threat by including a diverse range of
projects in our study. Our projects are used by both internal and external customers of
Microsoft, and also fall into different categories such as database, networking, security, and
core services. Flaky tests are, by definition, tests that non-deterministically pass or fail with
the same version of code. Due to the non-deterministic nature of these tests, the flaky tests
from our dataset that we are able and unable to produce Torch logs for may not be the same
if the experiment was to be repeated.

5.5 OPEN RESEARCH CHALLENGES

The results reported in this chapter are just scratching the surface of identifying the root
causes of flaky tests. Here are some open questions that are left to be explored.

92



How to evaluate results. A major challenge is to determine the “ground truth” of why
a test is flaky. Ultimately, this requires developers to look at each flaky test, examine the
suggested candidate root causes, and then decide which root cause(s) is/are the most likely.
For a large number of flaky tests, this evaluation is expensive. Moreover, results may vary
depending on the developer’s expertise and familiarity with the code being tested and with
the tests being performed. How to prevent biased evaluations due to diversity in developer
expertise is another non-trivial challenge.

What information to log. Earlier in the paper, we showed one way to log execution
traces. But there are many other options. Should all method calls and returns be logged? In
all the software components or only in some? If some, which ones and why? Should function
input and output values be logged as well? Should intra-procedural execution information
(e.g., which code instructions, blocks or branches were executed) also be recorded for a
fine-grained analysis?

Logging versus analysis tradeoffs. The more data is being logged, the more compu-
tationally expensive it is to store and process all the data. The analysis itself becomes more
complicated: non-essential differences may creep in if too much information is recorded,
which makes it harder to identify meaningful differences. On the other hand, recording too
little information may omit key events explaining the source of the test flakiness. How to
strike the right balance between logging and analysis effectiveness is another key challenge
in this space.

Fixed versus variable logging. Another dimension to the problem is whether the level
of detail used for logging should be the same for all applications and tests, or whether it
should be adjusted, automatically over time in an “iterative-refinement process”, or using
user-feedback. If the logging level can be adjusted, should it start lazily, at a high-level and
be refined until meaningful differences are detected? Or, should logging proceed bottom-up,
eagerly logging many events, then identifying irrelevant details (data noise) and eliminating
those until meaningful differences are found?

Logging versus reproducibility. The more data one logs, the more intrusive the run-
time instrumentation can be. As discussed earlier in this chapter, reproducing flakiness
is difficult, and can become even more difficult when significant runtime slowdowns are
introduced by expensive logging activities.

5.6 SUMMARY

Flaky tests are a prevalent issue plaguing large software development projects. Simply
ignoring flaky tests is a dangerous practice because the failures might mask severe software

93



defects. To help software developers, we need better tools and processes for dealing with
flaky tests. This chapter presented an effort at Microsoft to deal with flaky tests. Specifically,
we discussed our work on a framework and a new tool, RootFinder, for root-causing flaky
tests. We hope that the framework, tool, and case studies presented in this chapter will
encourage more research on this important problem.

94



CHAPTER 6: [CHARACTERIZATING] UNDERSTANDING
REPRODUCIBILITY AND CHARACTERISTICS OF FLAKY TESTS

THROUGH TEST RERUNS IN JAVA PROJECTS

This chapter presents our in-depth study of non-deterministic tests and provides actionable
guidelines to deal with flaky tests. We believe that two key challenges have limited the
amount of in-depth work on non-deterministic (NOD) tests (defined in Section 1.2). The
first challenge is the machine cost for rerunning tests. Many NOD tests may fail rather
infrequently (e.g., once in 4000 test runs, as we observe from our experiments for this chapter)
or only under specific circumstances, so it takes substantial time and reruns to observe even
one failure, let alone a few failures to study when and how they occur. The second challenge
is the human cost for debugging NOD tests. In contrast to order-dependent (OD) tests that
fail deterministically and could be somewhat easier to reproduce and debug, NOD tests fail
non-deterministically, potentially infrequently, and can take a lot of time to debug, especially
for researchers unfamiliar with some open-source code that has flaky tests.

In this chapter, we perform a study that is organized around four main research questions
(RQs) that aim to improve our understanding of how to rerun, detect, debug, and prioritize
flaky tests. By answering these questions, we aim to provide actionable guidelines and
practical suggestions for developers and researchers. To perform our study, we (re)run
tests using the default test runner configured by the developers, following what developers
typically do in their development practice. In other words, we do not use any research
tools [59, 73, 84, 108, 184, 237] or emerging approaches [160, 199] that aim to detect flaky
tests. While our procedure does miss some flaky tests, it (1) gives a more realistic assessment
of the impact that flaky tests have on regression testing; (2) exposes flaky tests that can
be particularly difficult to debug, because they fail rarely even under the exact same build
configuration; and (3) avoids false alarms that can be produced by some of the research tools
(e.g., iFixFlakies [186] reports on some false alarms reported by our work in Chapter 2).

The remainder of this chapter is organized as follows. Section 6.1 presents our research
questions, and Section 6.2 presents our experimental methodology. Section 6.3 then presents
our results, and Section 6.4 presents our case studies of some flaky tests. Finally, Section 6.5
presents the threats to validity, and Section 6.6 concludes this chapter.

6.1 RESEARCH QUESTIONS

To increase the understanding of the reproducibility and characteristics of flaky tests, we
consider four main questions.

95



RQ1: What is the failure rate (defined in Section 1.2) and maximal burst length (defined
in Section 1.2.3) of flaky tests across all test-suite runs?
Why it matters: A common way to separate test failures into regression failures and flaky
failures is through test reruns. For example, Google [137] and Microsoft [107] report how they
rerun tests after a failure to check whether the test’s result would change to pass (indicating
a flaky failure instead of a regression failure). The number of reruns is typically chosen
ad-hoc, e.g., ten times at Google [137] and once at Microsoft as described in Section 5.1.
This RQ aims to provide empirical evidence for how many reruns can suffice to separate
regression failures and flaky failures.
RQ2: How do failure rates and maximal burst lengths differ across test class orders (TCOs),
and how many tests are NDOI (defined in Section 1.2.2) and NDOD (defined in Sec-
tion 1.2.3)?
Why it matters: Developers have a limited budget of test runs to detect NOD tests. Is it
better for those runs to be used through (1) many unique test orders with fewer runs each,
or (2) fewer orders with many runs each? If NDOD tests are more prevalent than NDOI
tests, then (1) can be better, otherwise (2) can be better. This RQ aims to provide empirical
evidence on the prevalence of these two subcategories, so that developers can better detect
NOD tests.
RQ3: How likely can NOD-test failures from running the test suite be reproduced by running
the NOD test in isolation?
Why it matters: When developers encounter a test failure by running a test suite, a
common next step is to try reproducing a test failure by running the test in isolation. For a
regression failure, the test continues to deterministically fail in isolation. For OD tests, the
test also deterministically passes or fails in isolation [186], and it deterministically fails when
run in the same order that produced the test failure. However, for NOD tests, it is unclear
how likely test runs in isolation can reproduce the test failure from running the entire test
suite, e.g., the test may fail more or less often when run in isolation than in the test suite.
This RQ aims to show empirical evidence to clarify this issue.
RQ4: How do failure rates of individual flaky tests relate to failure rates of test-suite runs?
Why it matters: Whether developers can merge their recent changes to a project typically
depends on whether the entire test suite passes or fails with their recent changes. RQ1
and RQ2 study the failure rate of each individual flaky test, while RQ4 aims to show how
often a test-suite run has at least one failing flaky test. RQ4 is important because it provides
empirical evidence on how often (1) developers encounter a test-suite run failure due to flaky
tests and (2) failures of different flaky tests are symptoms of the same underlying problem,
which developers can use to prioritize their debugging efforts.

96



6.2 EXPERIMENTAL METHODOLOGY

6.2.1 Modules Used in Our Study

To investigate our research questions, we use open-source projects from the iDFlakies
dataset [85]. We obtained this dataset from our prior work described in Chapter 2. The
prior work used the iDFlakies tool, which detects flaky tests by perturbing the execution
order of test methods (not just test classes) across repeated test-suite runs and marking tests
that both pass and fail in various runs as flaky. Due to the perturbing of test order, many
tests that iDFlakies detected are OD tests, i.e., they pass or fail deterministically depending
on which other tests have (not) run before them in the test suite.

The iDFlakies dataset [85] consists of Java projects that use the Maven build system [131].
Maven organizes projects around modules, so we present our analysis in terms of modules.
We do not use all modules (111) from the iDFlakies dataset for our study, because we focus
on NOD tests, and iDFlakies detected NOD tests in only 62 modules (and only OD tests
in the other 49 modules). We focus on NOD tests because many past studies of flaky tests
focused on OD tests [59, 108, 186, 237]. We find that only 48 of the 62 modules could be
compiled “out-of-the-box” (i.e., Maven could not download some dependencies for the other
14 modules), and for 44 of the 48 modules we could run the test suite 4000 times (i.e., the
test suite deadlocks for the other 4 modules) and easily control the order in which Maven
Surefire [132] runs test classes (i.e., the module uses Maven Surefire version 2.7 or higher).

6.2.2 Configurations in Our Study

To obtain the flaky tests for our study, we run tests in two different configurations:

• Test Suite (TSO): run the entire test suite using mvn test. The order of the tests may
differ. We call one run of the test suite in any order a test-suite run (TSR).

• Isolation (ISO): run each individual test in its own JVM using the command mvn test
-Dtest=TestClass#testMethod.

We run TSO and ISO 4000 times each to balance the chance to detect flaky tests and the
machine time used for our experiments. In total, our experiments used 2148 hours (∼90
days) of CPU time. At the time that our experiments were done, they consisted of the
largest number of runs in any published study of flaky tests. We ran our experiments on
Microsoft Azure [138] using the Standard_D11_v2 virtual machines with 2 CPUs, 14 GB of
RAM, and 100 GB of hard-disk space each.

97



Figure 6.1: Overview of running test suites to obtain flaky tests in our study.

6.2.3 RQ1 and RQ2: Failure Rate and Burst Length

To answer RQ1 and RQ2, we obtain and compare failure rates and maximal burst lengths
of flaky tests across all TCOs (RQ1) and across different TCOs (RQ2). Of the 44 modules
from Section 6.2.1, we find at least one flaky test in 26 modules when they are run in TSO.
Figure 6.1 shows an overview for how we run the test suites to collect our dataset and
Table 6.1 shows the statistics of these 26 modules.

Test-Class Orders (TCOs). For each module, we run Maven Surefire (i.e., mvn test)
with (1) no changes to the build configuration pom.xml files (except M26’s pom.xml to make its
tests run sequentially)—these runs commonly yield different TCOs needed to answer RQ2;
and (2) a change to run all test classes in a sorted order (reverse alphabetical of their class
names)—to ensure we get many runs of at least one order. We run each of (1) and (2) for 20
batches, where each batch runs exactly 100 test-suite runs (TSRs) in a fresh virtual machine
(VM). Overall, we have exactly 40 batches and consequently, 4000 TSRs per module.

For (1), Surefire determines a TCO based on file system specific properties, and because
we run each batch in its own VM, the TCOs across batches likely differ, resulting in up to 20
TCOs from (1) and 1 TCO from (2). Consequently, the number of TCOs ranges from 1 to
21, each of which is run between 1 and 40 batches. For modules with 3 or fewer test classes,
we cannot obtain 21 TCOs because the maximum number is 6 (i.e., 3!). Even for modules
with 4 or more test classes, we can still obtain fewer than 21 different TCOs because Surefire
can return the same TCO across different VMs (which happened for two modules: M9 and
M12). Table 6.1 shows the exact number of TCOs1 that we obtained per module.

We design our experiment to use multiple batches with 100 TSRs per batch rather than
1The test-method order may differ even when the TCO is the same. Specifically, for modules using JUnit

versions 4.11 or higher, the test-method order would be the same for any test class regardless of the TCO.
From the modules in Table 6.1, only M12 and M13 use a version of JUnit that is lower than 4.11 and exhibit
different test-method orders for at least one test class.

98



Table 6.1: Statistics for the modules where we detected some flaky test by first running entire test
suites (TSO) and then running the flaky tests detected by TSO in isolation (ISO); “=” indicates
same value as the cell to the left.

# test # # flaky tests TSO failure rate [%] ISO rate [%]
MID Project slug - Module methods classes TCOs TSO ISO TSR min max sum min max
M1 alibaba/fastjson 4464 2079 21 6 0 7.7 0.1 5.0 15.2 n/a n/a
M2 apache/incubator-dubbo - m1 14 7 21 3 1 0.9 0.1 0.5 0.9 0.3 =
M3 - m2 66 15 21 9 0 10.6 0.1 10.0 20.7 n/a n/a
M4 c2mon/c2mon - m1 125 18 21 1 0 <0.1 = = = n/a n/a
M5 - m2 10 2 2 2 2 1.6 0.4 1.2 1.6 1.0 1.1
M6 codingchili/excelastic 12 4 12 1 0 11.4 = = = n/a n/a
M7 davidmoten/rxjava2-extras 390 48 21 3 2 0.2 0.1 0.1 0.2 <0.1 <0.1
M8 elasticjob/elastic-job-lite 502 89 21 1 0 2.5 = = = n/a n/a
M9 espertechinc/esper 2 2 1 1 1 3.0 = = = 3.7 =
M10 feroult/yawp 1 1 1 1 1 1.6 = = = 2.4 =
M11 flaxsearch/luwak 202 37 21 2 2 1.0 0.3 0.8 1.0 58.6 68.2
M12 fluent/fluent-logger-java 18 5 17 6 0 1.8 0.1 1.8 5.2 n/a n/a
M13 javadelight/delight-nashorn-sandbox 79 35 21 3 2 1.4 <0.1 0.7 1.4 4.2 57.1
M14 kagkarlsson/db-scheduler 51 18 21 8 1 0.3 0.1 0.3 1.1 0.9 =
M15 looly/hutool 7 2 2 1 1 0.1 = = = 1.5 =
M16 nationalsecurityagency/timely 144 32 21 4 4 2.8 1.3 2.8 9.5 1.3 3.0
M17 oracle/oci-java-sdk 62 8 21 1 1 <0.1 = = = <0.1 =
M18 orbit/orbit 20 8 21 1 1 0.1 = = = 0.2 =
M19 OryxProject/oryx 92 19 21 1 1 0.8 = = = 1.0 =
M20 spinn3r/noxy 3 1 1 3 0 50.0 49.0 50.0 100.0 n/a n/a
M21 square/retrofit - m1 80 15 21 5 0 1.4 <0.1 0.5 1.4 n/a n/a
M22 - m2 297 10 21 1 1 0.1 = = = 0.2 =
M23 TooTallNate/Java-WebSocket 145 22 21 32 24 30.1 <0.1 5.1 46.0 <0.1 16.6
M24 wro4j/wro4j 308 64 21 9 3 1.3 0.1 0.7 2.0 0.3 0.4
M25 wso2/carbon-apimgt 2 1 1 1 1 0.1 = = = 0.1 =
M26 zalando/riptide 33 12 21 1 1 10.9 = = = 39.1 =
Total / Average 7129 2554 415 107 50 5.4 3.2 4.2 9.1 6.4 10.9

(1) just one batch to run all 4000 TSRs, or (2) 4000 batches, each with just one TSR.
Compared to (1), our design helps with cases where a test may deadlock in a batch (i.e., we
would only need to rerun one small batch). Compared to (2), our design helps by controlling
machine cost and providing control over the number of TSRs for each TCO (which we use
to calculate failure rates for RQ2).

To automatically determine whether a NOD flaky test is likely NDOD or NDOI for RQ2,
we use (1) the ratio of TCOs that have at least one failing TSR, and (2) a statistical test
of whether failure rate differences across TCOs are significant or not. As multiple batches
can execute the same TCO, the number of TSRs can differ across TCOs. To exclude effects
of these differing numbers, we test whether the proportions of test failures among test runs
differ significantly across TCOs, specifically using the χ2 test (implemented by the prop.test
function in R). We use the resulting p-values of the test and a significance level of 0.05 to
determine significance.

Flaky Tests. In total, we detected 107 flaky tests in 26 modules. Compared to iDFlakies,
which detected 124 flaky tests in these 26 modules, 64 tests are in common with our 107
tests, 60 tests are detected only by iDFlakies, and 43 tests are detected only by our runs.
In 18 modules where we did not detect any flaky test, iDFlakies detected 40 NOD tests.

99



We detect some more flaky tests than iDFlakies, because the iDFlakies study ran most test
suites 100 times, while we run them 4000 times. We detect some fewer flaky tests than
iDFlakies because of three reasons: (1) iDFlakies uses a custom Maven plugin that does not
respect some configuration options from Surefire, e.g., exclude and runOrder; (2) iDFlakies
does produce false alarms, e.g., it may even run test methods annotated with @Ignore [97],
which should be skipped; and (3) iDFlakies can randomize not just the test-class order but
also the test-method order. These features of iDFlakies have been designed to maximize
the number of potentially flaky tests it can detect, while our study aims to more closely
understand actual flaky tests in developers’ typical test-suite runs.

6.2.4 RQ3: Reproducing TSO Failures in ISO

RQ3 evaluates how likely one can reproduce flaky-test failures observed from TSO runs
by running the tests in ISO. We obtain the data for this RQ by running each test detected
as flaky in TSO runs for 4000 times in ISO. Specifically, we run each of 107 tests detected
from TSO runs in 40 batches with each batch running the test 100 times. We then analyze
the number of flaky-test failures one can reproduce in ISO, and how the failure rates and
burst lengths of these tests differ between TSO and ISO runs.

6.2.5 RQ4: Effect of Flaky Tests on TSRs

RQ4 considers how often a TSR has at least one failing flaky test. We obtain the data
for this RQ from TSO runs. Table 6.1 shows the minimum, maximum, and sum of the
failure rates for the flaky tests in each test suite. From these failure rates we can derive the
bounds for the TSR failure rate, i.e., the ratio of TSRs with at least one flaky-test failure.
The minimum TSR failure rate is the maximum failure rate across all flaky tests in the test
suite—if all flaky tests are dependent, the TSR failure rate equals the maximum of the failure
rates. The maximum TSR failure rate is the sum of the failure rates for all flaky tests in the
test suite (up to 100%)—if all flaky tests are independent, the TSR failure rate equals the
sum of the failure rates. We investigate the TSR failure rates observed in our experiments
and compare how often these failure rates equal the minimum or maximum potential TSR
failure rates.

6.3 RESULTS

We next present the results for our four research questions.

100



0%

25%

50%

75%

100%

0 5 10 20 40 60 80 100
Maximal Test Failure Burst Length

C
um

ul
at

iv
e 

Fr
ac

ti
on

 A
cr

os
s 

Te
st

s

Figure 6.2: Distribution of maximal burst lengths across 107 tests for TSO.

6.3.1 RQ1: Overall Failure Rate and Burst Length

Table 6.1 shows for each module, the number of detected flaky tests (columns TSO and
ISO) and the flaky tests’ minimum, maximum, and sum failure rate—the ratio of runs in
which the flaky tests fail. The failure rate indicates (1) how much of a problem the flaky
test is for developers, (2) how likely it is that a developer observed it as a flaky test, and (3)
how difficult it is to reproduce the flaky-test failure for debugging. For (1), the failure rate
would ideally be close to 0, so that the test rarely affects developers. For (2), the failure
rate would ideally be close to 50%, giving the same probability to observe both passing and
failing runs, which is what dynamic flaky-test detection tools use to classify a test as flaky.
For (3), the failure rate would ideally be close to 100%, so that the failures are reproducible
for debugging.

For the 107 flaky tests that we detect in TSO, the (arithmetic) mean failure rate is 2.7%,
with the minimum of 0.025% and the maximum of 50%. The mean is heavily affected by 7
tests (listed in Table 6.2) with failure rates of ≥10%; in contrast, over 85% of the flaky tests
have a failure rate lower than the mean, resulting in the overall median below 0.5%. These
failure rates indicate that the majority of the flaky tests detected with mvn test rarely affect
developers; indeed, if the failure rates were rather high, the developers would have probably
rewritten or removed the tests. These failure rates also indicate that the flaky tests are
difficult to detect and even more difficult to debug without specialized tools.

If test failures are temporally correlated and tend to occur in consecutive reruns with large

101



0% 20% 40% 60% 80% 100%

Figure 6.3: Ratios of failing TCOs for 98 tests with more than 2 TCOs.

burst lengths, they appear more deterministic to developers and may mislead them in their
conclusions regarding the root cause of the failure. Large burst lengths also hamper flaky
test detection, because they require more reruns before a pass result can be observed and
the test is marked as flaky. However, consecutive failures of flaky tests can be beneficial for
debugging, because failures can be consecutively observed after the first failure.

Figure 6.2 shows the cumulative distribution function (CDF) of maximal burst lengths we
observed across all test reruns. The number cannot exceed 100, because each batch executed
100 TSRs. We discuss the maximal burst length, rather than the average, to obtain a worst
case estimate of the negative impact of flaky tests. The CDF reaches a first plateau at 90.6%
for a burst length of 7, which means that over 90% of flaky tests in our study failed at most 7
times consecutively. Even a burst length of 5 already has 87.8% of tests. The later increases
are for two tests with a maximal burst length of 49, one of 50, and seven OD tests of 100.
Thus, the commonly used number of ten reruns by Google [137] to detect flaky tests does
not appear well justified: after one failure, 87.8% of tests can be found to pass in 5 reruns,
with minor increases at 6 and 7 reruns. The remaining tests require many more than ten
reruns.
Guideline: When rerunning tests after failures to check if they are flaky, our results suggest
≤ 5 reruns.

6.3.2 RQ2: Effect of Order on Failure Rate and Burst Length

We next consider how the previous results vary across test-class orders (TCOs) for each
test. To analyze this variability, we exclude 9 tests with too few TCOs (6 tests with one
TCO and 3 tests with two TCOs), giving us a total of 98 tests.

We first consider failing TCOs, which have at least one failing run. For each test we count
the number of failing TCOs and divide it by the total number of TCOs. If the ratio of failing
TCOs is low, then the distribution of failures across TCOs is not uniform. Figure 6.3 shows
a boxplot for the ratio of failing TCOs with a minimum of 4.8% (1 out of 21), maximum
of 90.5% (19 out of 21), median of 19%, and interquartile range of 10% to 48%. From the
skew in the distribution, TCOs do affect test failures often. The failures appear in a small
ratio of the TCOs for a vast majority of tests. In fact, for 75% of tests, more than half of

102



1%

2%

3%

1% 2% 3%
Failure Rate in Test Suite

Fa
ilu

re
 R

at
e 

in
 Is

ol
at

io
n

Figure 6.4: Failure rates in TSO and ISO for 80 tests that TSO detected, with both rates
≤ 3%; details of the other tests are in Table 6.2.

their TCOs have no failures, which would be unexpected if the failures were independent
and uniformly distributed across TCOs. Our manual inspection (Section 6.4) finds some
tests that are definitely OD, NDOD, and NDOI, and the ratio of failing TCOs for these
categories is 4.8%–19%, 4.8%–58.3%, and 66.7%, respectively. A higher ratio indicates that
a test may be NDOI.

We also conduct a χ2 test of independence to identify significant differences in failure rates
across different TCOs. Out of 98 tests, 70 have a p-value lower than 0.05. For these tests,
the null hypothesis that the failure rates per TCO are the same is rejected. Their failure
rates significantly differ across TCOs, and they are likely NDOD. For the remaining 28 tests,
the null hypothesis cannot be rejected: while there is no clear evidence that the tests are
NDOD, it does not necessarily imply that the tests are NDOI, as we show in Section 6.4.2.

We finally consider differences of the maximal burst length across TCOs for each test.
We observe that 23 out of 107 tests fail in only one order. We consequently exclude these
from our analysis of differences across failing TCOs. Of the remaining 84 tests, 52 have an
identical maximal burst length across all TCOs, which is 1 (i.e., no consecutive failures) for
48 tests and 100 (i.e., all repetitions fail) for 4 tests. As we discuss in Section 6.4.1, the
latter tests are confirmed to be OD tests by our manual inspection. Of the remaining 32
tests, the maximal burst length alternates between 1 and 2 for 21 tests and varies by small
numbers (1–3, 1–4, 1–7, 2–6, 3–5, 3–6) for the remaining 11 tests.
Guideline: We find that a lot of tests may be NDOD; to detect them, it is better to run
tests in more TCOs with fewer times each than in fewer TCOs with more times each.

103



Table 6.2: 27 tests with > 3% TSO or ISO failure rate.
Failure rate [%]

MID Test name TSO ISO
M1 Issue1298.test_for_issue_1 5.0 *100.0
M1 Issue1298.test_for_issue 5.0 *100.0
M1 DefaultExtJSONParser_parseArray.test_7 2.5 *100.0
M1 DefaultExtJSONParser_parseArray.test_8 2.5 *100.0
M3 PortTelnetHandlerTest.testListAllPort 10.0 0.0
M3 PortTelnetHandlerTest.testListDetail 10.0 0.0
M6 TestWriter.shouldWriteToElasticPort 11.4 0.0
M9 TestLRMovingSimMain.testSim 3.0 3.7
M11 TestParallelMatcher.testParallelSlowLog 0.3 58.6
M11 TestPartitionMatcher.testParallelSlowLog 0.8 68.2
M13 TestGetFunction.test 0.7 4.2
M13 TestMemoryLimit.test_no_abuse 0.6 57.1
M20 ZKTest.testBulkClusterJoining 49.0 0.0
M20 ZKTest.testDiscoveryListener 49.0 0.0
M20 ZKTest.testMembershipJoinAndLeave 50.0 0.0
M23 Issue256Test.runReconnectBlockingScenario9 3.2 0.5
M23 Issue256Test.runReconnectScenario0 5.1 16.5
M23 Issue256Test.runReconnectScenario1 1.6 16.5
M23 Issue256Test.runReconnectScenario2 1.2 15.9
M23 Issue256Test.runReconnectScenario3 1.6 16.1
M23 Issue256Test.runReconnectScenario4 1.6 15.8
M23 Issue256Test.runReconnectScenario5 1.6 16.6
M23 Issue256Test.runReconnectScenario6 1.9 15.3
M23 Issue256Test.runReconnectScenario7 1.9 14.9
M23 Issue256Test.runReconnectScenario8 2.7 16.3
M23 Issue256Test.runReconnectScenario9 2.3 15.7
M26 RetryAfterDelayFunctionTest.shouldRetry...DelayDate 10.9 39.1

6.3.3 RQ3: Reproducing TSO Failures in ISO

After encountering a test failure from running a test suite (TSO), developers are likely
to debug the test by running it in isolation (ISO), because ISO runs faster. However, it is
unclear how many flaky tests can be reproduced in ISO. Moreover, even when both TSO and
ISO detect a test, the failure rates in TSO and ISO can greatly differ, as shown in Figure 6.4
and Table 6.2. The figure shows a scatterplot for the 80 tests where both failure rates are
below 3%, and the table lists the actual failure rates for the other tests.

From Table 6.1 we see that ISO detected only 50 of the 107 tests that TSO detected, despite
both having the same number of runs (4000). That is, ISO did not detect 57 tests by itself,
but note that four tests from M1 (shown in Table 6.2) do have failing runs in ISO—in fact,

104



0%

25%

50%

75%

100%

0 5 10 20 40 60 80 100
Maximal Test Failure Burst Length

C
um

ul
at

iv
e 

Fr
ac

ti
on

 A
cr

os
s 

Te
st

s
Test Run Configuration

TSO
ISO

Figure 6.5: Distribution of maximal burst lengths across 50 tests for TSO & ISO.

these are OD tests that failed for all ISO runs (marked with ‘*’ in the table)—but because
they have no passing runs, we do not consider them detected in ISO. The difference in the
number of detected tests already shows that reproducing passing and failing runs in TSO
and ISO can greatly differ. Failure rates can also differ: of the 50 tests that ISO detected,
19 tests have their failure rates lower for ISO, 3 have it equal, and 28 have it higher. For the
tests where the ISO failure rate is lower, the maximum and median difference is 2.6pp and
0.6pp, respectively. For the tests where it is higher, the maximum and median difference is
67.4pp and 7.4pp, respectively. We analyze in detail some of the tests with large differences
in Section 6.4.

Because the observed failure rates are based on a sample of runs, we also perform sta-
tistical tests to check whether the differences are statistically significant. We conduct a
paired Wilcoxon signed-rank test and a Kolmogorov-Smirnov (KS) test on the failure rate
distributions obtained in our experiments. We chose the Wilcoxon signed-rank test because
(1) it is based on a pair-wise comparison of the failure rate for individual tests, rather than
an overall statistic on the failure rate distribution; and (2) it intuitively captures how of-
ten either TSO or ISO yields a higher failure rate, weighted by the rank of the difference
magnitude. By mapping the actual magnitude of the difference to a rank, the test statistic
is robust to outliers in the differences of failure rates. On our dataset, the test results in a
p-value of 0.041. Therefore, the difference between the observed failure rates for TSO and
ISO test executions is significant at the 0.05 level. However, the Wilcoxon test’s mapping
to ranks loses information on the magnitude of difference, which is captured by the CDFs
on which the KS test is based. For our dataset, the KS test results in a p-value of 2.9e-12,
which strongly rejects the null hypothesis that the samples come from the same distribution.

105



We also compare the maximal burst length for TSO and ISO runs. Figure 6.5 shows the
CDFs of the maximal burst length per test for all tests detected by both TSO and ISO. From
the plot, we observe that TSO reaches 82% for a maximal burst length of 2 test failures.
However, for ISO the maximal burst length tends to be longer, e.g., ISO would reach 82%
for a maximal burst length of 5 test failures instead. Due to the larger maximal burst length
for ISO test executions, if one aims to find whether a test can pass, it could be beneficial to
rerun failing tests in their test suites rather than in isolation, especially when the number
of tests in the prefix of the test suite run before the test that failed is low. While rerunning
in isolation has the advantage of reducing test runtime to an individual test, it entails the
overhead for a potentially longer burst length before a passing run can be observed. In
contrast, if one aims to get a failure, e.g., for debugging, it appears more beneficial to run
the tests in ISO.
Guideline: We find that 53% of flaky tests detected in TSO runs are not detected in ISO
runs. We also find that the maximal burst length tends to be longer for ISO than for TSO,
which suggests that developers debugging flaky tests should run the tests in ISO. Dually, to
detect flaky tests, running tests in TSO tends to be better because the smaller burst length
is more likely to lead to a passing and failing run in fewer TSRs.

6.3.4 RQ4: Effect of Flaky Tests on TSRs

Whether developers can merge their recent changes to a project typically depends on
whether the entire test suite passes or not with their recent changes. Even one flaky-test
failure from a test-suite run (TSR) would prevent the developers from merging their recent
code changes. Whether a TSR would fail due to flaky tests depends on the number of flaky
tests in the test suite, the failure rate of each flaky test, and how related the flaky tests are
with one another. For example, a test suite with 4000 runs that has two flaky tests that
each fail 20 times, will have a minimum of 20 TSRs that fail (with exactly two failures per
failed TSR) and a maximum of 40 TSRs that fail (with exactly one failure per failed TSR).

We study the TSR failure rates and how they relate to individual test failure rates to
understand how often (1) developers would encounter TSR failures and (2) failures of dif-
ferent flaky tests are related to one another. Table 6.1 shows the actual TSR failure rate
we obtained across all 4000 TSRs. Overall, we find that developers encounter TSR failures
between <0.1% (only one TSR failed for M4 and M17) to 50% (2000 TSRs failed from M20).
On average, developers would encounter a TSR failure in 5.4% of TSRs.

From Table 6.1 we can also see that 12 modules have only one flaky test detected, so
their minimum, maximum, and sum failure rate is the same as the TSR failure rate. For the

106



other 14 modules, we find that the TSR failure rate is the same as the maximum failure rate
for 21% (3 / 14) of modules (M12, M16, M20). Thus, the flaky tests in these modules are
related to one another (i.e., when one fails, more also fail). When we manually investigated
M20’s three flaky tests, we do indeed find that two tests always failed together, and the third
test fails with them, but the third test fails in one more run and is responsible for M20’s
maximum failure rate. Specific details of these tests are in Section 6.4.2. We further find
that the TSR failure rate is the same as the sum failure rate for 43% (6 / 14) of modules.
Thus, the flaky tests in these six modules are likely independent of one another (i.e., they
always fail separately). For the remaining 36% (5 / 14) of modules, the TSR failure rate is
in between the potential minimum and maximum TSR failure rates, suggesting that their
flaky tests are a mix of related and independent flaky tests.
Guideline: At least 21% and up to 57% of test suites with multiple flaky tests have flaky
tests related to one another, so flaky-test management systems [107, 128] could present the
related flaky-test failures to help developers prioritize which tests to fix, e.g., first fix flaky
tests that are related.

6.4 MANUALLY INSPECTED FLAKY TESTS

To better understand flaky tests, we manually inspected the root causes of flakiness for a
number of tests. We selected a variety of tests from different modules, including NOD and
OD tests, tests with high TSO or ISO failure rates, and tests with high and low χ2 p-values
for failure rates across TCOs. Inspecting the first flaky test of a new test class takes about
a day on average. In sum, we inspected 28 tests and found 7 OD, 14 NDOD, 4 NDOI, and
3 more NOD that are difficult to confirm as NDOD or NDOI. We found that low p-values
properly mark NDOD tests, but high p-values may not be NDOI tests, especially for tests
that have a small overall number of test failures across all TCOs.

6.4.1 OD Tests

While this chapter aims to study NOD tests, our experiments did encounter 7 tests cat-
egorized as OD, i.e., the failure rate for each TCO was either 0% or 100%. Our inspection
confirmed that all these tests are indeed OD. 5 tests were already fixed [161, 162, 164] as
part of our iFixFlakies work [186]; note that the iDFlakies dataset used in our experiments
has older commits, not the latest commit. Note also that the iDFlakies study [108] detected
many more OD tests in the modules used in our experiments, because the iDFlakies tool per-
turbs the order of all test methods in a test suite, whereas our use of mvn test only perturbs

107



the order of some test classes. The remaining 2 tests had not been fixed, so as a contribution
of this work we provided a pull request [163] that the developers already accepted.

6.4.2 NDOD Tests

High TSO Failure Rate. Table 6.2 lists three tests that have a much higher failure rate
for TSO than for ISO. All three tests are from the module M20 and class ZKTest. Our
inspection shows that all three tests fail for the same reason. These tests check certain
network operations, which require obtaining a port number. All three tests share the same
port numbers, and when they use a port, they mark that by creating a file in the /tmp
directory, which is never deleted. The test code allows these tests to use 152 different ports.
As a result, after all three tests are run 50 times each, they mark 150 ports, and so in the
51st run two tests will pass and then one will fail, while from the 52nd run all three will
start failing. In fact, these failures are deterministic. Strictly speaking, the tests are still
NDOD because they both pass and fail for the exact same test order in TSO. In contrast,
none of the tests fails in ISO. The reason is that we run each test 100 times on one virtual
machine (VM) and then allocate a fresh VM for the next 100 runs. (Depending on the CI
system, developers may also not encounter these failures, e.g., Travis [208] uses a fresh VM
for every TSR.) Thus, each test marks only 100 ports in its 100 runs and does not reach
the 152; had we run the test in ISO for 153 or more times on the same VM, we would have
also encountered failures. These examples illustrate that running multiple tests can, in some
circumstances, have a higher failure rate than running only each test in isolation.

High ISO Failure Rate. Table 6.2 also lists three tests that have a much higher failure
rate for ISO than for TSO. Two of the tests are from the module M11, classes TestPartition-
Matcher and TestParallelMatcher. It turns out that both are subclasses of an abstract class
that defines the method testParallelSlowLog. Both tests fail in some isolation runs, and
the exception message indicates that some transaction was too slow. These tests run three
transactions each, and fail when one of them takes too much time. The transactions take
much longer in ISO runs than in TSO runs for the following reason. Each transaction is
executed in a thread. In TSO runs, a previous test creates threads and caches them, so a
later test can run quicker by reusing the created cache. In fact, testParallelSlowLog uses
an API call that checks the cache prior to creating threads. However, in ISO runs, this test
always creates a thread and then runs the transaction. As a result, the test fails much more
often in the ISO runs.

Another test is from the module M13, class TestMemoryLimit. This test fails when some

108



resource bound is exceeded. Specifically, the project provides a sandbox for executing
JavaScript in Java, and this test checks that some execution of a JavaScript program does
not exceed a certain amount of memory. The memory check does not consider the entire
heap but only the amount of memory allocated by the thread that the test executes. When
the test runs in isolation, it allocates all the memory and fails often, but not always, as the
memory check is done every 50ms. Therefore, the test may pass the memory check at one
point and then finish in less than 50ms, despite going over the memory limit after the check.
When the test runs in the test suite, another test runs before it and allocates many shared
objects. Thus, the second test can use these shared objects from the heap and allocates less,
so it fails much less often.

These examples illustrate how running tests in isolation can fail more often than running
in the test suite because the test depends on some resource (shared memory, runtime) that
can benefit from the tests that run before this test. However, running a test after others in
a test suite could also negatively impact the test. In general, we cannot tell a priori whether
running a test after others would be beneficial or hurtful. For example, consider just the
runtime. A test may run faster after others because others can prepare shared state such
as (1) load classes needed for test execution so the test in question need not reload those
classes; (2) execute shared code and trigger JIT compilation so that the execution of the test
in question executes optimized code; or (3) bring files from disk into memory so it becomes
faster to access for the test in question. On the other hand, a test may run slower after others
because others can put some pressure on the shared resources, e.g., (1) allocate memory so
that garbage collection takes more time; (2) spawn threads that are not shut down so that
the test in question has to compete with the other threads; (3) create I/O requests (e.g.,
write to disk or send network packets) so that the requests from the test in question take
more time, etc.

High χ2 p-Value. We finally discuss two example tests that have high p-values but our
inspection still finds the failures to depend on the test order. One test is from the mod-
ule M15, class CronTest. The test creates a pattern matcher for time which itself calls
DateUtil.date().second() to initialize the matcher. The test also explicitly creates another
time object calling DateUtil.current(false) to be matched with the matcher. Both calls
get milliseconds and translate them into seconds, minutes, hours, and dates. The test fails
if the two calls have a different value for seconds. The two calls are executed nearby, so the
chance is small that the first call is executed right at the end of one second interval and the
second call right at the start of the next second interval. The probability for the test to
fail depends on how much time it takes between the two method calls. In our experiments,

109



this time is ∼15ms for ISO runs, i.e., the test fails if the first call gets milliseconds that
modulo 1000 give values 985–999, so the test fails in ∼15/1000=1.5% of runs. In contrast,
the code runs faster in TSO (due to the already discussed effects of class loading and JIT
compilation), so the test fails less frequently, only ∼1/1000=0.1% of runs. Moreover, the
failure rates differ across the two test orders: in one order this class runs second, and the test
never fails; in the other order the class runs first, so the test can fail but still less frequently
than in ISO because other test methods run before this test.

Another test is from the module M13, class TestIssue34. It is similar to the previously
discussed M13 test and fails if a memory limit is exceeded. The test takes more memory in
ISO than in TSO, as expected. Our additional experiments, after 4000 TSRs, show the test
takes 840–900K in ISO runs, and 510–630K in TSO runs (when run late in a TCO). The
limit is 1000K, so one may expect the test to more likely fail in ISO than in TSO. However,
in 4000 runs, the test exceeded the memory limit in one TSO run but never in ISO. Because
of the small number of failures, the p-value is high, yet the test manifestly depends on the
order and is an NDOD.

Others. One test is already explained in Section 1.2.3. We omit detailed descriptions of 5
tests due to their similarity to the tests already explained: TestWriter from M6 is flaky be-
cause of timeout, whereas CompletableThrowingSafeSubscriberTest, CompletableThrowing-
Test, and SingleThrowingTest from M21 and Issue621Test from M23 are flaky because of
concurrency.

6.4.3 NDOI Tests

Tests that have similar failure rates across TCOs in TSO (and also similar in ISO) are
likely NDOI. We inspect several tests with high p-value. All four tests from the module
M16, class TimeSeriesGroupingIteratorTest, are NDOI. These tests have (1) for each test,
similar failure rates in the TSO and ISO runs; and (2) across all tests, similar TSO failure
rates and ISO failure rates. In fact, many of these tests often fail together in the test suite
(thus the TSR failure rate for their module is the same as the maximum TSO failure rate
for individual tests). Furthermore, in our experiments, we find that each test fails in bursts,
whether in TSO or ISO, i.e., a test fails 3–4 times in a row (if it fails in 100 runs at all).

The error message does not hint at the root cause but says that some averages of numeric
values differ in two data structures. Our inspection shows that all of the tests populate these
data structures with random numbers, and the random seed is based on the current time.
The time is taken in milliseconds and translated into seconds, minutes, hours, and the date.

110



A careful analysis of testTimeSeriesDropOff and testMultipleTimeSeriesMovingAverage
shows that they fail when the time seed translates into the range of approximately 58min:20sec
to 59min:55sec (for any hour or date); if a test is run earlier or later, it passes. (The reason
is that each test initializes the two data structures based on the time using offsets of 5sec
and 100sec.) Most precisely, in each hour there are 95000 millisecond values for which each
test fails, so assuming that each test can be run uniformly for any millisecond, each test is
expected to fail in 95000/(60*60*1000)=2.64% of runs. In our experiments, the tests indeed
have similar failure rates: 2.95% in ISO and 2.72% in TSO for testTimeSeriesDropOff, and
2.80% in ISO and 2.72% in TSO for testMultipleTimeSeriesMovingAverage. The other two
tests, testManySparseTimeSeries and testAdditionalTimeSeries, behave similarly.

Abstracting from the details, these tests show some example NDOI tests that do not
depend on the test order but depend only on the time when they are run. Such tests that
definitely do not depend on the order appear to be rather rare.

6.4.4 NOD Tests Difficult to Classify

We inspected three NOD tests that are difficult to classify as NDOD or NDOI. We selected
these tests based on high p-values (e.g., one test has p-value of 1), but some have a low number
of failures (e.g., one test fails twice in 2000 TSRs of one TCO but does not fail in 100 TSRs
for any of the other 20 TCOs). The root cause for all three tests is concurrency [123].

Two tests are from the module M5, class RepublisherImplTest. Both tests have a concur-
rent order violation. Effectively, each test has two threads with a shared map object that
has one element before one thread calls toBePublished.remove(event), while another checks
assertEquals(0, toBePublished.size()). If the execution switches from one thread to the
other at a particular point, the test fails with expected:<0> but was:<1>. We can get each
test to reproducibly fail if we add some delay at that point. Developers likely encountered
these problems before as both tests have commented sleep(2000). In fact, the message for
one commit that commented out that sleep is “Speed up tests ...”; while the tests may run
faster, they became (more) flaky. Unfortunately, reasoning about the probability that a test
run with two threads makes a context switch at exactly some point is rather challenging, so
we cannot precisely determine if these tests are NDOD or NDOI.

Another test is from module M14, class WaiterTest. This test creates one thread that
executes lock.wait(millis). The main thread has Thread.sleep(20) and then effectively
calls lock.notify(). However, if notify is called before wait, the signal is missed, and wait
would block forever if it were not for the timeout of millis=1000. We can make the test to
fail deterministically by adding a delay in the right place in the code under test. We can

111



also delete the existing sleep(20) in the test to make it fail determinstically. Unfortunately,
reasoning precisely and analytically whether the probability that notify is missed due to
TCO is again rather challenging because it requires determining the execution times of
various events controlled by the JVM. As discussed in Section 6.3.2, an empirical approach
would be to just run the tests many more times to observe more failures and use a statistical
analysis to check failure rates across TCOs.

6.5 THREATS TO VALIDITY

A threat to validity is that our study uses only 26 modules from 23 Maven-based, Java
projects. These modules may not be representative, causing our results to not generalize
well. We attempt to mitigate this threat by using modules from iDFlakies [85], selecting
them as described in Section 6.2.1.

As our study is on flaky tests, particularly NOD tests, it is likely that some specific
numbers (e.g., number of NOD tests or failure rates) would change if the tests were run
more times or on different machines. We attempt to mitigate this threat by running every
test suite 4000 times in 40 batches, and every TCO at least 100 times. For every flaky test
found by TSO, we again run it 4000 times in isolation. At the time that our experiments
were done, they consisted of the largest number of runs in any published study of flaky tests.
We also manually inspect 28 tests to check the root cause and categorization in Section 6.4.

The findings from our RQs in Section 6.3 may be influenced by the types of statistical
tests that we used to interpret the data. We attempt to mitigate this threat by considering
two statistical tests for RQ3 (Section 6.3.3). We also make all data and scripts that were
used to generate the plots and figures in our paper publicly available on our website [55] so
that others may interpret the data however they see fit.

6.6 SUMMARY

Flaky tests are caused by various sources of non-determinism, and the research community
can benefit from multiple studies to understand flaky tests and develop new solutions for
them. Several studies of flaky test have keyed on one group of flaky tests, order-dependent
tests. We show that the other group, called “non-deterministic” tests, also has many tests
that actually do depend on the test order, sometimes in complex ways. These tests have
significantly different failure rates in different test orders and in isolated runs. To capture the
complexity of these tests, we propose the term non-deterministic, order-dependent (NDOD)

112



tests. We manually inspect a number of flaky tests to show concrete, real-world examples.
We hope that our study motivates more researchers to tackle this practically important
problem.

113



CHAPTER 7: [TAMING] ACCOMMODATING ORDER-DEPENDENT
FLAKY TESTS

This chapter presents our work on enhancing regression testing techniques to accommo-
date OD tests so that these tests encounter fewer spurious failures when regression testing
techniques are used. Section 7.1 presents our motivational study to understand the im-
pact that OD tests have on regression testing techniques. Section 7.2 presents our work on
enhancing regression testing techniques, and Section 7.3 presents our evaluation of our en-
hanced techniques. Section 7.4 presents our discussions of the work in this chapter. Finally,
Section 7.5 presents our threats to validity, and Section 7.6 concludes this chapter.

7.1 IMPACT OF ORDER-DEPENDENT TESTS

To understand how often traditional regression testing techniques lead to flaky-test failures
due to OD tests, which we call OD-test failures, we evaluate a total of 12 algorithms from
three well-known regression testing techniques on 11 Java modules from 8 real-world projects
with test suites that contain OD tests.

7.1.1 Traditional Regression Testing Techniques

Test prioritization, selection, and parallelization are traditional regression testing tech-
niques that aim to detect faults faster than simply running all of the tests in the given test
suite. We refer to the order in which developers typically run all of these tests as the orig-
inal order. These traditional regression testing techniques produce orders (permutations of
a subset of tests from the original order) that may not satisfy test dependencies.

Test Prioritization. Test prioritization aims to produce an order for running tests that
would fail and indicate a fault sooner than later [45, 89, 101, 117, 171, 173, 192, 227]. Prior
work [45] proposed test prioritization algorithms that reorder tests based on their (1) total
coverage of code components (e.g., statements, methods) and (2) additional coverage of
code components not previously covered. These algorithms typically take as input coverage
information from a prior version of the code and test suite, and they use that information to
reorder the tests on future versions1. We evaluate 4 test prioritization algorithms proposed
in prior work [45]. Table 7.1 gives a concise description of each algorithm. Namely, the

1There is typically no point collecting coverage information on a future version to reorder and run tests
on that version, because collecting coverage information requires one to run the tests already.

114



Table 7.1: Four evaluated test prioritization algorithms.
Label Ordered by

T1 Total statement coverage of each test
T2 Additional statement coverage of each test
T3 Total method coverage of each test
T4 Additional method coverage of each test

Table 7.2: Six evaluated test selection algorithms.
Selection

Label granularity Ordered by
S1 Statement Test ID (no reordering)
S2 Statement Total statement coverage of each test
S3 Statement Additional statement coverage of each test
S4 Method Test ID (no reordering)
S5 Method Total method coverage of each test
S6 Method Additional method coverage of each test

Table 7.3: Two evaluated test parallelization algorithms.
Label Algorithm description

P1 Parallelize on test ID
P2 Parallelize on test execution time

algorithms reorder tests such that the ones with more total coverage of code components
(statements or methods) are run earlier, or reorder tests with more additional coverage of
code components not previously covered to run earlier.

Test Selection. Test selection aims to select and run a subsuite of a program’s tests after
every change, but to detect the same faults as if the full test suite is run [20, 77, 83, 146,
157, 169, 227, 234]. We evaluate 6 test selection algorithms that select tests based on their
coverage of modified code components [20, 77]; Table 7.2 gives a concise description of each
algorithm. The algorithms use program analysis to select every test that may be affected by
recent code modifications [77]. Each algorithm first builds a control-flow graph (CFG) for
the then-current version of the program Pold, runs Pold’s test suite, and maps each test to the
set of CFG edges covered by the test. When the program is modified to Pnew, the algorithm
builds Pnew’s CFG and then selects the tests that cover “dangerous” edges: program points
where Pold and Pnew’s CFGs differ. We choose to select based on two levels of code-component
granularity traditionally evaluated before, namely statements and methods [227]. We then
order the selected tests. Ordering by test ID (an integer representing the position of the
test in the original order) essentially does no reordering, while the other orderings make the
algorithm a combination of test selection followed by test prioritization.

115



Test Parallelization. Test parallelization schedules the input tests for execution across
multiple machines to reduce test latency—the time to run all tests [93, 102, 140, 193]. Test
parallelization techniques are widely adopted in industry. For example, Visual Studio 2010
(and later) supports a model of executing tests in parallel on a multi-CPU/core machine [51].
Two popular automated approaches for test parallelization are to parallelize a test suite
based on (1) test ID and (2) execution time from prior runs [174]. A test ID is an integer
representing the position of the test in the original order. We evaluate one test parallelization
algorithm based on each approach (as described in Table 7.3). The algorithm that parallelizes
based on test ID schedules the ith test on machine imod k, where k is the number of available
machines and i is the test ID. The algorithm that parallelizes based on the tests’ execution
time (obtained from a prior execution) iteratively schedules each test on the machine that
is expected to complete the earliest based on the tests already scheduled so far on that
machine. We evaluate each test parallelization algorithm with k = 2, 4, 8, and 16 machines.

7.1.2 Evaluation Projects

Our evaluation projects consist of 11 modules from 8 Maven-based Java projects. These
11 modules are a subset of modules from the comprehensive version of a published dataset
of flaky tests [85]. We include all of the modules that contain OD tests, except for eight
modules that we exclude because they are either incompatible with the tool that we use to
compute coverage information or they contain OD tests where the developers have already
specified test orderings in which the OD tests should run. A list of modules that we exclude
from the dataset and the reasons for why we exclude them are available on our website [5].

In addition to the existing human-written tests, we also evaluate automatically gener-
ated tests. Automated test-generation tools [25, 28, 29, 58, 158, 238] are attractive because
they reduce developers’ testing efforts. These tools typically generate tests by creating
sequences of method calls into the code under test. Although the tests are meant to be
generated independently from one another, these tools often do not enforce test independence
because doing so can substantially increase the runtime of the tests (e.g., restarting the VM
between each generated test). This optimization results in automatically generated test
suites occasionally containing OD tests. Given the increasing importance of automatic-
ally generated tests in both research and industrial use, we also investigate them for OD
tests. Specifically, we use Randoop [158] version 3.1.5, a state-of-the-art random-based test-
generation tool. We configure Randoop to generate at most 5000 tests for each evaluation
project, and to drop tests that are subsumed by other tests (tests whose sequence of method
calls is a subsequence of those in other tests).

116



Table 7.4: Statistics of the projects used in our evaluation.
LOC # Tests # OD tests # Evaluation Days between vers.

ID Project Main Tests Human Auto Human Auto versions Average Median
M1 apache/incubator-dubbo - m1 2394 2994 101 353 2 (2%) 0 (0%) 10 4 5
M2 - m2 167 1496 40 2857 3 (8%) 0 (0%) 10 25 18
M3 - m3 2716 1932 65 945 8 (12%) 0 (0%) 10 10 8
M4 - m4 198 1817 72 2210 14 (19%) 0 (0%) 6 32 43
M5 apache/struts 3015 1721 61 4190 4 (7%) 1 (<1%) 6 61 22
M6 dropwizard/dropwizard 1718 1489 70 639 1 (1%) 2 (<1%) 10 11 6
M7 elasticjob/elastic-job-lite 5323 7235 500 566 9 (2%) 4 (1%) 2 99 99
M8 jfree/jfreechart 93915 39944 2176 1233 1 (<1%) 0 (0%) 5 13 2
M9 kevinsawicki/http-request 1358 2647 160 4537 21 (13%) 0 (0%) 10 42 4
M10 undertow-io/undertow 4977 3325 49 967 6 (12%) 1 (<1%) 10 22 15
M11 wildfly/wildfly 7022 1931 78 140 42 (54%) 20 (14%) 10 37 19
Total / Average / Median 122803 66531 3372 18637 111 (3%) 28 (<1%) 89 25 8

7.1.3 Methodology

Regression testing algorithms analyze one version of code to obtain metadata such as
coverage or time information for every test so that they can compute specific orders for
future versions. For each of our evaluation projects, we treat the version of the project used
in the published dataset [85] as the latest version in a sequence of versions. In our evaluation,
we define a “version” for a project as a particular commit that has a change for the module
containing the OD test, and the change consists of code changes to a Java file. Furthermore,
the code must compile and all tests must pass through Maven. We go back at most 10
versions from this latest version to obtain the First Version (denoted as firstVer) of each
project. We may not obtain 10 versions for a project if it does not have enough commits that
satisfy our requirements, e.g., commits that are old may not be compilable anymore due to
missing dependencies. We refer to each subsequent version after firstVer as a subseqVer. For
our evaluation, we use firstVer to obtain the metadata for the regression testing algorithms,
and we evaluate the use of such information on the subseqVers. For automatically generated
test suites, we generate the tests on firstVer and copy the tests to subseqVers. Any copied
test that does not compile on a subseqVer is dropped from the test suite on that version.

Table 7.4 summarizes the information of each evaluation project. Column “LOC” is the
number of non-comment, non-blank lines in the project’s main code and human-written
tests as reported by sloc [189] for firstVer of each evaluation project. Column “# Tests”
shows the number of human-written tests and those generated by Randoop [158] for firstVer
of each evaluation project. Column “# Evaluation versions” shows the number of versions
from firstVer to latest version that we use for our evaluation, and column “Days between
versions” shows the average and median number of days between the versions that we use
for our evaluation.

To evaluate how often OD tests fail when using test prioritization and test parallelization
algorithms, we execute these algorithms on the version immediately following firstVer, called

117



the Second Version (denoted as secondVer). For test selection, we execute the algorithms
on all versions after firstVer up to the latest version (the version from the dataset [85]).
The versions that we use for each of our evaluation projects are available online [5]. For
all of the algorithms, they may rank multiple tests the same (e.g., two tests cover the same
statements or two tests take the same amount of time to run). To break ties, the algorithms
deterministically sort tests based on their ordering in the original order. Therefore, with the
same metadata for the tests, our algorithms would always produce the same order.

For the evaluation of test prioritization algorithms, we count the number of OD tests
that fail in the prioritized order on secondVer. For test selection, given the change between
firstVer and the future versions, we count the number of unique OD tests that fail from the
possibly reordered selected tests on all future versions. For test parallelization, we count the
number of OD tests that fail in the parallelized order on any of the machines where tests are
run on secondVer. All test orders are run three times, and a test is counted as OD only if it
consistently fails for all three runs. Note that we count all failed tests as OD tests because
we ensure that all tests pass in the original order of each version that we use.

Note that the general form of the OD test detection problem is NP-complete [237]. To
get an approximation for the maximum number of OD-test failures with which the orders
produced by regression testing algorithms can cause, we apply DTDetector [237] to random-
ize the test ordering for 100 times on firstVer and all subseqVers. We choose randomization
because prior work [85, 237] found it to be the most effective strategy in terms of time cost
when finding OD tests. The DTDetector tool is sound but incomplete, i.e., every OD test
that DTDetector finds is a real OD test, but DTDetector is not guaranteed to find every OD
test in the test suite. Thus, the reported number is a lower bound of the total number of OD
tests. Column “# OD tests” in Table 7.4 reports the number of OD tests that DTDetector
finds when run on all versions of our evaluation projects.

There are flaky tests that can pass or fail on the same version of code but are not OD
tests (e.g., flaky tests due to concurrency). For all of the test suites, we run each test suite
100 times in its original order and record the tests that fail as flaky but not as OD tests.
We use this set of NOD flaky tests to ensure that the test failures observed on versions after
firstVer are likely due to OD tests and not other categories of flaky tests.

7.1.4 Results

Table 7.5 and Table 7.6 summarize our results (parallelization is averaged across k = 2,
4, 8, and 16). The exact number of OD-test failures for each regression testing algorithm
is available on our website [5]. In Table 7.5, each cell shows the percentage of unique OD

118



tests that fail in all of the orders produced by the algorithms of a technique over the number
of known OD tests for that specific evaluation project. Cells with a “n/a” represent test
suites (of evaluation projects) that do not contain any OD tests according to DTDetector
and the regression testing algorithms. The “Total” row shows the percentage of OD tests
that fail across all evaluation projects per technique over all OD tests found by DTDetector.
In Table 7.6, each cell shows the percentage of OD tests across all evaluation projects that
fail per algorithm. The dependent tests that fail in any two cells of Table 7.6 may not be
distinct from one another.

On average, 3% of human-written tests and <1% of automatically generated tests are OD
tests. Although the percentage of OD tests may be low, the effect that these tests have
on regression testing algorithms is substantial. More specifically, almost every project’s
human-written test suite has at least one OD-test failure in an order produced by one or
more regression testing algorithms (the only exceptions are jfree/jfreechart (M8) and
wildfly/wildfly (M11)). These OD-test failures waste developers’ time or delay the discov-
ery of a real fault.

According to Table 7.6, it may seem that algorithms that order tests by Total coverage (T1,
T3, S2, S5) always have fewer OD-test failures than their respective algorithms that order
tests by Additional coverage (T2, T4, S3, S6), particularly for test prioritization algorithms.
However, when we investigate the algorithm and module that best exhibit this difference,
namely kevinsawicki/http-request’s (M9) test prioritization results, we find that this one case
is largely responsible for the discrepancies that we see for the test prioritization algorithms.
Specifically, M9 contains 0 OD-test failures for T1 and T3, but 14 and 24 OD-test failures
for T2 and T4, respectively. All OD tests that fail for M9’s T2 and T4 would fail when one
particular test is run before them; we refer to this test that runs before as the dependee test.
The dependent tests all have similar coverage, so in the Additional orders, these tests are
not consecutive and many of them come later in the orders. The one dependee test then
comes inbetween some dependent tests, causing the ones that come later than the dependee
test to fail. In the Total orders, the dependee test has lower coverage than the dependent
tests and is always later in the orders. If we omit M9’s test prioritization results, we no
longer observe any substantial difference in the number of OD-test failures of Total coverage
algorithms compared to that of Additional coverage algorithms.

Impact on Test Prioritization. Test prioritization algorithms produce orders that cause
OD-test failures for the human-written test suites in eight evaluation projects. For automat-
ically generated test suites, test prioritization algorithms produce orders that cause OD-test
failures in three projects. Our findings suggest that orders produced by test prioritization

119



Table 7.5: Percentage of OD tests that fail in orders produced by different regression testing
techniques, per evaluation project.

OD tests that fail (per evaluation project)
Prioritization Selection Parallelization

ID Human Auto Human Auto Human Auto
M1 50% n/a 100% n/a 50% n/a
M2 67% n/a 67% n/a 0% n/a
M3 12% n/a 50% n/a 0% n/a
M4 7% n/a 14% n/a 14% n/a
M5 0% 100% 25% 100% 75% 100%
M6 100% 0% 0% 0% 0% 100%
M7 44% 50% 0% 0% 0% 25%
M8 0% n/a 0% n/a 0% n/a
M9 71% n/a 71% n/a 0% n/a
M10 17% 0% 17% 0% 0% 100%
M11 0% 60% 0% 0% 0% 30%
Total 23% 54% 24% 4% 5% 36%

Table 7.6: Percentage of OD tests that fail in orders produced by individual regression
testing algorithms.

OD tests that fail (per algorithm)
Prioritization Selection Parallelization

Type T1 T2 T3 T4 S1 S2 S3 S4 S5 S6 P1 P2
Human 5% 25% 5% 20% 1% 28% 31% 1% 5% 9% 2% 5%
Auto 36% 43% 71% 25% 4% 4% 4% 4% 4% 4% 21% 64%

algorithms are more likely to cause at least one OD-test failures in human-written test suites
than automatically generated test suites. Overall, we find that test prioritization algorithms
produce orders that cause 23% of the human-written OD tests to fail and 54% of the auto-
matically generated OD tests to fail.

Impact on Test Selection. Test selection algorithms produce orders that cause OD-test
failures for the human-written test suites in seven evaluation projects and for the automat-
ically generated test suites in one project. These test selection algorithms produce orders
that cause 24% of the human-written OD tests and 4% of the automatically generated OD
tests to fail. The algorithms that do not reorder a test suite (S1 and S4) produce orders that
cause fewer OD-test failures than the algorithms that do reorder. This finding suggests that
while selecting tests itself is a factor, reordering tests is generally a more important factor
that leads to OD-test failures.

Impact on Test Parallelization. Test parallelization algorithms produce orders that
cause OD-test failures because the algorithms may schedule an OD test on a different machine
than the test(s) that it depends on. We again find that the parallelization algorithm that

120



reorders tests, P2, produces orders that cause substantially more OD-test failures than P1.
This result reaffirms our finding from Section 7.1.4 that reordering tests has a greater impact
on OD-test failures than selecting tests. The percentages reported in Table 7.5 and Table 7.6
are calculated from the combined set of OD tests that fail due to parallelization algorithms
for k = 2, 4, 8, and 16 machines. The orders of these algorithms cause 5% of the human-
written OD tests and 36% of the automatically generated OD tests to fail on average.

7.1.5 Findings

Our study suggests the following two main findings.
(1) Regression testing algorithms that reorder tests in the given test suite are
more likely to experience OD test failures than algorithms that do not reorder
tests in the test suite. We see this effect both by comparing test selection algorithms
that do not reorder tests (S1 and S4) to those that do, as well as comparing a test paral-
lelization algorithm, P2, which does reorder tests, to P1, which does not. Developers using
algorithms that reorder tests would especially benefit from our dependent-test-aware algo-
rithms described in Section 7.2.
(2) Human-written and automatically generated test suites are likely to fail due
to test dependencies. As shown in Table 7.5, we find that regression testing algorithms
produce orders that cause OD-test failures in 82% (9 / 11) of human-written test suites with
OD tests, compared to the 100% (5 / 5) of automatically generated test suites. Both percent-
ages are substantial and showcase the likelihood of OD-test failures when using traditional
regression testing algorithms that are unaware of OD tests.

7.2 DEPENDENT-TEST-AWARE REGRESSION TESTING TECHNIQUES

When a developer conducts regression testing, there are two options: running the tests
in the original order or running the tests in the order produced by a regression testing
algorithm. When the developer runs the tests in the original order, a test might fail because
either (1) there is a fault somewhere in the program under test or test code, or (2) the test
is flaky but it is not a OD test (e.g., flaky due to concurrency). However, when using a
traditional regression testing algorithm, there is a third reason for why tests might fail: the
produced orders may not be satisfying the test dependencies. Algorithms that are susceptible
to this third reason do not adhere to a primary design goal of regression testing algorithms.
Specifically, the orders produced by these algorithms should not cause OD-test failures: if
the tests all pass in the original order, then the algorithms should produce only orders in

121



Original Order
t1
t2
t3
t4...

Unenhanced
regression testing

algorithm

Unenhanced Order
t3
t2
t1
t4...

test
dependencies
⟨t1 → t2⟩

Enhanced
regression testing

algorithm +

Enhanced Order
t3
t1
t2
t4...

Figure 7.1: Example of an unenhanced and its enhanced, dependent-test-aware regression
testing algorithms.

which all of the tests pass (and dually, if tests fail in the original order, then the algorithms
should produce only orders in which these tests fail).2 Since many real-world test suites
contain OD tests, a regression testing algorithm that assumes its input contains no OD tests
can produce orders that cause OD-test failures, violating this primary design goal (which we
see from our results in Section 7.1).

We propose that regression testing techniques should be dependent-test-aware to remove
OD-test failures. Our general approach completely removes all possible OD-test failures
with respect to the input test dependencies. In practice, such test dependencies may or may
not always be complete (all test dependencies that prevent OD-test failures are provided) or
minimal (only test dependencies that are needed to prevent OD-test failures are provided).
Nevertheless, our general approach requires as input an original order, a set of test depen-
dencies, and an order outputted by a traditional regression testing algorithm to output an
updated, enhanced order that satisfies the given test dependencies.

7.2.1 Example

Figure 7.1 shows an illustrated example of the orders produced by an unenhanced algo-
rithm and its corresponding enhanced algorithm. The unenhanced algorithm does not take
test dependencies into account, and therefore may produce orders that cause OD-test fail-
ures. Specifically, the unenhanced algorithm produces the Unenhanced Order. On the other
hand, the enhanced algorithm produces the Enhanced Order, a test order that satisfies the
provided test dependencies of the test suite. The enhanced algorithm does so by first using
the unenhanced algorithm to produce the Unenhanced Order and then enforcing the test
dependencies on the order by reordering or adding tests.

2Another design goal is to maximize fault-finding ability over time, i.e., efficiency. The efficiency goal is
a trade-off against the correctness goal.

122



We define two different types of test dependencies, positive and negative dependencies. A
positive test dependency ⟨p → d⟩ denotes that for OD test d to pass, it should be run only
after running test p, the test that d depends on. A negative test dependency ⟨n ↛ d⟩ denotes
that for OD test d to pass, it should not be run after test n. Prior work [186] refers to test
p as a state-setter and test d in a positive dependency as a brittle. It also refers to test n as
a polluter and d in a negative dependency as a victim. For simplicity, we refer to the tests
that OD tests depend on (i.e., p and n) as dependee tests. For both types of dependencies,
the dependee and OD test do not need to be run consecutively, but merely in an order that
adheres to the specified dependencies.

In Figure 7.1, there is a single, positive test dependency ⟨t1 → t2⟩ in the input test
dependencies. ⟨t1 → t2⟩ denotes that the OD test t2 should be run only after running test
t1. In the Unenhanced Order, the positive test dependency ⟨t1 → t2⟩ is not satisfied and
t2 will fail. Our enhanced algorithm prevents the OD-test failure of t2 by modifying the
outputted order of the unenhanced algorithm so that the test dependency (t2 should be run
only after running t1) is satisfied in the Enhanced Order.

7.2.2 General Approach for Enhancing Regression Testing Algorithms

Figure 7.2 shows our general algorithm, enhanceOrder, for enhancing an order produced
by a traditional regression testing algorithm to become dependent-test-aware. enhanceOrder
takes as input Tu, which is the order produced by the traditional unenhanced algorithm that
enhanceOrder is enhancing (this order can be a different permutation or subset of Torig),
the set of test dependencies D, and the original test suite Torig, which is an ordered list of
tests in the original order. While in theory one could provide test dependencies that are
not linearizable (e.g., both ⟨t1 → t2⟩ and ⟨t2 → t1⟩ in D), we assume that the provided
test dependencies are linearizable, and that Torig is one possible total order of the tests that
satisfies all of the test dependencies in D. For this reason, enhanceOrder does not check
for cycles within D. Based on Tu, enhanceOrder uses the described inputs to output a new
order (Te) that satisfies the provided test dependencies D.

enhanceOrder starts with an empty enhanced order Te and then adds each test in the un-
enhanced order Tu into Te using the addTest function (Line 7). To do so, enhanceOrder first
computes Ta, the set of tests that the tests in Tu transitively depend on from the positive
test dependencies (Line 4). Ta represents the tests that the traditional test selection or par-
allelization algorithms did not include in Tu, but they are needed for OD tests in Tu to pass.
enhanceOrder then iterates through Tu in order (Line 5) to minimize the perturbations that
it makes to the optimal order found by the traditional unenhanced algorithm. The addTest

123



enhanceOrder(Tu, D, Torig):
1: Te ← []
2: P ← {⟨p→ d⟩ ∈ D} // Positive test dependencies
3: N ← {⟨n ↛ d⟩ ∈ D} // Negative test dependencies
4: Ta ← Tu ◦ (P−1)∗ // Get all transitive positive dependee tests
5: for t : Tu do // Iterate Tu sequence in order
6: if t ∈ Te then continue end if
7: Te ← addTest(t, Te, Tu, Torig, Ta, P,N)
8: end for
9: return Te

addTest(t, Te, Tu, Torig, Ta, P,N):
10: B ← {t′ ∈ Tu ∪ Ta|⟨t′ → t⟩ ∈ P ∨ ⟨t ↛ t′⟩ ∈ N}
11: L← sort(B ∩ Tu, orderBy(Tu))⊕ sort(B \ Tu, orderBy(Torig))
12: for b : L do // Iterate the before tests in order of L
13: if b ∈ Te then continue end if
14: Te ← addTest(b, Te, Tu, Torig, Ta, P,N)
15: end for
16: return Te ⊕ [t]

Figure 7.2: General approach to enhance an order from traditional regression testing algo-
rithms.

function adds a test t into the current Te while ensuring that all of the provided (transi-
tive) test dependencies are satisfied. Once all of Tu’s tests are added into Te, enhanceOrder
returns Te.

On a high-level, the function addTest has the precondition that all of the tests in the
current enhanced order Te have their test dependencies satisfied in Te, and addTest has the
postcondition that test t is added to the end of Te (Line 16) and all tests in Te still have
their test dependencies satisfied. To satisfy these conditions, addTest first obtains all of the
tests that need to run before the input test t (Line 10), represented as the set of tests B.

The tests in B are all of the dependee tests within the positive test dependencies P for
t, i.e., all tests p where ⟨p → t⟩ are in P . Note that these additional tests must come from
either Tu or Ta (the additional tests that the traditional algorithm does not add to Tu).
Line 10 just includes into B the direct dependee tests of t and not those that it indirectly
depends on; these indirect dependee tests are added to Te through the recursive call to
addTest (Line 14). The tests in B also include the dependent tests within the negative test
dependencies N whose dependee test is t, i.e., all tests d where ⟨t ↛ d⟩ are in N . addTest
does not include test d that depends on t from the negative test dependencies if d is not in
Tu or Ta. Specifically, these are tests that the unenhanced algorithm originally did not find
necessary to include (i.e., for test selection the test is not affected by the change, or for test

124



parallelization the test is scheduled on another machine), and they are also not needed to
prevent any OD tests already included in Tu from failing.

Once addTest obtains all of the tests that need to run before t, it then adds all of these
tests into the enhanced order Te, which addTest accomplishes by recursively calling addTest
on each of these tests (Line 14). Line 11 first sorts these tests based on their order in the
unenhanced order Tu. This sorting is to minimize the perturbations that it makes to the
optimal order found by the unenhanced algorithm. For any additional tests not in Tu (tests
added through Ta), they are sorted to appear at the end and based on their order in the
original order, providing a deterministic ordering for our evaluation (in principle, one can
use any topological order). Once all of the tests that must run before t are included into Te,
addTest will finally add t (Line 16).

OD-test failures may still arise even when using an enhanced algorithm because the pro-
vided test dependencies (D) may not be complete. For example, a developer may forget to
manually specify some test dependencies, and even if the developer uses an automatic tool
for computing test dependencies, such tool may not find all dependencies as prior work [237]
has shown that computing all test dependencies is an NP-complete problem. Also, a de-
veloper may have made changes that invalidate some of the existing test dependencies or
introduce new test dependencies, but the developer does not properly update the input test
dependencies.

7.3 EVALUATION OF GENERAL APPROACH

Section 7.1 shows how both human-written and automatically generated test suites with
OD tests have OD-test failures when developers apply traditional, unenhanced regression
testing algorithms on these test suites. To address this issue, we apply our general approach
described in Section 7.2 to enhance 12 regression testing algorithms and evaluate them with
the following metrics.

• Effectiveness of reducing OD-test failures: the reduction in the number of OD-
test failures after using the enhanced algorithms. Ideally, every test should pass,
because we confirm that all tests pass in the original order on the versions that we
evaluate on (the same projects and versions from Section 7.1.2). This metric is the
most important desideratum.

• Efficiency of orders: how much longer-running are orders produced by the enhanced
regression testing algorithms than those produced by the unenhanced algorithms.

125



7.3.1 Methodology

To evaluate 12 enhanced regression testing algorithms, we start with firstVer for each of the
evaluation projects described in Section 7.1.2. Compared to the unenhanced algorithms, the
only additional input that the enhanced algorithms require is test dependencies D. These
test dependencies D and the other metadata needed by the regression testing algorithms
are computed on firstVer of each evaluation project. The details on how we compute test
dependencies for our evaluation are in Section 7.3.2. WithD and the other inputs required by
the unenhanced and enhanced algorithms, we then evaluate these algorithms on subseqVers
of the projects.

In between firstVer and subseqVers there may be tests that exist in one but not the other.
We refer to tests that exist in firstVer as old tests and for tests that are introduced by
developers in a future version as new tests. When running the old tests on future versions,
we use the enhanced algorithms, which use coverage or time information from firstVer (also
needed by the unenhanced algorithms) and D. Specifically, for all of the algorithms, we use
the following procedure to handle changes in tests between firstVer and a subseqVer.

1. The test in firstVer is skipped if subseqVer no longer contains the corresponding test.

2. Similar to most traditional regression testing algorithms, we treat tests with the same
fully qualified name in firstVer and subseqVer as the same test.

3. We ignore new tests (tests in subseqVer but not in firstVer), because both unenhanced
and enhanced regression testing algorithms would treat these tests the same (i.e., run
all of these tests before or after old tests).

7.3.2 Computing Test Dependencies

Developers can obtain test dependencies for a test suite by (1) manually specifying the test
dependencies, or (2) using automatic tools to compute the test dependencies [59, 73, 85, 216,
237]. For our evaluation, we obtain test dependencies through the latter approach, using
automatic tools, because we want to evaluate the scenario of how any developer can benefit
from our enhanced algorithms without having to manually specify test dependencies. Among
the automatic tools to compute test dependencies, both DTDetector [237] and iDFlakies [85]
suggest that randomizing a test suite many times is the most cost effective way to compute
test dependencies. For our evaluation, we choose to use DTDetector since it is the more
widely cited work on computing test dependencies. Before we compute test dependencies,
we first filter out tests that are flaky but are not OD tests (e.g., tests that are flaky due to

126



concurrency [85, 126]) for each of our evaluation projects. We filter these tests by running
each test suite 100 times in its original order and removing all tests that had test failures.
We remove these tests because they can fail for other reasons and would have the same
chance of affecting unenhanced and enhanced algorithms. To simulate how developers would
compute test dependencies on a current version to use on future versions, we compute test
dependencies on a prior version (firstVer) of a project’s test suite and use them with our
enhanced algorithms on future versions (subseqVers).

DTDetector. DTDetector [237] is a tool that detects test dependencies by running a
test suite in a variety of different orders and observing the changes in the test outcomes.
DTDetector outputs a test dependency if it observes a test t to pass in one order (denoted
as po) and fail in a different order (denoted as fo). Typically, t depends on either some
tests that run before t in po to be dependee tests in a positive test dependency (some tests
must always run before t), or some tests that run before t in fo to be dependee tests in
a negative test dependency (some tests must always run after t). t can also have both a
positive dependee test and a negative dependee test; this case is rather rare, and we do not
observe such a case in our evaluation projects. DTDetector outputs the minimal set of test
dependencies by delta-debugging [71, 230] the list of tests coming before t in po and fo to
remove as many tests as possible, while still causing t to output the same test outcome.

When we use DTDetector directly as its authors intended, we find that DTDetector’s
reordering strategies require many hours to run and are designed to search for test depen-
dencies by randomizing test orders; however, we are interested in test dependencies only
in the orders that arise from regression testing algorithms. To address this problem, we
extend DTDetector to compute test dependencies using the output of the regression testing
algorithms. This strategy is in contrast to DTDetector’s default strategies, which compute
test dependencies for a variety of orders that may not resemble the outputs of regression
testing algorithms. Specifically, for test prioritization or test parallelization, we use the or-
ders produced by their unenhanced algorithms. DTDetector will find test dependencies for
any test that fails in these orders, since these tests now have a passing order (all tests must
have passed in the original order) and a failing order. Using these two orders, DTDetector
will minimize the list of tests before an OD test, and we would then use the minimized list
as test dependencies for the enhanced algorithms. If the new test dependencies with the
enhanced algorithms cause new failing OD tests, then we repeat this process again until the
orders for the enhanced algorithms no longer cause any OD-test failure.

For test selection, we simply combine and use all of the test dependencies that we find
for the test prioritization and test parallelization algorithms. We use the other algorithms’

127



Table 7.7: Average time in seconds to run the test suite and average time to compute test
dependencies for an OD test. “Prioritization” and “Parallelization” show the average time
per algorithm, while “All 6” shows the average time across all 6 algorithms. “-” denotes
cases that have no OD test for all algorithms of a particular technique.

Suite Time to precompute test dependencies
run time Prioritization Parallelization All 6

ID Human Auto Human Auto Human Auto Human Auto
M1 7.3 0.3 64 - 24 - 44 -
M2 0.4 0.2 95 - - - 95 -
M3 184.2 0.2 1769 - - - 1769 -
M4 0.1 0.2 19 - 13 - 17 -
M5 2.4 0.4 - 396 31 215 31 275
M6 4.1 0.3 75 - - 29 75 29
M7 20.4 45.6 241 242 - 176 241 216
M8 1.2 1.3 - - - - - -
M9 1.2 0.1 28 - - - 28 -
M10 19.9 0.8 157 - - 39 157 39
M11 2.3 0.4 - 484 - 210 - 438

orders because it is difficult to predict test selection orders on future versions, i.e., the
set of tests selected in one version will likely be different than the set of tests selected in
another version. This methodology simulates what real developers would do: they know
what regression testing algorithm to use but do not know what code changes they will make
in the future.

Time to Precompute Dependencies. Developers should not compute test dependen-
cies as they are performing regression testing. Instead, as we show in our evaluation, test
dependencies can be collected on the current version and be reused later.

Developers can compute test dependencies infrequently and offline. Recomputing test
dependencies can be beneficial if new test dependencies are needed or if existing test depen-
dencies are no longer needed because of the developers’ recent changes. While the developers
are working between versions vi and vi+1, they can use that time to compute test dependen-
cies. Table 7.7 shows the time in seconds to compute the test dependencies that we use in
our evaluation. The table shows the average time to compute test dependencies per OD test
across all test prioritization or parallelization algorithms (for the columns under “Prioriti-
zation” and “Parallelization”, respectively), and the time under “All 6” is the average time
to compute dependencies per OD test across all six test prioritization and parallelization
algorithms. The reported time includes the time for checks such as rerunning failing tests
to ensure that it is actually an OD test (i.e., it is not flaky for other reasons) as to avoid the
computation of non-existent test dependencies.

128



Table 7.8: Percentage of how many fewer OD-test failures occur in the test suites produced
by the enhanced algorithms compared to those produced by the unenhanced algorithms.
Higher percentages indicate that the test suites produced by the enhanced algorithms have
fewer OD-test failures.

% Reduction in OD-test failures
Prioritization Selection Parallelization

ID Human Auto Human Auto Human Auto
M1 100% n/a 50% n/a 100% n/a
M2 100% n/a 100% n/a - n/a
M3 100% n/a -25% n/a - n/a
M4 100% n/a 60% n/a 100% n/a
M5 - 60% 0% 100% 100% 82%
M6 100% - - - - 100%
M7 100% 57% - - - 12%
M8 - n/a - n/a - n/a
M9 100% n/a 92% n/a - n/a
M10 100% - 100% - - 100%
M11 - 56% - - - 29%
Total 100% 57% 79% 100% 100% 66%

Although the time to compute test dependencies is substantially more than the time to
run the test suite, we can see from tables 7.4 and 7.7 that the time between versions is still
much more than the time to compute test dependencies. For example, while it takes about
half an hour, on average, to compute test dependencies per OD test in M3’s human-written
test suite, the average number of days between the versions of M3 is about 10 days, thus
still giving developers substantial time in between versions to compute test dependencies.
Although such a case does not occur in our evaluation, even if the time between vi and vi+1

is less than the time to compute test dependencies, the computation can start running on
vi while traditional regression testing algorithms (that may waste developers’ time due to
OD-test failures) can still run on vi+1. Once computation finishes, the enhanced regression
testing algorithms can start using the computed test dependencies starting at the current
version of the code (e.g., version vi+n when the computation starts on vi). As we show
in Section 7.3.3, these test dependencies are still beneficial many versions after they are
computed.

7.3.3 Reducing Failures

Table 7.8 shows the reduction in the number of OD-test failures from the orders produced
by the enhanced algorithms compared to those produced by the unenhanced algorithms.
We denote cases that have no OD tests (as we find in Section 7.1.4) as “n/a”, and cases
where the unenhanced algorithms do not produce an order that causes any OD-test failures

129



as “-”. Higher percentages indicate that the enhanced algorithms are more effective than the
unenhanced algorithms at reducing OD-test failures.

Concerning human-written tests, we see that enhanced prioritization and parallelization
algorithms are very effective at reducing the number of OD-test failures. In fact, the en-
hanced prioritization and parallelization algorithms reduce the number of OD-test failures
by 100% across all of the evaluation projects. For test selection, the algorithms reduce the
number of OD-test failures by 79%. This percentage is largely influenced by M3, where the
enhanced selection orders surprisingly lead to more failures than the unenhanced orders as
indicated by the negative number (-25%) in the table.

There are two main reasons for why an enhanced order can still have OD-test failures:
(1) changes from later versions introduce new OD tests that could not have been detected
in firstVer, and (2) the computed test dependencies from firstVer are incomplete; as such,
the regression testing algorithms would have OD-test failures due to the missing test depen-
dencies. In the case of (1), if this case were to happen, then both enhanced and unenhanced
orders would be equally affected, and for our evaluation, we simply ignored all newly added
tests. In the case of (2), it is possible that the test dependencies computed on firstVer are
incomplete for the same OD tests on a new version, either because the missing test depen-
dencies are not captured on firstVer or because the test initially is not an OD test in firstVer
but becomes OD due to newly introduced test dependencies in the new version. In fact,
for M3’s human-written test selection results, we find that the enhanced orders have more
OD-test failures because the enhanced orders in later versions expose a test dependency that
is missing from what is computed on firstVer. As we describe in Section 7.3.2, to efficiently
compute test dependencies on firstVer, we use only the orders of test prioritization and test
parallelization instead of many random orders as done in prior work [85, 237]. Note that
such a case occurs in our evaluation only for M3, but nonetheless, this case does demonstrate
the challenge of computing test dependencies effectively and efficiently.

For automatically generated tests, the enhanced algorithms are also quite effective at
reducing OD-test failures, though they are not as effective as the enhanced algorithms for
human-written tests. For test selection, only M5’s unenhanced orders have OD-test failures,
and the enhanced orders completely remove all of the OD-test failures across all versions.
Specifically, the OD test that fails is missing a positive dependee test, and the enhanced test
selection algorithms would add in that missing positive dependee test into the selected tests,
which prevents the OD-test failure. Similarly, the enhanced test parallelization algorithms
also add in some missing positive dependee tests, leading to a reduction in OD-test failures.
Once again though, there are still some OD-test failures because some test dependencies
were not captured on firstVer.

130



Table 7.9: Slowdown of orders produced by the enhanced algorithms run compared to those
produced by the unenhanced algorithms. Higher percentages indicate that orders produced
by the enhanced algorithms are slower.

% Time Slowdown
Selection Parallelization

ID Human Auto Human Auto
M1 9% = 16% 7%
M2 -1% = 9% -8%
M3 3% = 0% 0%
M4 5% = -2% -2%
M5 = 1% -1% -1%
M6 -1% = 2% -3%
M7 6% = 1% 0%
M8 = = 5% 4%
M9 11% = 2% 3%
M10 -5% = 2% -14%
M11 = = -2% -7%
Total 1% 1% 1% 0%

In summary, we find that the orders produced by all of the enhanced regression testing
algorithms collectively reduce the number of OD-test failures by 81% and 71% for human-
written and automatically generated tests, respectively. When considering both human-writ-
ten and automatically generated tests together, the enhanced regression testing algorithms
produce orders that reduce the number of OD-test failures by 80% compared to the orders
produced by the unenhanced algorithms.

7.3.4 Efficiency

To accommodate test dependencies, our enhanced regression testing algorithms may add
extra tests to the orders produced by the unenhanced test selection or parallelization al-
gorithms (Ta on Line 4 in Figure 7.2). The added tests can make the orders produced by
the enhanced algorithms run slower than those produced by the unenhanced algorithms.
Table 7.9 shows the slowdown of running the orders from the enhanced test selection and
parallelization algorithms. We do not compare the time for orders where the enhanced and
unenhanced algorithms produce the exact same orders, because both orders should have the
same running time modulo noise. We mark projects that have the same orders for enhanced
and unenhanced with “=” in Table 7.9. For parallelization, we compare the runtime of the
longest running subsuite from the enhanced algorithms to the runtime of the longest running
subsuite from the unenhanced algorithms. For each of the projects in Table 7.9, we compute
the percentage by summing up the runtimes for all of the enhanced orders, subtracting the
summed up runtimes for all of the unenhanced orders, and then dividing the summed up

131



runtimes for all of the unenhanced orders. The percentage in the final row is computed the
same way except we sum up the runtimes for the orders across all of the projects.

Overall, we see that the slowdown is rather small, and the small speedups (indicated by
negative numbers) are mainly due to noise in the tests’ runtime. For test parallelization of
automatically generated tests, we do observe a few cases that do not appear to be due to
noise in the tests’ runtime though. Specifically, we see that there are often speedups even
when tests are added to satisfy test dependencies (e.g., M10). We find that in these cases
the enhanced orders are faster because the OD-test failures encountered by the unenhanced
orders actually slow down the test suite runtime more than the tests added to the enhanced
orders. This observation further demonstrates that avoiding OD-test failures is desirable,
because doing so not only helps developers avoid having to debug non-existent faults in their
changes, but can also potentially speed up test suite runtime.

The overall test suite runtime slowdown of the enhanced algorithms compared to the
unenhanced ones is 1% across all orders produced and across all types of tests (human-writ-
ten and automatically generated) for all evaluation projects.

7.3.5 Findings

Our evaluation suggests the following two main findings.
Reducing Failures. The enhanced regression testing algorithms can reduce OD-test fail-
ures by 81% for human-written test suites. The enhanced algorithms are somewhat less
effective for automatically generated test suites, reducing OD-test failures by 71%, but the
unenhanced algorithms for these test suites generally cause fewer OD-test failures. Across all
regression testing algorithms and test suites, the enhanced algorithms produce orders that
cause 80% fewer OD-test failures than the orders produced by the unenhanced algorithms.
Efficiency. Our enhanced algorithms produce orders that run only marginally slower than
those produced by the unenhanced algorithms. Specifically, for test selection and test par-
allelization, the orders produced by the enhanced algorithms run only 1% slower than the
orders produced by the unenhanced algorithms.

7.4 DISCUSSION

7.4.1 General Approach vs. Customized Algorithms

In our work, we focus on a general approach for enhancing existing regression testing
algorithms. Our approach works on any output of these existing regression testing algorithms

132



to create an enhanced order that satisfies the provided test dependencies. While our approach
works for many different algorithms that produce an order, it may not generate the most
optimal order for the specific purpose of the regression testing algorithm being enhanced.

For example, we enhance the orders produced by test parallelization algorithms by adding
in the missing tests for an OD test to pass on the machine where it is scheduled to run.
A more customized test parallelization algorithm could consider the test dependencies as
it decides which tests get scheduled to which machines. If the test dependencies are con-
sidered at this point during the test parallelization algorithms, then it could create faster,
more optimized scheduling of tests across the machines. However, such an approach would
be specific to test parallelization (and may even need to be specialized to each particular
test parallelization algorithm) and may therefore not generalize to other regression testing
algorithms. Nevertheless, it can be worthwhile for future work to explore how customized
algorithms can enhance traditional regression testing algorithms.

7.4.2 Cost to Provide Test Dependencies

Developers may create OD tests purposefully to optimize test execution time by doing
some expensive setup in one test and have that setup be shared with other, later-running
tests. If developers are aware that they are creating such tests, then the human cost for
providing test dependencies to our enhanced algorithms is low.

If developers are not purposefully creating OD tests, and they are unaware that they
are creating OD tests, then it would be beneficial to rely on automated tools to discover
such OD tests for them and use the outputs of these tools for our enhanced algorithms, as
we demonstrate in our evaluation. The cost to automatically compute test dependencies
(machine cost) is cheaper than the cost for developers to investigate test failures (human
cost). Herzig et al. [80] quantified human and machine cost. They reported that the cost to
inspect one test failure for whether it is a flaky-test failure is $9.60 on average, and the total
cost of these inspections can be about $7 million per year for products such as Microsoft
Dynamics. They also reported that machines cost $0.03 per minute. For our experiments,
the longest time to compute test dependencies for an OD test is for M3, needing about half
an hour, which equates to about $0.90.

7.4.3 Removing OD Tests

OD-test failures that do not indicate faults in changes are detrimental to developers in
the long run, to the point that, if these failures are not handled properly, one might wonder

133



why a developer does not just remove these OD tests entirely. However, it is important to
note that these tests function exactly as they are intended (i.e., finding faults in the code
under test) when they are run in the original order. Therefore, simply removing them would
mean compromising the quality of the test suite to reduce OD-test failures, being often an
unacceptable tradeoff. Removing OD tests is especially undesirable for developers who are
purposefully writing them for the sake of faster testing [175], evident by the over 270k times
JUnit annotations or TestNG attributes to control the ordering of tests have been used on
GitHub as of June 2021. As such, we hope to provide support for accommodating OD
tests not just for regression testing algorithms but for a variety of different testing tasks.
We believe that our work on making regression testing algorithms dependent-test-aware by
taking test dependencies into account is an important step in this direction.

7.4.4 Evaluation Metrics

In our evaluation, we focus on the reduction in the number of OD-test failures in enhanced
orders over unenhanced orders as well as the potential increase in testing time due to the
additional tests that we may need for test selection and test parallelization (Section 7.3.4).
Concerning test prioritization algorithms, prior work commonly evaluates them using Av-
erage Percentage of Faults Detected (APFD) [171, 227]. Traditionally, researchers evaluate
the quality of different test prioritization algorithms by seeding faults/mutants into the code
under test, running the tests on the faulty code, and then mapping what tests detect which
seeded fault/mutant. To compare the different orders produced by the different test priori-
tization algorithms, researchers would measure APFD for each order, which represents how
early an order has a test that detects each fault/mutant.

In our work, we use real-world software that does not have failing tests due to faults in the
code, ensured by choosing versions where the tests pass in the original order (Section 7.1.3).
We do not seed faults/mutants as we want to capture the effects of real software evolution.
As such, we do not and cannot measure APFD because there would be no test failures due
to faults in the code under test; APFD would simply be undefined in such cases. Any test
failures that we observe would be either OD-test failures or test failures due to other sources
of flakiness.

7.5 THREATS TO VALIDITY

A threat to validity is that our evaluation considers only 11 modules from 8 Java projects.
These modules may not be representative causing our results not to generalize. Our approach

134



might behave differently on different programs, such as ones from different application do-
mains or those not written in Java.

Another threat to validity is our choice of 12 traditional regression testing algorithms.
Future work could evaluate other algorithms based on static code analysis, system models,
history of known faults, test execution results, and so forth. Future work could also enhance
other techniques that execute tests out of order, such as mutation testing [181, 233, 234], test
factoring [44, 94, 95, 156, 177, 224], and experimental debugging techniques [193, 230, 235].

Another threat is the presence of NOD flaky tests when we compute test dependencies.
NOD tests may also affect the metrics that we use for the regression testing algorithms
(e.g., coverage and timing of tests can be flaky), thereby affecting the produced orders. We
mitigate this threat by filtering out NOD flaky tests through the rerunning of tests in the
original order. We also suggest that developers use tools [85, 184] to identify these tests and
remove or fix them; a developer does not gain much from a test whose failures they would
ignore. In future work, we plan to evaluate the impact of these issues and to improve our
algorithms to directly handle these NOD tests.

7.6 SUMMARY

Test suites often contain OD tests, but traditional regression testing techniques ignore
test dependencies. In this work, we have empirically investigated the impact of OD tests on
regression testing algorithms. Our evaluation results show that 12 traditional, dependent-
test-unaware regression testing algorithms produce orders that cause OD-test failures in
82% of the human-written test suites and 100% of the automatically generated test suites
that contain OD tests. We have proposed a general approach that we then use to enhance
the 12 regression testing algorithms so that they are dependent-test-aware. We have made
these 12 algorithms and our general approach publicly available [5]. Developers can use the
enhanced algorithms with test dependencies manually provided or automatically computed
using various tools, and the enhanced algorithms are highly effective in reducing the number
of OD-test failures. Our proposed enhanced algorithms produce orders that result in 80%
fewer OD-test failures, while being 1% slower to run than the unenhanced algorithms.

135



CHAPTER 8: [TAMING] ACCOMMODATING ASYNC-WAIT FLAKY
TESTS

This chapter presents our work on FaTB, a technique developed with Microsoft collabora-
tors to speed up async-wait flaky tests while also reducing their spurious failures. To better
understand the problem of flaky tests at Microsoft, we begin this chapter by studying the
flaky tests in six large-scale, diverse proprietary projects at Microsoft. Specifically, we study
the prevalence, reproducibility, characteristics (e.g., reoccurrence, runtimes), categories, and
resolution (e.g., time-before-fix) of flaky tests. Our study of prevalence and reproducibility
reveals the substantial negative impact that flaky tests have on developers at Microsoft,
while our study on the characteristics, categories, and resolution of flaky tests confirms that
some of the findings from a study on open-source projects also hold for proprietary projects.
For example, similar to a prior study [126] on flaky tests in open-source projects, we also find
that the most common category of flaky tests in proprietary projects is the AW category.
Example of an AW test is presented in Section 1.2.2.

Realizing the substantial impact that flaky tests have on Microsoft developers and how
common AW flaky tests are, we propose an automated solution called FaTB, to accommodate
the negative impact of these tests. The remainder of this chapter is organized as follows.
Section 8.1 presents some background on Microsoft’s flaky-test management system, and
Section 8.2 presents the setup of our study. Section 8.3 presents our analysis of the results
and our work on FaTB to accommodate async-wait flaky tests. Finally, Section 8.4 presents
our threats to validity, and Section 8.5 concludes this chapter.

8.1 BACKGROUND ON MICROSOFT’S FLAKY-TEST MANAGEMENT SYSTEM

After the work presented in Chapter 5, Microsoft developers created a comprehensive
flaky-test management system called Flakes and integrated Flakes as part of CloudBuild.
Section 5.1 presents more details about Microsoft’s CloudBuild system. Flakes includes four
major features: Detection, Reporting, Suppression, and Resolution. The Detection feature
aims at labeling flaky tests among all tests executed by CloudBuild. More specifically,
whenever there is a test failure, CloudBuild automatically retries the test once by default,
and if the retry passes, then the test is considered flaky and the build continues. Once a test
is considered flaky, Flakes proceeds to Reporting where it reports the flaky test to developers
by automatically creating a bug report. These bug reports help notify developers of the flaky
tests and encourage the developers to fix the flaky tests. Note that Flakes will link multiple
flaky tests to the same bug report by looking for similarities in the flaky tests’ error messages.

136



Table 8.1: Statistics of the projects with flaky tests using Flakes during July 2019 (over a
30-day period).

# Failed # Test Median build # Flaky-test # Builds with
Project # Tests Builds executions time (min) failures flaky-test failures Project purpose
ProjA 7,281 2,127 2,045,513 29 157 68 ( 3.2%) Ads
ProjB 29,589 13,025 45,063,356 21 17,064 1,133 ( 8.7%) Cloud computing
ProjC 2,866 2,047 1,429,295 3 24 22 ( 1.1%) Engr. infrastructure
ProjD 3,182 9,371 28,557,302 10 39 35 ( 0.4%) Database
ProjE 7,939 847 4,702,325 11 734 302 (35.7%) Engr. monitoring
ProjF 4,197 491 332,557 27 1,775 133 (27.1%) Search

Doing so prevents tests with the same root cause from creating many different bug reports.
For Suppression, Flakes updates a suppression file that lists all known flaky tests within

the project. Specifically, Flakes adds information (e.g., error message, bug report URL, code
version, fully qualified test name) about a test to the suppression file when a test is found to
be flaky. This suppression file is primarily used to suppress future failures of flaky tests, since
they are known to be flaky already. Flakes does not prevent the running of suppressed tests
but will label these failures to help reduce developers’ effort in diagnosing test failures due
to flaky tests. To discourage developers from fully relying on suppressions to deal with flaky
tests, Flakes simply suppresses the failures for 30 days by default. Finally, for Resolution,
when developers close a bug report related to a flaky test, Flakes automatically removes the
test from the suppression file. If the test is found to be flaky later, Flakes will reopen a
new bug report and repeat all of the steps above. As of August 2019, Flakes was used by
11 projects in total at Microsoft. Of these 11 projects, Flakes had already detected at least
one flaky test in six of the projects. Across all of these projects, Flakes had created over
4000 bug reports and between May to August 2019, Flakes suppressed over 218000 flaky-test
failures for these six projects.

8.2 STUDY SETUP

This section describes the projects and the three datasets of flaky tests we use in our
study, the research questions of our study, and how we use the datasets for each question.

8.2.1 Evaluation Projects

Table 8.1 provides some statistics collected during July 2019, over a 30-day period, for six
projects that use Flakes. Each of these projects has at least one flaky test in it currently
or had one sometime in its past. Due to company confidentiality reasons, the names of
the projects are anonymized. None of the authors of the paper [107] worked on any of the

137



Figure 8.1: Overview of how we obtain the three datasets used in our study.

projects that uses Flakes. In the table, Column 2 shows the number of distinct tests in each
project. Column 3 shows the number of failed builds for each project. Column 4 shows the
number of tests executed in all builds. Note that CloudBuild does not execute all tests in
each build; rather, it executes only those tests that are within the modules impacted by the
change. Column 5 presents the median time of each build in minutes, and Column 6 shows
the number of total flaky-test failures suppressed by Flakes. Column 7 shows the number
and percentage of failed builds that contained at least one flaky-test failure suppressed by
Flakes. Note that each of these builds can have more than one flaky-test failure. Finally,
Column 8 shows the purpose of the project. As this table shows, the projects that use Flakes
and have at least one flaky test are quite diverse. Specifically, the median build times for
these projects vary from 3 to 29 minutes, and they all have distinct purposes.

8.2.2 Datasets

We conduct our study of flaky tests at Microsoft using three datasets. Figure 8.1 shows
an overview for how we obtain these three datasets from the six projects that use Flakes.
As Figure 8.1 shows, we obtain the datasets using three main steps, with each subsequent
step using some or all of the data in the previous step. To obtain our datasets, we start
with all versions of the suppression files that Flakes maintains for each of the six projects.
These suppression files are version-controlled, and Flakes uses them to keep track of known
flaky tests. Having previous versions of these suppression files consequently allows us to find
flaky tests that Flakes found in the past regardless of whether these tests are fixed or not.
In total, Flakes identified 2089 flaky tests from the entire history of the six projects shown
in Table 8.1.

We use the suppression files maintained by Flakes for each project to create three datasets
labeled as All-Fixed, Pull-Requests, and Categorized. Dataset All-Fixed includes all flaky
tests that Flakes has observed to be fixed and contains 1040 flaky tests. Dataset Pull-

138



Requests includes all flaky tests that are fixed and the bug report associated with the flaky
test includes a pull request that the developer manually linked to the bug report. This
dataset contains 134 flaky tests. Lastly, dataset Categorized includes all flaky tests that
have pull requests and, upon our manual investigation of the pull requests, bug reports, and
main and test code, we categorize these flaky tests with the categories defined in a prior
study [126]. This dataset also contains 134 flaky tests.

To obtain the All-Fixed dataset (the result of Step 1), we parse the suppression files
of Flakes into a SQL-like database known as Azure Data Explorer [13]. We parse the
suppression files from the oldest to the newest version, and when we see a flaky test get
added to the file, we consider that test to be flaky. On the other hand, when we see a flaky
test get removed from the file, we consider that test to be fixed.1 The number of times
a flaky test is detected and fixed depends on the number of times the test is added and
removed (respectively) from the suppression file.

To obtain the Pull-Requests dataset (the result of Step 2), we join the All-Fixed dataset
with an existing Azure Data Explorer table that keeps track of which pull requests, if any,
are linked to a bug report. Not all closed bug reports are linked to a pull request, because
developers have to manually link the pull requests themselves. We join the All-Fixed dataset
with an existing Azure Data Explorer table because Flakes keeps track only of the bug report
it creates for a particular flaky test, and would not otherwise know if a particular bug report
has pull request(s) linked to it. Note that by design ProjB’s bug reports are not accessible
through Azure Data Explorer. Therefore, all bug report and pull request information for
the flaky tests of ProjB is omitted from our study.

To obtain the Categorized dataset (the result of Step 3), we study the pull request, main
code, and test code of each flaky test in the Pull-Requests dataset. Each flaky test that we
categorize is verified independently by two or more of the authors of our paper [107]. Our
categorization considers four kinds of locations and 10 root-cause categories that we obtain
from a prior study [126] on flaky tests.

Table 8.2 summarizes for each project the flaky tests we find in it. Overall, Flakes identified
2089 flaky tests from six projects. On average, Flakes has been tracking flaky test information
in these six projects for 181 days. Of the 2089 flaky tests, 1040 tests are fixed. Of the 1040
flaky tests that are fixed, we find that the developers attached a pull request to the bug
report for 134 tests.

1A flaky test can also be removed from the suppression files because the test is removed from the project.
Our All-Fixed dataset does include such tests.

139



Table 8.2: Flaky-test statistics of the projects in our study. *ProjB’s pull requests (PRs)
are inaccessible for our study.

# Flaky # Fixed # Flaky tests
Project tests flaky tests with PRs
ProjA 10 3 2
ProjB 352 31 *0
ProjC 73 63 8
ProjD 1453 878 96
ProjE 176 64 27
ProjF 25 1 1
Total 2089 1040 134

8.2.3 Research Questions

To better understand the lifecycle of flaky tests at Microsoft, we study the prevalence,
reproducibility, characteristics, categories, and resolution of flaky tests. More specifically,
we address the following research questions:
RQ1 [Prevalence]: How prevalent are flaky tests and to what extent do they impact
developers’ workflow?
RQ2 [Reproducibility]: How many runs are needed to reproduce flaky-test failures?
RQ3 [Characteristics]: Does test flakiness reoccur after fixes? If so, what are the reasons
for it to reoccur?
RQ4 [Characteristics]: How does the runtime of a flaky test differ between passing and
failing runs?
RQ5 [Categories]: What are the categories (e.g., root cause, location) of the flaky-test
fixes?
RQ6 [Resolution]: How much time do developers take to fix flaky tests?
RQ7 [Resolution]: How effective are developers at identifying and fixing the timing-related
async-wait issues in flaky tests?

We first address RQ1 to understand how problematic flaky tests are at Microsoft. We then
address RQ2 to understand the difficulty developers may have in debugging and fixing flaky
tests. Knowing the difficulty of reproducing flaky-test failures, we then address RQ3 and
RQ4 to understand the characteristics of these flaky tests. We then address RQ5 to extend
our characteristics study by categorizing the location and root cause of the flaky-test fixes
in our dataset. Lastly, we address RQ6 and RQ7 to understand how effective developers are
at fixing flaky tests.

140



8.2.4 Methodology

All of our research questions use either the All-Fixed, Pull-Requests, or Categorized
datasets of flaky tests described in Section 8.2.2.

RQ1: Prevalence and Impact of Flaky Tests. For RQ1, we use the All-Fixed dataset,
our entire dataset of fixed flaky tests. For this RQ, we rely on the information collected by
Microsoft’s Flakes during July 2019. Specifically, we look at the number of failed builds that
would have occurred due to flaky-test failures if Flakes did not suppress such failures from
these builds.

RQ2 and RQ4: Reproducibility and Runtime of Flaky Tests. For RQ2 and RQ4,
we again start by using the All-Fixed dataset. Specifically, for each flaky test, we run the test
500 times in the actual build and testing environment. We use only three projects (ProjC,
ProjD, ProjE), because we perform these experiments on real proprietary projects, and we
cannot interrupt or slow the actual testing environments of the other projects.

RQ3: Reoccurrence of Flaky Tests. For RQ3, we use the All-Fixed dataset, but we
filter for tests that have been fixed more than once. We identify the flaky tests that are fixed
more than once by looking for tests that are removed from a project’s suppression file more
than once. For the tests that are fixed more than once, we look at the commits, bug reports,
and main and test code to understand why they reoccur. We use the commits instead of
pull requests because not all tests in the All-Fixed dataset have pull requests linked to the
tests’ bug reports. Indeed, we find that for the flaky tests that we study for this RQ, all
of their bug reports do not have pull requests. We obtain the commits for these tests, by
using the dates of their bug reports and the version-control history of the test code to find
the likely commits for these tests. We then confirm these commits with the developers of
the flaky tests.

RQ5: Categories of Flaky-Test Fixes. For RQ5, we use the Pull-Requests dataset,
which contains 134 flaky tests that are fixed and have a pull request associated with the test.
Specifically, we study (1) where the changes are located in (i.e., main or test code), and (2)
what root causes of flaky-test fixes do these pull requests belong to? A prior study [126] on
flaky tests found four kinds of locations in which fixes were located in and also identified 10
root causes of flaky-test fixes. For our study, we manually label each pull request along with
its corresponding bug report and main/test code with the same four kinds of locations and 10
root causes as the prior study. We decide to use pull requests, which consist of one or more

141



commits, because pull requests represent a more complete set of changes. These changes
from pull requests generally build without errors and have been tested on the developers’
machines to ensure that they do not fail any tests.

RQ6: Time-before-fix of Flaky Tests. For RQ6, we use the All-Fixed dataset. Specif-
ically, for each fixed test, we study the bug report linked to the test. Recall that Flakes’
Reporting feature, as described in Section 8.1, will automatically create a bug report for
each test it finds to be flaky. To obtain the time-before-fix of flaky tests, we study the time
the bug reports of these tests took from being created to them being closed.

RQ7: Developers’ Effectiveness in Identifying and Fixing Async Wait Tests.
For RQ7, we use the Categorized dataset, which contains 134 flaky tests that are fixed,
have a pull request associated with the test, and its pull request, bug report, and code are
categorized. Since in RQ5 we find that Async Wait is the most common category of flaky
tests, we focus specifically on this category for RQ7. To understand how effective developers
are at identifying and fixing async-wait tests, we sample five async-wait tests whose fix by
developers is to increase the wait/timeout. We then calculate the flaky-test-failure rate with
the developer-suggested fix and measure how the rate changes when the time value increases
or decreases.

8.3 ANALYSIS OF THE RESULTS

This section presents the results of our study for the research questions in Section 8.2.3
using the methodology we describe in Section 8.2.4. An anonymized version of the data we
use for our study is available online [34].

8.3.1 RQ1: Prevalence and Impact of Flaky Tests

We begin our study by first investigating how prevalent flaky tests are at Microsoft. From
tables 8.1 and 8.2, we see that for all projects except for ProjD, the number of flaky tests
ever found is only a small fraction of the total number of tests these projects’ have during
the month of July 2019. However, just because a project contains many or few flaky tests, it
does not necessarily mean that the developers’ workflow is often or rarely impacted by these
tests. To understand whether these flaky tests do impact developers’ workflow or not, we
also show in Table 8.1 the percentage of developers’ builds in which the build would have
failed due to flaky-test failures if Flakes did not suppress such failures. One interesting point

142



to note here is that even though some projects have lots of flaky tests, these projects’ chance
for builds to fail due to flaky-test failures are not particularly high. For example, ProjD has
1453 flaky tests with over half still not fixed, but flaky-test failures only affect 0.4% of its
builds over a 30-day period, while ProjE has only 176 flaky tests but 35.7% of its builds
are affected by flaky-test failures during the same 30-day period. Our results demonstrate
that, although flaky tests may not always be very prevalent, the percentage of builds that
are impacted by flaky-test failures can still be quite substantial.

8.3.2 RQ2: Reproducibility of Flaky-Test Failures

One of the biggest challenges developers have when debugging or fixing flaky tests is to re-
produce the flaky-test failure. To understand how much of an imposition the reproducibility
of flaky-test failures may have on developers, we study the number of flaky tests in which we
can reproduce the flaky-test failures, and for the tests where we can reproduce the flaky-test
failure, we also study these tests’ flaky-test-failure rates. For each of the flaky tests that we
use for this RQ, we run the test 500 times using the same configuration of the machines and
the version of code on which Flakes detected the test to be flaky.

Table 8.3 summarizes our results. We use only a subset of our dataset for this RQ, because
these experiments are performed on real proprietary projects, and we could not slow down
the actual testing environment of the other projects. Furthermore, not all flaky tests can
be run again due to problems compiling the version of code on which the test was detected.
The actual number of flaky tests that we are able to run 500 times is shown in Column 2.
Column 3 shows the number of tests that pass and fail at least once, and Columns 4 and
5 show the average and median (respectively) percentage rate of flaky-test failures for the
flaky tests that pass and fail at least once.

Column 2 of Table 8.3 shows that flaky-test failures are reproducible between 17% to 43%,
depending on the project. This finding suggests that there are many flaky tests (up to 83%,
depending on the project) where even with 500 runs, we cannot reproduce the flaky-test
failures of these tests. We also see from Column 4 that the median percentage rate of flaky-
test failures can be quite low, particularly for ProjC and ProjE. This finding suggests that
even when flaky-test failures can be reproduced in 500 runs, only a small number of runs
results in a failure.

Figure 8.2 shows a box plot for the percentage rate of flaky-test failures for the flaky tests
that pass and fail at least once in each project. We can see in this figure that the averages
of both ProjD and ProjE (Column 3 in Table 8.3) are quite high due to the percentage
rates of 23 outlier tests. To understand these outliers better, we analyze them and find

143



Table 8.3: Statistics on reproducibility of flaky-test failures.
# Flaky # Flaky tests Average Median

Proj. tests 1+ pass & fail % fail % fail
ProjC 7 3 (43%) 0.2 0.2
ProjD 545 95 (17%) 36.8 29.4
ProjE 85 21 (25%) 9.7 0.6

Figure 8.2: Percentage rate of flaky-test failures.

that 9 of these tests are likely Async Wait—their names contain “Async”. Of these 9 tests,
we have the pull request, bug report, and code for 3 of the tests, and while studying the
categorization of flaky tests in RQ5 (Section 8.3.5), we do indeed categorize these 3 tests as
async-wait tests.

8.3.3 RQ3: Reoccurrence of Test Flakiness

As Section 8.3.2 demonstrates, flaky-test failures can be quite difficult for developers to
reproduce. This difficulty makes it so that when developers are fixing flaky tests, they may
just assume that their changes fixed the flaky-test failure and they may not actually confirm
their assumption. For our study on the reoccurrence of flaky tests, we use the All-Fixed
dataset, which contains 1040 fixed flaky tests. Of these 1040 flaky tests, we find that four
flaky tests are fixed more than once.

If a flaky test is found to be flaky more than once, then it is either because (1) the
developers’ initial fix for the flakiness was inadequate, or (2) the cause of flakiness was
reintroduced. In either case, sufficient time must be given for the developers to notice the
reoccurrence and for the test to run many times for it to fail builds again. On average, the
fixed flaky tests in our study have been fixed for more than 86 days.

To understand why four flaky tests had to be fixed more than once, we manually investigate

144



the commits, bug reports, and the main and test code for each flaky test. We use commits
instead of pull requests because not all tests in the All-Fixed dataset have pull requests,
and all four tests that are fixed more than once do not have pull requests. We obtain the
commits for these tests by using the time their bug reports closed and the version-control
history of the test code to find the likely commits for these tests. We then confirm the likely
commits with the developers of the four tests.

Our investigation into the four flaky tests that reoccur more than once reveals that all
four reoccurrences are due to case (1), i.e., the developers’ initial fix was inadequate. For
these flaky tests, we can confirm this case because the developers described their initial fix
as being inadequate in their latest fix. For example, one developer described the latest fix
as “Increase the wait time for idle timeout test case to ensure that the receive loop exits
first. Previously, the wait time was 1 second more than the idle timeout, which was cutting
it too fine”. Overall, our investigation into the reoccurrence of these four tests finds that
developers have the following important sentiments about fixing flaky tests.

1. Developers are rarely able to reproduce the flaky-test failures locally on their own
machines or on servers.

2. As a consequent of (1), developers often resort to making multiple changes to fix test
flakiness. These changes are often either

(a) made by trial-and-error guessing, and the developers rely on the frequent runs of
the test on the servers to determine whether the fix was adequate, or

(b) made simply to log additional information so that the developers can know more
about the flaky-test failure before attempting a real fix.

8.3.4 RQ4: Runtime of Flaky Tests

To begin understanding why a test may be flaky, we study the runtime of flaky tests. We
study the runtime because when flaky tests fail, they may run faster than when they pass,
because the test may have encountered a fault and stopped early. However, flaky tests may
also take longer in their failing runs if they are flaky because they time out. In such cases,
the flaky test may wait for a callback that simply never happens, indicating that these tests
likely make asynchronous calls. Similar to RQ2 (Section 8.3.2), we can use only a subset of
our dataset for this RQ since we could not slow down the testing environment of the other
projects, and the version of code in which some flaky tests were detected no longer compiles.

145



Table 8.4: Statistics on runtime (in seconds) of flaky tests.
Test Average Median

Proj. result # Runs runtime runtime
ProjC Pass 1,497 2.39 1.34
ProjC Fail 3 2.47 1.48
ProjD Pass 30,023 9.41 4.31
ProjD Fail 17,477 22.25 25.00
ProjE Pass 9,477 2.14 1.61
ProjE Fail 1,023 1.72 0.80

Figure 8.3: Runtime (in seconds) of flaky tests.

Table 8.4 and Figure 8.3 show the runtime in seconds of the flaky tests that pass and fail
at least once in 500 runs. Overall, we see that for ProjE, the average and median runtime
of passing runs is more than failing runs. As for ProjC, we see that the average and median
runtime of passing runs is about the same as the failing runs. This result suggests that for
these two projects, their flaky tests are likely unrelated to asynchronous method calls. On
the other hand, we can see that for ProjD, the average and median runtime of failing runs
is substantially more than the runtime of passing runs. This result suggests that ProjD’s
flaky tests are likely related to asynchronous method calls. When we categorize flaky tests
in RQ5, we do indeed find that the majority of ProjD’s flaky tests are async-wait tests.

8.3.5 RQ5: Categories of Flaky-Test Fixes

To understand the categories of flaky-test fixes, we use the Pull-Requests dataset, which
contains 134 fixed flaky tests that all have associated pull requests. We categorize these tests
by studying their pull requests, bug reports, and main and test code. Our study focuses on
two main questions; (1) where were the majority of the changes located in (i.e., main or test
code), and (2) what root causes of flaky-test fixes do these pull requests belong to? A prior

146



Table 8.5: Comparison of flaky-test-fix categories with a prior study [126].
Categories Our study [126]
Location of fixes
Main only 1% 12%
Test only 71% 73%
Main and Test 11% 11%
Other 17% 4%
Root cause of fixes
Async Wait 78% 45%
Network 14% 6%
Concurrency 8% 20%
Resource Leak 5% 7%
Randomness 5% 2%
IO 5% 2%
Time 4% 3%
Floating Point Operations 2% 2%
Test Order Dependency 0% 12%
Unordered Collections 0% 1%
Difficult to categorize 26% 20%

study [126] on flaky tests found four kinds of location in which fixes were located and also
identified 10 root causes of flaky-test fixes. Table 8.5 summarizes our findings and those of
a prior study.

Location of Flaky-Test Fixes. A prior study [126] on flaky tests identified four kinds of
locations for flaky-test fixes; (1) Main code only, (2) Test code only, (3) Main and Test code,
and (4) Configuration. We adopt similar kinds of locations for our study. The only change
we make is that “Configuration” is changed to “Other” instead, and a fix is considered to
be “Other” if it includes changing anything besides main or test code (e.g., test input data,
configuration).

Overall, our findings confirm what a prior study [126] found: the majority of fixes (71%)
for flaky tests are in the test code. Interestingly, we find that, in 5% of the fixes, developers
simply removed the test. Our investigation shows that developers sometimes temporarily
removed the failing test or claimed that the test is for functionality that is no longer sup-
ported. We also find that about 12% (1% + 11%) of fixes involve changes to main code.
Overall, our results show that ignoring flaky tests can be dangerous since they do indicate
faults in both main and test code.

147



Root Causes of Flaky-Test Fixes. When performing our study on the categories of
flaky-test fixes, we use the same categories used by a prior study. We find that the most
common category of fixes is Async Wait, with 78% of the fixes belonging to that category.
Async Wait flaky tests make an asynchronous call, and they do not properly wait for the
call to return. The second most common category is Network with 14% of the fixes. Note
that unlike the prior study, one fix of ours may belong to multiple categories. Also, similar
to a prior study [126], we find a number of fixes (26%) that we could not categorize due
to the large number of changes. Specifically, in our study, these fixes modify an average of
785 files. When we examine such fixes in detail, we see that they were a part of a version
upgrade or major refactoring.

Overall, our study differs from a prior study [126] in two main ways. (1) The prior study
used flaky tests from open-source projects, while we used flaky tests from proprietary projects
at Microsoft, and (2) we study the pull requests, bug reports, and main and test code of
flaky tests, while the prior study [126] studied only commits. We believe these differences
between our studies are responsible for the minor differences in our findings. One example of
how our results differ from the prior study is the percentage of fixes that are categorized as
Test Order Dependency. This difference is likely because the way we run tests at Microsoft
heavily reduces the chance of Test Order Dependency causing test flakiness. As explained
in Section 5.1, CloudBuild always runs tests in the same order, but this requirement is not
true for the open-source projects in the prior study2. Indeed, as Table 8.5 shows, none of
the flaky tests within the six projects we study are flaky due to Test Order Dependency,
even though this category is the third most common category of flaky tests in open-source
projects.

Even though the composition of our study differs from a prior study, our findings on the
location and common root causes of fixes remain largely the same. Specifically, we all find
that the majority of flaky-test fixes are located in test code, but a nontrivial amount of them
do also involve main code (12%). Also, the most common category of flaky-test fixes is Async
Wait. Our findings here suggest that solutions, like the one we propose in Section 8.3.7, that
can help reduce flaky-test failures of async-wait tests would highly help accommodate the
negative impact of flaky tests.

2Note that it is still possible for a flaky test to fail due to Test Order Dependency at Microsoft, because
the flaky test could fail when a new test is added and the new test runs before the flaky test. Dually, a flaky
test could start failing as well when a test that was needed to run before the flaky test is removed from the
test suite.

148



Table 8.6: Time given in days for developers to close flaky-test or non-flaky-test related bug
reports (BRs). ProjB is omitted because its BRs are inaccessible for our study.

Flaky-test Non-flaky-test
Proj. # BRs Median Avg. # BRs Median Avg.
ProjA 2 5 5 238 3 17
ProjC 55 90 95 96 11 30
ProjD 759 6 11 1575 8 12
ProjE 43 14 39 55 10 13
ProjF 1 8 8 3 8 12
Overall 861 7 18 1967 7 13

8.3.6 RQ6: Time-Before-Fix of flaky tests

Prior work [42, 76, 80, 106, 137, 165] highlighted how flaky tests negatively impact the
software development process and how important it is for developers to fix flaky tests.

To understand how developers at Microsoft view the importance of fixing flaky tests, we
study how long developers take on average to fix flaky tests. More specifically, we study the
time developers take on average to close the bug report linked to a flaky test. At Microsoft
closing a bug report typically means that the bug has been fixed. For our study, we start
with the flaky tests in our All-Fixed dataset, which consists of 1040 fixed flaky tests. We
find that these 1040 flaky tests are linked to 861 bug reports. As we explain in Section 8.1,
multiple flaky tests may be linked to the same bug report if these tests share similar error
messages (e.g., two tests are flaky due to the same setup method).

Table 8.6 shows the average and median number of days each project takes to close flaky-
test and non-flaky-test related bug reports. Note that ProjB’s results are omitted from
Table 8.6, because as we explain in Section 8.2.2, all bug report and pull request information
for the flaky tests of ProjB are inaccessible for our study. As we show in Table 8.6, developers
take, on average, 18 days, with a median of 7 days, to close flaky-test related bug reports,
while they take on average 13 days, with a median of 7 days, to close all non-flaky-test
related bug reports. The median times developers take to close flaky-test and non-flaky-test
related bug reports are the same, suggesting that developers consider these bug reports to
be of equal importance. However, when we compare the average time developers take to
close flaky-test related bug reports to the non-flaky-test ones, we see that flaky-test related
ones take substantially longer than non-flaky-test ones (18 days for flaky-test related ones
compared to 13 days for non-flaky-test related ones). As Table 8.6 shows, part of the reason
why the average for flaky-test related ones are higher is because the flaky-test related bug
reports in ProjC take much longer to close than the non-flaky-test ones. When we compare
the flaky-test and non-flaky-test related bug reports per project, we see that ProjA’s and

149



Table 8.7: Categorization of Async Wait flaky-test fixes.
Categories Tests
Timing-related fix
Increase wait/timeout 21 (31%)
Add/improve callback 19 (28%)
Add/improve polling 7 (10%)
Timing-unrelated fix
Removing code 17 (25%)
Mocking async calls 10 (15%)
Difficult to categorize 20 (23%)

ProjF’s average time to close non-flaky-test related bug reports are actually more than the
time to close flaky-test related ones. On the contrary, we also see that ProjC’s and ProjE’s
average time to close flaky-test related bug reports are substantially more than the time
to close non-flaky-test related ones. Our findings suggest that although there has been a
substantial amount of work from both industry and academia on flaky tests, it can still be
important to communicate to some developers the importance of fixing flaky tests. Following
our study, we personally approached a number of teams (i.e., those from ProjC and ProjE)
to better communicate to them this importance.

8.3.7 RQ7: Developers’ Effectiveness in Identifying and Fixing Async Wait Tests

Based on the prevalence of async-wait tests as described in RQ5 (Section 8.3.5) and in a
prior study on flaky tests [126], we proceed to study developers’ effectiveness in identifying
and fixing async-wait tests at Microsoft. To study this RQ we first categorize the Async
Wait related flaky-test fixes in our dataset. In total from our work in Section 8.3.5, we find
87 flaky tests that have fixes related to asynchronous method calls.

Prior work [57] on asynchronous tests proposed three main ways one should test asyn-
chronous code. (1) Create a “synchronous” interface between tests and asynchronous code,
(2) implement callbacks on all asynchronous code, and (3) check, or poll, frequently whether
an asynchronous service is complete. When we study the Async Wait flaky-test fixes (or
Async Wait fixes for short) in our dataset, we find no cases in which (1) was done by devel-
opers. Our results are likely because (1) requires substantial effort from developers to create
and maintain such interfaces. On the other hand, we do see developers using both callbacks
(28% of Async Wait fixes) and polling (10% of Async Wait fixes) to fix their async-wait tests.
Beyond the three categories laid out in this prior study, we also find three new categories
for these Async Wait fixes. Specifically, we find that the most common category of fix (31%

150



Figure 8.4: Overview of how the Flakiness and Time Balancer (FaTB) works.

of Async Wait fixes) involves simply increasing the wait time or timeout of asynchronous
method calls. The other two categories are to simply remove code related to the flaky-test
failure (25% of Async Wait fixes) or to mock the asynchronous calls (15% of Async Wait
fixes). Lastly, we find that 23% of the Async Wait fixes are difficult to categorize, since
they involve changes to asynchronous method calls, but we cannot identify any particular
categories for these fixes. Table 8.7 summarizes the findings from our categorization. Note
that the fix for each test may be categorized into one or more categories.

Evaluating and Improving Developers’ Async Wait Fixes. Because the majority of
the async-wait fixes involve simply increasing the wait time or timeout (time value for short)
of an asynchronous call, we proceed to study how well these time values set by developers
are at reducing flaky-test failures and how these time values affect the runtime of these
flaky tests. To evaluate and improve developers’ Async Wait fixes, we propose the Flakiness
and Time Balancer (FaTB). FaTB first finds the flaky-test-failure rate of the test using
the developers’ fix. Once FaTB obtains the rate associated with the developers’ fix, it then
increases or decreases the time value and again measures the flaky-test-failure rate associated
with the new time value. Figure 8.4 shows an overview for what FaTB does.

Depending on whether the test is still flaky with the new time value, FaTB will use that
information to either increase or decrease the next time value to try. At a high-level, to
lower the time value, FaTB will first use the time value between the developer’s fix time and
the time set before the fix. For an example, if the developer’s fix time was 1000 milliseconds
(ms) and the time value before their fix was 500 ms, then FaTB would first set the time
value to be 750 ms. If lowering the time value does not cause flaky-test failures in some

151



Figure 8.5: How FaTB chooses the next time value an Async Wait test should try.

number of runs (100 in our experiments), then FaTB will halve the current time value (e.g.,
375 ms). If lowering the time value does cause flaky-test failures, then the next time value
will be between the current value and the developer’s fix time (e.g., 875 ms).

FaTB outputs the observed flaky-test-failure rate and average test runtime for each time
value (e.g., [time value: 375ms, fails: 1%, runtime: 875ms], [time value: 1000ms, fails 0%,
runtime: 1500ms]). As a post-processing step, FaTB will also remove time values that
have the same flaky-test-failure rate, choosing to output only the minimum time value and
runtime for all observed flaky-test-failure rates. This output enables developers to finely
balance the trade-off of their tests’ runtime and flaky-test-failure rate. The logic FaTB uses
to generate different time values is shown in Figure 8.5. FaTB generates time values specific
to the machine on which FaTB is run on. To ensure that these generated time values perform
well on different machines, developers can run small benchmarks on these different machines
(e.g., their own development machine) and the machines on which they run FaTB (e.g., a
development server). The difference in the machines’ performance on the small benchmarks
can then be used to scale the generated time values as needed.

Results. To evaluate FaTB, we randomly sample five tests from the 21 tests whose fix
was to increase the wait/timeout. The results from applying FaTB on these five flaky tests
are shown in Table 8.8. Specifically, we use FaTB to generate four time values for each test,

152



Table 8.8: Statistics of the results produced by FaTB on five versions of five async-wait tests.
The unit for the Time value depends on the test. Runtime is in seconds. Pre-fix value is the
value before the developer’s fix. Version 0’s time value is the value after the developer’s fix.

Flaky Time Average Median
test Version value % Fails runtime runtime
Test1 0 600 0 1.39 1.37
(Pre- 1 450 0 1.22 1.22
fix 2 225 73 1.07 1.08
value: 3 413 0 1.19 1.19
300) 4 206 82 1.10 1.07
Test2 0 1,000 0 1.75 1.75
(Pre- 1 800 0 1.61 1.54
fix 2 400 0 1.14 1.13
value: 3 200 0 0.96 0.94
600) 4 100 0 0.84 0.84
Test3 0 600 0 1.67 1.66
(Pre- 1 300 0 1.36 1.36
fix 2 150 0 1.21 1.21
value: 3 75 0 1.14 1.14
0) 4 37 0 1.09 1.08
Test4 0 100 0 8.08 8.03
(Pre- 1 50 0 7.57 7.49
fix 2 25 0 7.43 7.38
value: 3 12 0 7.39 7.30
0) 4 6 0 7.20 7.10
Test5 0 150 0 0.18 0.18
(Pre- 1 83 0 0.11 0.11
fix 2 41 0 0.07 0.07
value: 3 20 0 0.05 0.05
15) 4 10 0 0.04 0.04

and Version 0 represents the value the developers proposed to fix the flaky tests. We run
the test 100 times for each version to measure that version’s flaky-test-failure rate. Due to
confidentiality reasons, the names of the tests are anonymized.

We apply Step 2 of FaTB four times on five flaky tests and find that for four of the
flaky tests, even when the time value is set to be substantially lower than the value set
by the developers to fix the test, the tests’ flaky-test-failure rates appear to be unaffected.
More specifically, for Test2, Test3, Test4, and Test5, we see 0% flaky-test-failure rates even
when we substantially decrease the time value set by the developers. Our finding here further
echoes the sentiments that we find about fixing flaky tests in Section 8.3.3. More specifically,
we see that the fixes employed by the developers for these flaky tests were likely educated

153



guesses that turn out to be unrelated to the flaky-test failures of the test. This finding here is
largely related to how truly understanding the root cause of a flaky test is often challenging.
For these four flaky tests, neither we nor the developers were able to actually determine the
root cause for the flaky test, and, consequently, neither we nor they are able to fix the flaky
test. Future studies on the root causes of flaky tests should be more cautious when basing
their results on the changes by developers.

Besides the four flaky tests that do not encounter any flaky-test failures, we see one
example (Test1) that does exhibit flaky-test failures once we lower the wait/timeout value
of the test. For Test1, we can see that once the value goes lower than the value before the
developer fixed the flaky test (300), we start observing a high flaky-test-failure rate (e.g.,
when set to 225, we see a 73% flaky-test-failure rate). However, once FaTB sets the value
to be 413, we see a 0% flaky-test-failure rate. When we compare the flaky-test-failure rate
with the developer’s fix (time value for Version 0) to the flaky-test-failure rate with the time
value for Version 3, we see that this flaky test can obtain the same flaky-test-failure rate
when the time value is set to 600 or 413. However, the lower time value (413) enables this
test’s average runtime to be about 14% faster than the higher value (600). Similarly, Test2,
Test3, Test4, and Test5 do not encounter any flaky-test failures on all versions, and their
average runtime can also be faster by about 52%, 35%, 11%, and 78%, respectively.

It is surprising that the developers of Test2, Test3, Test4, and Test5 would increase the
time values of these tests when the values do not appear to empirically affect the tests’
flaky-test-failure rate. Our results suggest that there are perhaps some other changes in
these pull requests that actually fix the flaky tests, and that the changes in time values were
not intended as the fix. To understand why the developers may have changed these time
values, we study the pull request messages of the fixes. We find that for all four of the flaky
tests besides Test4, the messages all say that they are increasing the time values as a fix to
the flakiness. For example, Test3’s message says “Fix is to wait 2 * X time”. On the other
hand, Test4’s message says “Fix flaky test” and then explains how some refactoring was done
to some asynchronous code. From these pull request messages, we see that at least for Test2,
Test3, and Test5, these developers are purposefully trying to fix their async-wait tests by
increasing time values. Note that Microsoft does not encourage developers to fix their async-
wait tests by increasing the time value. However, since regulating how developers fix their
code would be very costly, we do plan to use FaTB to help developers at Microsoft. With
the prevalence of async-wait tests and how developers prefer to fix these tests by increasing
the time value, we suspect that there are many other tests whose collective reduction in test
runtime can substantially lessen the time developers spend waiting for test results, machine
resources needed to run these tests, and amount of flaky-test failures developers debug.

154



8.4 THREATS TO VALIDITY

Our work contains many of the common threats typically found in empirical studies. In
this section we focus on the issues that are more specific to our study.
Subjects of our study. Our study consists of just six projects at Microsoft, and our
findings from studying these six projects may not generalize to other projects or companies.
To avoid any bias in the selection of our projects, we include all projects using Flakes in
our study. As we describe in Section 8.1, there are a total of 11 projects using Flakes, and
of these 11 projects, the six projects we study are the ones where Flakes found at least one
flaky test. The projects we study also greatly vary in activity (e.g., number of builds per
month) and in purpose (e.g., database, search).

Aside from the projects used in our study, our decision to study pull requests, bug reports,
and main and test code to understand the fixes of flaky tests in Section 8.3.5 may also be a
threat. A prior study [126] on flaky tests used the commits to understand the characteristics
of flaky tests. For our study, we use pull requests, which consists of one or more commits,
because we believe that pull requests represent a more complete set of changes made by
the developers. Unlike commits, changes from pull requests generally build without errors
and have been tested locally to ensure they do not fail any tests. Furthermore, the prior
study [126] did not run the tests and observed them to be flaky like we do.
Metrics used in our study. The metrics we use in our study pose a potential threat to
our findings and results. For example, we use the time a bug report is opened till when it
is closed to understand developers’ sense of importance in fixing flaky tests. In reality, a
developer taking a short or long amount of time to fix flaky tests could be an indicator of how
easy or difficult the fix was and would be irrelevant to the developer’s sense of importance.
The timing we report may also be inaccurate, because different teams work differently and
some teams may close bugs as soon as they are fixed, while other teams may only close them
at their next team meeting.
Flaky tests used in our study. Flaky tests, by definition, may pass or fail on the
same code. To identify the flaky tests used in our study, we rely on Flakes, which simply
reruns each failing test once to see whether it would pass on the rerun. Because there are
no guarantees that the rerun would pass if the test is indeed flaky, Flakes may potentially
contain many false negatives, in which a test that is flaky is undetected. Nevertheless, Flakes
contains no false positives, meaning that all flaky tests detected by Flakes must indeed be
flaky. Due to this threat, the number of flaky tests we report in our study is simply the
minimal number of flaky tests in our projects.

Our findings in regards to the runtime and reproducibility of flaky tests identify that

155



there are some patterns. However, more runs of the flaky tests may change our findings. To
mitigate this threat, we choose to run each test a high number of runs, specifically 500 runs.
Findings from manual inspection. Certain research questions in our study require us to
manually inspect the information of flaky tests. Specifically, for categorizing flaky tests and
categorizing async-wait tests, we minimize the occurrence of miscategorization by having
more than one author of our paper [107] inspect every pull request, every bug report, and
all main and test code, and we discussed our categorizations until everyone agrees.

8.5 SUMMARY

Flaky tests have received much attention from both the industry and the research com-
munity in recent years. Although flaky tests are the focus of several existing studies, none of
them study (1) the reoccurrence, runtimes, and time-before-fix of flaky tests, and (2) flaky
tests in-depth on proprietary projects. To fill this knowledge gap, we study the lifecycle of
flaky tests on six large-scale, diverse proprietary projects at Microsoft. Our study of preva-
lence and reproducibility reveals the substantial negative impact that flaky tests have on
developers at Microsoft, while our study on the characteristics, categories, and resolution
of flaky tests confirms that some of the findings from a study on open-source projects also
hold for proprietary projects. For example, similar to the prior study on flaky tests in open-
source projects, we also find that the most common category of flaky tests in proprietary
projects is the Async Wait category. To help alleviate the problem of Async Wait flaky tests,
we propose the Flakiness and Time Balancer (FaTB). FaTB identifies the method calls in
the test code that are related to timeouts or thread waits, and then it calculates the flaky-
test-failure rate of the flaky test. Based on the current flaky-test-failure rate, FaTB then
tries various time values and outputs the minimum time values that developers should use
depending on their tolerance for flaky-test failures. Our evaluation of FaTB on five versions
each of five flaky tests shows that tests can run up to 78% faster and still achieve the same
flaky-test-failure rate as before. We also find that the developers thought they “fixed” the
flaky tests by increasing some time values, but our empirical experiments show that these
time values actually have no effect on the flaky-test-failure rates. Our finding suggests that
what developers claim as “fixes” for flaky tests in bug reports, commit messages, etc. can be
unreliable, and future work should be more cautious when basing their results on changes
that developers claim to be “fixes”.

156



CHAPTER 9: RELATED WORK

This chapter presents work related to this dissertation. Namely, Section 9.1 presents
related work on detecting flaky tests, Section 9.2 presents related work on characterizing
flaky tests, and Section 9.3 presents related work on taming flaky tests.

9.1 DETECTING FLAKY TESTS

Several projects have proposed techniques for detecting order-dependent (OD) flaky tests [19,
59, 216, 237]. Specifically, Zhang et al. [237] proposed randomizing test orders to detect OD
tests. Biagiola et al. [19] studied test dependencies within web applications, noting the chal-
lenges in tracking the test dependencies in shared state between server-side and client-side
parts of web applications. They proposed a technique for detecting these test dependencies
based on string analysis and natural language processing. Waterloo et al. [216] built a static
analysis tool to detect inter-test and external dependencies. Gambi et al. [59] proposed using
data-flow analysis to detect OD tests.

Our contributions to detecting flaky tests include the development of iDFlakies, a tool that
randomizes test orders to detect OD tests. Our work follows Zhang et al. [237] who detected
OD tests through random ordering of all the test methods in a test suite. However, unlike
Zhang et al. [237], the test orders that iDFlakies run do not interleave the test methods
across different test classes, and consequently, the test orders would respect how JUnit
actually runs tests. Furthermore, we publicize a dataset of flaky tests across a much larger
number of projects. We also presented a probabilistic analysis for OD tests to fail that all
prior work on OD tests lacked and a systematic approach to cover all test-method pairs.
As presented in Section 3.3.3, our probabilistic analysis finds that whether test methods
are allowed to interleave across different test classes or not, the probability of detecting
OD tests is similar. However, by not interleaving test methods across different test classes,
the test orders from iDFlakies avoid potential false alarms. Finally, we presented a study
to understand when and how flaky-test detection tools should be used. Namely, flaky-test
detection tools would not be effective if they are applied immediately on a test introducing
commit if the test is not yet flaky. This observation is important because running these
tools constantly (i.e., on every commit) can be costly in machine time, even if the detection
is done offline to not block the developers’ critical path.

Beyond techniques specific for detecting OD tests, Bell et al. [18] proposed monitoring
the changes between revisions to determine whether test failures are due to flaky tests or

157



not. Pinto et al. [160] proposed using machine learning and natural language processing
techniques based on tokens obtained from test-method code to detect flaky tests. Alsham-
mari et al. [7] also used similar techniques and included other features such as the presence
of test smells, hard coded values, the age of tests, and more to detect flaky tests. Shi et
al. [184] proposed NonDex, a tool for detecting incorrect assumptions by developers on spec-
ifications. Terragni et al. [199] proposed using various containers, each specialized to detect
and root cause a specific category of flaky tests. Similarly, Mozilla’s Test Verification [201]
also aims to detect various categories of flaky tests by having verification steps that each use
a different strategy to detect flaky tests. Recently, Mudduluru et al. [143] proposed verifying
the absence of flaky tests using type systems. Overall, detecting flaky tests has garnered
much attention in many domains over the years. In fact, in recent years, other domains
such as probabilistic and machine learning applications [40] and Android [38, 188] have also
received much attention on detecting this important problem.

Gyori et al. [73] proposed PolDet, which monitors the heap and filesystem to detect tests
that may become polluters later. Complementary, Huo and Clause [84] proposed detecting
“brittle assertions”, which can detect tests that may become either victims or brittles later.
These two techniques could indeed be effective at detecting potential flaky tests when the
tests are first introduced. However, these specific techniques focus on the shared heap
and filesystem, while flaky tests have many other sources of flakiness (e.g., random numbers,
network, timing, or concurrency) that still remain to be addressed. Another similar work that
aims to detect potential flaky tests when they are first introduced is FRITTER by Parry et
al. [159]. FRITTER aims to generate tests using automatic program repair techniques to
expose whether a test can be flaky or not.

9.2 CHARACTERIZING FLAKY TESTS

In this section, we present related work on studying the categories of flaky tests, on
studying the reproducibility of flaky-test failures, and on debugging flaky tests.

Studies of Flaky-Test Categories. In recent years we have seen a number of studies
on the categories of flaky tests [42, 61, 126, 167, 205, 237]. Zhang et al. [237] was the first
academic study to formally define Test Order Dependency, which is when test outcomes
can be affected by the order in which the tests are run. Luo et al. [126] then provided the
first comprehensive academic study on the various categories of flaky tests. Their study is
based on a manual investigation of commits that are likely related to fixing flaky tests where
the commits are found by searching for certain flaky-test related keywords. They manually

158



investigated 201 commits from 51 open-source projects, finding that the primary causes for
flakiness are (1) Async Wait (AW), (2) Concurrency, and (3) Test Order Dependency (OD).
The study reported that 78% of flaky tests are flaky in the commit they are introduced.
Another study on flaky tests interviewed Mozilla developers after flaky tests were fixed in
Mozilla-related projects [42]. This work studied developers’ perception of flaky tests and
had developers categorize the patches that developers claim to have fixed flaky tests. This
study extends the one from Luo et al. [126] by identifying additional categories of flaky tests
based on developer surveys. A recent study by Gruber et al. [72] on flaky tests in Python
programs found that Test Order Dependency accounted for 59% of the flaky tests studied
and 28% were caused by test infrastructure problems. The remaining 13% are mainly due
to the use of network and randomness APIs.

The studies presented in this dissertation provide information on flaky tests that prior
studies lacked. Specifically, in Chapter 4, our work presented the first dataset of commits
when flaky tests first become flaky obtained from using two state-of-the-art flaky-test detec-
tion tools, while prior work [42, 126] found flaky tests by reading change logs or surveying
developers. The manual work from prior studies is highly costly to reproduce, so we do not
further compare how our results may differ if we used a similar experimental methodology as
prior studies. However, as we reported in Chapter 8, we find several cases where developers
claim they “fixed” a flaky test when our experiments show that their changes do not fix or
reduce these tests’ frequency of flaky-test failures. As more studies are conducted on the
fixes of flaky tests, future work should better explore how one can confirm whether changes
by developers do indeed fix flaky tests.

Gao et al. [61] studied flaky GUI tests. They found that it is difficult to reliably reproduce
results from tests that interact with the GUI and that there exists tests that change the
state for later-run tests, resulting in GUI-OD tests. Thorve et al. [205] found additional root
causes for flaky tests when studying flaky-test commits in Android. A more recent study
of Android flaky tests by Romano et al. [167] found that the main causes of Android flaky
tests are issues with Async Wait, differences in the underlying platform used to run tests,
issues in how the tests interact with the applications (e.g., an intended short click is treated
as a long click instead), and issues within the tests (e.g., a test randomly generating data
and can fail for certain values).

Studies of Flaky-Test Failure Reproducibility. Labuschagne et al. [104] found that,
because of flaky tests, 12.8% of builds on average would pass in some runs and fail in some
other runs when the build is run three times. Another study [165] has shown that ignoring
flaky-test failures can lead to more crashes in production code for the Firefox web browser.

159



Thorve et al. [205] examined 77 commits that had commit messages containing the keywords
“flaky” or “intermittent”. The commits came from 29 Android projects, and they found that
13% of the commits simply skipped or removed flaky tests. As shown in Chapter 8, our
study on the reproducibility of flaky tests in proprietary projects finds that the likelihood
to reproduce at least one failure from a flaky test with 500 runs can range between 17% to
43% depending on the project. We also find in our study on open-source projects, shown in
Chapter 6, that the likelihood to reproduce NOD flaky-test failures for the 107 flaky tests
is on average, 2.7%, with the minimum being 0.025% (1 in 4000 runs) and the maximum of
50%. Recently, Kowalczyk et al. [103] proposed using the historical flake rate of flaky tests
to model and rank flaky tests at Apple.

Debugging Flaky Tests. Like RootFinder presented in Chapter 5, several other systems
use differences in runtime invariants in passing and failing tests to identify likely causes of
failures [48, 70, 74, 118, 198]. Fault localization techniques and tools, such as Barinel [3],
DStar [222], Ochiai [4], Op2 [145], and Tarantula [92] analyze different passing and failing
tests in order to localize likely faults in programs. In contrast, RootFinder focuses only
on non-deterministic tests that sometimes pass and sometimes fail, and it depends on the
collection of a large volume of runtime logs (to not miss rare flakiness and to check for
unplanned invariants).

9.3 TAMING FLAKY TESTS

As discussed in Section 1.5, the main ways to help developers tame flaky test are to reduce
the chance of flaky-test failures or completely remove the chance of flaky-test failures. In this
section, we present related work on reducing and removing the chance of flaky-test failures.

Reducing Flaky-Test Failures. Only a few techniques and tools have been developed
to reduce or accommodate the impact of flaky tests.

For OD tests, some testing frameworks provide mechanisms for developers to specify the
order in which tests must run. For tests written in Java, JUnit since version 4.11 supports
executing tests in lexicographic order by test method name [200], while TestNG [203] sup-
ports execution policies that respect programmer-written dependence annotations. Other
Java testing frameworks such as DepUnit [35], Cucumber [31], and Spock [191] also provide
similar mechanisms for developers to manually define test dependencies. Beyond Java testing
frameworks, similar mechanisms exist in two of the three popular C# testing frameworks.
Namely, both NUnit [153] and xUnit [225] provide mechanisms for using annotations to

160



customize the order that tests run [155]. While starting in version 2 of MSTest [209], tests
can be run in only alphabetical order [211]. These test dependencies specified by develop-
ers could be used directly by our approach proposed in Chapter 7, or to improve the test
dependencies computed using automatic tools (by adding missing or removing unnecessary
test dependencies). Haidry and Miller [75] proposed test prioritization based on OD tests,
hypothesizing that running tests with more test dependencies is more likely to expose faults.
Arlt et al. [12] proposed that test dependencies and the results of already executed tests
can be used to infer the test results of yet to be executed tests. In our work presented in
Chapter 7, we enhance existing, traditional test prioritization algorithms (along with other
regression testing algorithms) to satisfy test dependencies. Test dependencies have also been
considered for test-suite minimization by Lin et al. [119].

VMVM [16] is a technique for accommodating test dependencies through a modified run-
time environment. VMVM’s runtime resets the reachable shared state (namely, the parts of
the in-memory heap reachable from static variables in Java) between test runs. The restora-
tion is all done within one JVM execution of all tests, providing benefits of isolation per test
without needing to start/stop separate JVMs per test. Similar to the work by Kapfhammer
and Soffa [99], VMVM considers a test as an order-dependent test if it accesses a memory
location that has been written by another test, being neither necessary nor sufficient to affect
the test outcome. Note that VMVM does not aim to detect flaky tests, and resets shared
state for all tests, regardless of pollution or not. Similarly, Muşlu et al. [142] proposed
a technique to run tests in separate processes regardless of whether tests pollute or use a
shared state or not. Bell et al. [18] also evaluated how various forms of isolation can help in
test reruns to detect which test failures are due to flaky tests. However, all forms of isolation
add extra overhead on top of executing tests, even with the recent work that describes how
to reduce the overhead of test isolation in Maven Surefire [152].

For AW tests, Jagannath et al. [87] proposed IMUnit, a new language that allows develop-
ers to specify the execution flow of tests that make asynchronous method calls. Similarly, El-
mas et al. [46] proposed CONCURRIT, a scripting language that allows developers to control
the scheduling of threads to find or reproduce concurrency bugs. Other work [127, 130, 214]
proposed tools that help enforce policies specified by the developers. These policies dictate
the scheduling in which threads run, and developers have to manually write these policies.
Unlike these prior projects, FaTB presented in Chapter 8 does not require the developers to
provide additional information (e.g., policies in which threads should execute), or write their
code differently. Instead, FaTB assists the developers by systematically deriving the time
a test should wait for asynchronous calls. Fowler [57] proposed three main ways in testing
asynchronous code: (1) creating a synchronous interface between tests and asynchronous

161



code, (2) implementing callbacks on all asynchronous code, and (3) checking frequently on
whether an asynchronous service is complete. The implementation of (1) and (2) requires
substantial effort from developers to setup and maintain. The implementation of (2) and (3)
also requires the developers to provide some timeout value for the asynchronous call, which
may never complete. FaTB can help the developers systematically derive a timeout value
that minimizes the runtime while keeping flaky-test-failure rate low.

For other categories of flaky tests, Bell et al. [18] proposed DeFlaker, a technique that
monitors the code coverage of recent code changes and marks as flaky any newly failing
test that does not execute any of the code changes. Developers then need not investigate
test failures that are from tests marked as flaky for regression faults. Dutta et al. has also
proposed TERA [39] and FLEX [41]. Both techniques aim to reduce flaky-test failures for
machine learning applications.

Removing Flaky-Test Failures. Automatic patch generation is a well-studied topic [115,
121, 122, 133, 141, 150, 218, 219]. The goal is to automatically patch faults in the code,
exposed by failing tests. These techniques generate patches using a variety of mechanisms
such as systematically mutating code, learning from example patches, and symbolic execu-
tion. To validate the success of the patches, most of the techniques rely on the outcomes of
tests. Shi et al. [186] proposed iFixFlakies, a tool to automatically fix OD tests. Unlike most
work on automatic patch generation, iFixFlakies aims to patch tests as opposed to the code
under test. iFixFlakies does so by creating test-code patches after searching for code among
the existing tests that can be used to make OD tests pass. Zhang [236] proposed DexFix, an
automated approach to repair wrong assumptions on underdetermined specifications in both
the (flaky-) test code and the code under test. Daniel et al. [32, 33], Mirzaaghaei et al. [139],
and Yang et al. [226] also fixed test code, while Gao et al. [60] and Stocco et al. [194] fixed
test scripts for GUI. However, they all fixed tests that become broken due to code evolution,
not flaky tests.

162



CHAPTER 10: CONCLUSIONS AND FUTURE WORK

Developers typically perform regression testing to ensure that their recent changes do not
break existing functionality. Unfortunately, during regression testing, developers can waste
time debugging their code changes because of spurious failures from flaky tests, which are
tests that can both pass and fail when run multiple times on the same version of code. In
recent years, many software organizations have reported that flaky tests are one of their
biggest problems in software development.

This dissertation tackled three main aspects of flaky tests. First, this dissertation pre-
sented novel techniques to detect flaky tests so that developers can preemptively prevent the
problem of flaky tests from affecting their regression testing results (Chapter 2, Chapter 3,
and Chapter 4). Second, this dissertation presented novel techniques to characterize flaky
tests to help developers better understand their flaky tests and to help researchers invent
new solutions to the flaky-test problem (Chapter 5 and Chapter 6). Lastly, this disserta-
tion presented novel techniques to tame the problem of flaky tests by accommodating the
flakiness so that flaky tests do not mislead developers during regression testing (Chapter 7
and Chapter 8). Overall, the work in this dissertation has helped detect more than 2000
flaky tests in over 150 open-source projects and fix more than 500 flaky tests in over 80
open-source projects.

One prominent category of flaky tests is order-dependent (OD) flaky tests. Each OD test
has at least one order in which the test passes and another order in which the test fails,
and for every test order, the test either passes or fails in all runs of that test order. On the
other hand, as described in Section 1.2, flaky tests that are not OD are referred to as Non-
deterministic (NOD) tests. A prominent category of NOD tests is async-wait (AW) flaky
tests. Each AW test makes at least one asynchronous call and passes if the asynchronous
call finishes on time but fails if the call finishes too early or too late.

For detecting flaky tests, this dissertation first presented a tool called iDFlakies that
we developed and made publicly available [85]. iDFlakies can (1) detect flaky tests and
classify them into two categories, and (2) be easily integrated into Maven projects that use
JUnit. Second, this dissertation presented a methodology to analytically obtain the flake
rates of OD tests and proposed a simple change to the random sampling of test orders to
increase the probability of detecting OD tests. Our analysis found that some OD tests have
a rather low flake rate, as low as 1.2%. Third, this dissertation presented an algorithm
that systematically explores all consecutive test pairs, guaranteeing the detection of all OD
tests that depend on one other test, while running substantially fewer tests than a naive

163



exploration that runs every pair by itself. Lastly, this dissertation presented a collection
of artifacts, including Docker images and test-run logs, that we used to create a dataset of
flaky tests [105]. Using the dataset, this dissertation also presented a study of flaky tests in
open-source Java projects. Our findings included how prevalent OD and NOD types of flaky
tests are, how to automatically detect these tests, when flaky tests are introduced, what
changes cause tests to be flaky, and how should developers use flaky-test detection tools.

For characterizing flaky tests, this dissertation first presented a tool called RootFinder that
we developed and made publicly available [168]. RootFinder analyzes the logs of passing and
failing executions of the same test to suggest method calls that could be responsible for the
flakiness. Second, this dissertation presented an end-to-end framework, developed within
Microsoft that uses RootFinder to root-cause flaky tests. Third, this dissertation presented
a qualitative study of flaky tests in Microsoft proprietary projects. Our qualitative study
provided insights on root causing flaky tests with in-depth examples that demonstrate the
root causes of flaky tests. Lastly, this dissertation presented our empirical evaluation of
flaky tests in open-source Java projects. Our evaluation provided actionable guidelines and
practical suggestions for developers and researchers to rerun, detect, debug, and prioritize
flaky tests.

For taming flaky tests, this dissertation first presented a study of how OD tests affect
traditional regression-testing techniques such as test prioritization, test selection, and test
parallelization. When we applied regression testing techniques to test suites containing OD
tests, 82% of the human-written and 100% of the automatically generated test suites contain
one or more OD tests that fail. Second, this dissertation presented a general approach to
enhance traditional regression-testing techniques to be dependent-test-aware. We applied
our general approach to 12 traditional regression-testing algorithms, and made them and
our approach publicly available [5]. An evaluation of the 12 enhanced algorithms showed
that the orders produced by the enhanced algorithms can have 80% fewer OD-test failures,
while being only 1% slower than the orders produced by the unenhanced algorithms. Third,
this dissertation presented a study on the lifecycle and categories of flaky tests in Microsoft
proprietary projects. Our study results suggested the need for an approach to accommodate
AW tests. Lastly, this dissertation presented an automated approach, called FaTB, to bal-
ance test flakiness and runtime. Our empirical experiments showed that FaTB can help AW
tests run up to 78% faster, and the AW tests will still have the same flaky-test-failure rates
as before.

164



10.1 FUTURE WORK

In this section, we describe potential future work that can further advance the work
presented in this dissertation.

Detecting Other Causes of Flaky Tests. This dissertation focused on two prominent
categories of flaky tests: OD and AW tests. However, as prior studies have found [42, 126],
there are many other categories of flaky tests based on concurrency, network, I/O, time,
random numbers, etc. Future work should explore how to better detect these other categories
of flaky tests. For example, the Concurrency category of flaky tests can pass or fail due to
different threads interacting in a non-deterministic manner (e.g., data races, deadlocks). The
use of data-race and deadlock detection tools [10, 24, 65, 79, 86, 135, 212] may be effective
in detecting this category of flaky tests. However, not every data race would actually result
in a failing test result. Similarly, not every data race would indicate a fault in the program.
In fact, prior papers [47, 100, 148, 213, 232] have found that 76%–90% of data races are
harmless races, i.e., the races are added either fortuitously or by design and they do not
harm the program’s correctness. Therefore, future work should also explore how data races
can be prioritized so that harmful races (i.e., those that harm program correctness or test
results) come before harmless races (i.e., those that do not harm program correctness or
test results). Overall, we foresee that the detection of data races can help developers better
detect Concurrency flaky tests and help them understand why their tests may be flaky.

Detecting Flaky Tests in New Domains. Most existing papers from academic re-
searchers on flaky tests use Java [18, 38, 59, 61, 73, 84, 108, 109, 111, 112, 126, 160, 167,
184, 186, 188, 205, 237] programs with a few recent papers using Python [39–41, 72, 159],
C# [106, 107], and C [42] programs. Although the diversity of the programming lan-
guages has improved recently, few existing papers study UI-based programs. One recent
paper [167] performed an empirical study of flaky tests in Android applications. The study
found that AW tests from the loading of UIs are a prominent category of Android flaky
tests. To help with this category of flaky tests, future work can help developers translate
UI-based tests to non-UI-based tests (similar to prior work on factoring system tests to unit
tests [44, 94, 95, 156, 177, 224]) and consequently avoid async-wait issues, or improve the
replayability of UI events by dynamically deciding how long to wait based on the load of the
system during test execution. Beyond flaky tests in the mobile domain, programs in domains
such as machine learning, probabilistic programming [39–41], and quantum computing are
inherently non-deterministic. These programs are more difficult to test, because test or-

165



acles are generally difficult to write for non-deterministic programs. Yet, testing them is
important as many companies such as Apple, Facebook, Google, and Microsoft are increas-
ingly relying on these programs for many tasks. Future work should also explore detecting,
characterizing, and taming of flaky tests in these other domains.

Verifying (Lack Of) Flaky Tests. The most common approach to detect flaky tests
is by rerunning tests many times, and observing both passing and failing runs. However,
reruns can be quite costly and could still miss detecting flaky tests. Applying formal methods
to detect flaky tests could provide better results and provide guarantees on whether tests
can be flaky or not [143]. For example, applying model-checking techniques to detect flaky
tests can be promising. Model-checking techniques use a model to check whether a system
meets a given specification (e.g., job manager is shutdown before victim test is run for the
example in Section 1.2.1). Specifically, for OD tests, victims must depend on a state that
is polluted by a polluter. Therefore, for every victim and polluter pair, there must be at
least two (pre-)states, one in which the victim passes and one in which the victim fails.
Automatically identifying the minimal state for the victim to pass and the minimal state
for the victim to fail would aid the debugging of the victim, and the searching of test orders
where the victim passes and orders where the victim fails. Besides model checking, symbolic
execution [67, 182, 206] is an increasingly used, formally based technique for software testing.
In recent years, symbolic execution has been shown to be effective in various testing tasks.
Given a program with some inputs labeled as symbolic, the execution can generate concrete
values for the inputs, e.g., to achieve high code coverage or reach specific program points.
Future work can encode the problem of detecting flaky tests into symbolic execution by
making some values symbolic (e.g., system time) and attempting to generate values that
make the test pass and values that make the test fail.

Reducing Testing Time With OD Tests. OD tests can be useful sometimes because
they can help developers run their tests faster by allowing the tests to share resources [175].
For example, one test may create a database that another test uses, allowing the latter test
to run faster as an OD test instead of recreating the database. Prior papers have already
suggested changing the order that tests are run to reduce the runtime of tests [195, 196].
Additionally, every popular Java testing framework already permits developers to specify
dependencies among tests, including JUnit, TestNG, DepUnit, Cucumber, and Spock. In
fact, as of June 2021, the JUnit annotations @FixMethodOrder and @TestMethodOrder, and the
TestNG attributes dependsOnMethods and dependsOnGroups have been used over 270k times
in Java files on GitHub. With the popularity of OD tests to help improve the runtime of test

166



suites, there currently exists no automated solution to help developers (1) find tests that can
be made order-dependent, (2) create helper functions to effectively share resources between
tests, and (3) optimize the placement of tests so that helper functions can be effectively
shared to minimize the runtime of test suites. Future work should explore the use of static
and dynamic program analyses to help identify common resources [147] that can be shared
between tests to create the helper functions. Using the helper functions, developers can then
optimize the placement of tests so that the time spent setting up each test class is increased,
but the time spent setting up each test method is substantially decreased.

Automatically Accommodating and Fixing More Categories of Flaky Tests. This
dissertation described two pieces of work on accommodating flaky tests (Chapter 7 and
Chapter 8) with one piece of the work focused on OD tests and the other on AW tests.
However, as prior studies have found [42, 126], there are many other categories of flaky
tests. Future work should explore how accommodating techniques can be developed for
these other categories. Beyond accommodating flaky tests, developers may also prefer to
fix their flaky tests. One proposal for automated fixing is iFixFlakies [186], an automatic
technique to fix OD tests. Similar to accommodating techniques, fixing techniques should
also explore how the techniques can be developed for other categories of flaky tests.

Benefiting From Non-determinism. Prior work [42, 126] on flaky tests has largely
painted them as a problem that developers should get rid of because the tests can non-
deterministically pass or fail for the same code. However, non-determinism can be used
to improve performance (e.g., parallel computing) and security (e.g., address space layout
randomization). For example, a test for a parallel problem can run more efficiently using
asynchronous code, but the timing variations of asynchronous code can cause parts of the
test to run in a non-deterministic order. These variations can cause flaky-test failures. Our
techniques on accommodating flaky tests took the first step to accommodate the problems of
non-determinism so that developers can still benefit from using asynchronous code. However,
many software engineering approaches (e.g., test generation and automatic program repair)
still assume determinism. Future work should explore how non-determinism would affect
many of these approaches and how the approaches can be accommodated to benefit from
non-determinism. For example, how will non-determinism affect test generation [11]? How
can non-determinism be accommodated for test-generation approaches such that the tests
generated can find more bugs, run faster, and be easier for developers to maintain? To help
address these problems, one may conduct studies to understand the effect of non-determinism
on various approaches and then use the results to develop accommodation techniques.

167



As long as people write software (or even generate software, e.g., using machine learning),
there will be bugs, and software testing will be a practical way to detect such bugs. The
work on flaky tests presented in this dissertation scratches only the surface of the problems
that non-determinism brings to software development. In the future, we foresee many more
advancements to detecting, characterizing, and taming flaky tests. We also foresee many
more advancements to the problems of non-determinism beyond the domain of regression
testing, such as test generation and automatic program repair. All of these advancements
would help reduce the problems that non-determinism brings to software development and
improve the dependability of software.

168



REFERENCES

[1] “A large-scale longitudinal study of flaky tests - Tools and dataset,” Accessed 2021.
[Online]. Available: https://sites.google.com/view/first-commit-flaky-test

[2] “A machine learning solution for detecting and mitigating flaky
tests,” Accessed 2021. [Online]. Available: https://eng.fitbit.com/
a-machine-learning-solution-for-detecting-and-mitigating-flaky-tests

[3] R. Abreu, P. Zoeteweij, and A. Gemund, “Spectrum-based multiple fault localization,”
in ASE, 2009.

[4] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. Gemund, “A practical evaluation of
spectrum-based fault localization,” Journal of Systems and Software, 2009.

[5] “Accommodating test dependence project web,” Accessed 2021. [Online]. Available:
https://sites.google.com/view/test-dependence-impact

[6] “Activiti,” Accessed 2021. [Online]. Available: https://github.com/activiti/activiti

[7] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “FlakeFlagger: Predicting flakiness
without rerunning tests,” in ICSE, 2021.

[8] “Anjiang-Wei/TuscanSquare,” Accessed 2021. [Online]. Available: https://github.
com/Anjiang-Wei/TuscanSquare

[9] “Apache Hadoop,” Accessed 2021. [Online]. Available: https://github.com/apache/
hadoop

[10] “Archer,” Accessed 2021. [Online]. Available: https://github.com/PRUNERS/archer

[11] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test generation for classes
with environment dependencies,” in ASE, 2014.

[12] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner, “If A fails, can B still succeed?
Inferring dependencies between test results in automotive system testing,” in ICST,
2015.

[13] “Azure Data Explorer,” Accessed 2021. [Online]. Available: https://docs.microsoft.
com/en-us/azure/data-explorer

[14] “Bazel,” Accessed 2021. [Online]. Available: https://bazel.build

[15] J. Bell, “Detecting, isolating, and enforcing dependencies among and within test cases,”
in FSE Doctoral Symposium, 2014.

[16] J. Bell and G. Kaiser, “Unit test virtualization with VMVM,” in ICSE, 2014.

169



[17] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency detection for
safe Java test acceleration,” in ESEC/FSE, 2015.

[18] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker:
Automatically detecting flaky tests,” in ICSE, 2018.

[19] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella, “Web test dependency
detection,” in ESEC/FSE, 2019.

[20] L. C. Briand, Y. Labiche, and S. He, “Automating regression test selection based on
UML designs,” IST, 2009.

[21] “Buck,” Accessed 2021. [Online]. Available: https://buckbuild.com

[22] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A randomized sched-
uler with probabilistic guarantees of finding bugs,” in ASPLOS, 2010.

[23] A. Chou, “Static analysis in industry,” Accessed 2021. [Online]. Available:
http://popl.mpi-sws.org/2014/andy.pdf

[24] M. Christiaens and K. De Bosschere, “TRaDe: Data race detection for Java,” in ICCS,
2001.

[25] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random testing of
Haskell programs,” in ICFP, 2000.

[26] “Coefficient of variation,” Accessed 2021. [Online]. Available: https://en.wikipedia.
org/wiki/Coefficient_of_variation

[27] C. Croux and C. Dehon, “Influence functions of the Spearman and Kendall correlation
measures,” Statistical methods & applications, 2010.

[28] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness tester for Java,”
SPE, 2004.

[29] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A hybrid analysis tool for
bug finding,” TOSEM, 2008.

[30] “Cucumber,” Accessed 2021. [Online]. Available: https://cucumber.io/docs/cucumber

[31] “Cucumber reference - Scenario hooks,” Accessed 2021. [Online]. Available:
https://cucumber.io/docs/cucumber/api/#hooks

[32] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic execution,” in
ISSTA, 2010.

[33] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Suggesting repairs for
broken unit tests,” in ASE, 2009.

170



[34] “Data used by “A Study on the Lifecycle of Flaky Tests”,” Accessed 2021. [Online].
Available: https://github.com/winglam/flaky-test-lifecycle-data

[35] “DepUnit,” Accessed 2021. [Online]. Available: https://www.openhub.net/p/depunit

[36] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact,” ESE, 2005.

[37] “Docker,” Accessed 2021. [Online]. Available: https://www.docker.com

[38] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test detection in Android
via event order exploration,” To appear.

[39] S. Dutta, J. Selvam, A. Jain, and S. Misailovic, “TERA: Optimizing stochastic regres-
sion tests in machine learning projects,” in ISSTA, 2021.

[40] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic, “Detecting flaky
tests in probabilistic and machine learning applications,” in ISSTA, 2020.

[41] S. Dutta, A. Shi, and S. Misailovic, “FLEX: Fixing flaky tests in machine learning
projects by updating assertion bounds,” in ESEC/FSE, To appear.

[42] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding flaky tests:
The developer’s perspective,” in ESEC/FSE, 2019.

[43] “Elastic-Job,” Accessed 2021. [Online]. Available: https://github.com/elasticjob/
elastic-job-lite

[44] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential unit test
cases from system test cases,” in FSE, 2006.

[45] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases for regression
testing,” in ISSTA, 2000.

[46] T. Elmas, J. Burnim, G. Necula, and K. Sen, “CONCURRIT: A domain specific
language for reproducing concurrency bugs,” in PLDI, 2013.

[47] D. Engler and K. Ashcraft, “RacerX: Effective, static detection of race conditions and
deadlocks,” in SOSP, 2003.

[48] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and C. Xiao,
“The Daikon system for dynamic detection of likely invariants,” Science of Computer
Programming, 2007.

[49] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac, W. Schulte,
N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s distributed and caching build
service,” in ICSE, 2016.

[50] “Event tracing for Windows (ETW) simplified,” Accessed 2021. [Online]. Available:
https://bit.ly/2NgEBzl

171



[51] “Executing unit tests in parallel on a multi-CPU/core machine in Visual Studio,” Ac-
cessed 2021. [Online]. Available: http://blogs.msdn.com/b/vstsqualitytools/archive/
2009/12/01/executing-unit-tests-in-parallel-on-a-multi-cpu-core-machine.aspx

[52] “Facebook testing and verification request for proposals,” Accessed 2021.
[Online]. Available: https://research.fb.com/programs/research-awards/proposals/
facebook-testing-and-verification-request-for-proposals-2019

[53] “fastjson - Git issue,” Accessed 2021. [Online]. Available: https://github.com/
alibaba/fastjson/issues/2584

[54] “Flakiness Dashboard HOWTO,” Accessed 2021. [Online]. Available: http:
//www.chromium.org/developers/testing/flakiness-dashboard

[55] “Flaky test statistics,” Accessed 2021. [Online]. Available: https://sites.google.com/
view/flakyteststatistics

[56] “Flaky tests (and how to avoid them),” Accessed 2021. [Online]. Available:
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60

[57] M. Fowler, “Eradicating non-determinism in tests,” Accessed 2021. [Online]. Available:
https://martinfowler.com/articles/nondeterminism.html

[58] G. Fraser and A. Zeller, “Generating parameterized unit tests,” in ISSTA, 2011.

[59] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,” in ICST, 2018.

[60] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “SITAR: GUI test script repair,” TSE,
2016.

[61] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making system user
interactive tests repeatable: When and what should we control?” in ICSE, 2015.

[62] “Git bisect,” Accessed 2021. [Online]. Available: https://git-scm.com/docs/git-bisect

[63] “GitHub,” Accessed 2021. [Online]. Available: https://github.com

[64] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test selection with dy-
namic file dependencies,” in ISSTA, 2015.

[65] “Go data race detector,” Accessed 2021. [Online]. Available: https://golang.org/doc/
articles/race_detector

[66] P. Gochenour and R. Andre, “How to deal with flaky Java tests,” Accessed
2021. [Online]. Available: https://wiki.saucelabs.com/display/DOCS/How+to+
Deal+with+Flaky+Java+Tests

[67] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random testing,”
in PLDI, 2005.

172



[68] S. W. Golomb and H. Taylor, “Tuscan squares – A new family of combinatorial de-
signs,” Ars Combinatoria, 1985.

[69] Google, “TotT: Avoiding flakey tests,” Accessed 2021. [Online]. Available:
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html

[70] A. Groce and W. Visser, “What went wrong: Explaining counterexamples,” in SPIN,
2003.

[71] A. Groce, A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause reduction for quick
testing,” in ICST, 2014.

[72] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of flaky tests
in Python,” in ICST, 2021.

[73] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting state-
polluting tests to prevent test dependency,” in ISSTA, 2015.

[74] J. Ha, J. Yi, P. Dinges, J. Manson, C. Sadowski, and N. Meng, “System to uncover
root cause of non-deterministic (flaky) tests,” in Google Patent, 2013. [Online].
Available: https://patents.google.com/patent/US9311220

[75] S. Z. Haidry and T. Miller, “Using dependency structures for prioritization of func-
tional test suites,” TSE, 2013.

[76] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities and open
problems for static and dynamic program analysis,” in SCAM, 2018.

[77] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi, “Regression test selection for Java software,” in OOPSLA,
2001.

[78] B. Harry, “How we approach testing VSTS to enable continuous delivery,” Accessed
2021. [Online]. Available: https://blogs.msdn.microsoft.com/bharry/2017/06/28/
testing-in-a-cloud-delivery-cadence

[79] “Helgrind,” Accessed 2021. [Online]. Available: https://www.valgrind.org/docs/
manual/hg-manual.html

[80] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing less without
sacrificing quality,” in ICSE, 2015.

[81] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits
of continuous integration in open-source projects,” in ASE, 2016.

[82] R. Houston, “Tackling the minimal superpermutation problem,” arXiv.

[83] H.-Y. Hsu and A. Orso, “MINTS: A general framework and tool for supporting test-
suite minimization,” in ICSE, 2009.

173



[84] C. Huo and J. Clause, “Improving oracle quality by detecting brittle assertions and
unused inputs in tests,” in FSE, 2014.

[85] “iDFlakies: Flaky test dataset,” Accessed 2021. [Online]. Available: https:
//sites.google.com/view/flakytestdataset

[86] “Infer static analyzer,” Accessed 2021. [Online]. Available: https://fbinfer.com

[87] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Roşu, and D. Marinov, “Improved
multithreaded unit testing,” in ESEC/FSE, 2011.

[88] “Java platform module system,” Accessed 2021. [Online]. Available: https:
//www.oracle.com/corporate/features/understanding-java-9-modules.html

[89] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test case prioriti-
zation,” in ASE, 2009.

[90] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm? Automatic cause
analysis for test alarms in system and integration testing,” in ICSE, 2017.

[91] Y. Jiang, L. Sivalingam, S. Nath, and R. Govindan, “Webperf: Evaluating what-if
scenarios for cloud-hosted web applications,” in SIGCOMM, 2016.

[92] J. Jones and M. Harrold, “Empirical evaluation of the Tarantula automatic fault-
localization technique,” in ASE, 2005.

[93] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist
fault localization,” in ICSE, 2002.

[94] M. Jorde, S. G. Elbaum, and M. B. Dwyer, “Increasing test granularity by aggregating
unit tests,” in ASE, 2008.

[95] S. Joshi and A. Orso, “SCARPE: A technique and tool for selective capture and replay
of program executions,” in ICSM, 2007.

[96] “JUnit,” Accessed 2021. [Online]. Available: https://junit.org

[97] “JUnit @Ignore annotation,” Accessed 2021. [Online]. Available: http://junit.
sourceforge.net/javadoc/org/junit/Ignore.html

[98] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to enable
controlled testing studies for Java programs,” in ISSTA, 2014.

[99] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy criteria for database-
driven applications,” in ESEC/FSE, 2003.

[100] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. Data race bugs: Telling the
difference with Portend,” in ASPLOS, 2012.

174



[101] J.-M. Kim and A. Porter, “A history-based test prioritization technique for regression
testing in resource constrained environments,” in ICSE, 2002.

[102] T. Kim, R. Chandra, and N. Zeldovich, “Optimizing unit test execution in large soft-
ware programs using dependency analysis,” in APSys, 2013.

[103] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon, “Modeling
and ranking flaky tests at Apple,” in ICSE SEIP, 2020.

[104] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of regression
testing in practice: A study of Java projects using continuous integration,” in ES-
EC/FSE, 2017.

[105] W. Lam, “Illinois Dataset of Flaky Tests (IDoFT),” Accessed 2021. [Online].
Available: http://mir.cs.illinois.edu/flakytests

[106] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root causing
flaky tests in a large-scale industrial setting,” in ISSTA, 2019.

[107] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the lifecycle of
flaky tests,” in ICSE, 2020.

[108] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A framework for detect-
ing and partially classifying flaky tests,” in ICST, 2019.

[109] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-test-aware
regression testing techniques,” in ISSTA, 2020.

[110] W. Lam, S. Srisakaokul, B. Bassett, P. Mahdian, T. Xie, P. Lakshman, and
J. de Halleux, “A characteristic study of parameterized unit tests in .NET open source
projects,” in ECOOP, 2018.

[111] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Understanding repro-
ducibility and characteristics of flaky tests through test reruns in Java projects,” in
ISSRE, 2020.

[112] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-scale longitudinal
study of flaky tests,” in OOPSLA, 2020.

[113] W. Lam, Z. Wu, D. Li, W. Wang, H. Zheng, H. Luo, P. Yan, Y. Deng, and T. Xie,
“Record and replay for Android: Are we there yet in industrial cases?” in ESEC/FSE
Industry Track, 2017.

[114] J. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pincus, S. Rajamani, and
R. Venkatapathy, “Righting software,” IEEE Software, 2004.

[115] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” in ICSE, 2012.

175



[116] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive study
of static regression test selection in modern software evolution,” in FSE, 2016.

[117] J. Liang, S. Elbaum, and G. Rothermel, “Redefining prioritization: Continuous prior-
itization for continuous integration,” in ICSE, 2018.

[118] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable statistical bug
isolation,” in PLDI, 2005.

[119] J.-W. Lin, R. Jabbarvand, J. Garcia, and S. Malek, “Nemo: Multi-criteria test-suite
minimization with integer nonlinear programming,” in ICSE, 2018.

[120] B. Liskov and J. Guttag, Program development in Java: Abstraction, specification,
and object-oriented design. Addison-Wesley Longman Publishing Company, 2000.

[121] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms for patch
generation,” in ESEC/FSE, 2017.

[122] F. Long and M. Rinard, “Automatic patch generation by learning correct code,” in
POPL, 2016.

[123] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics,” in ASPLOS, 2008.

[124] E. Lucas, “Récréations mathématiques,” 1894.

[125] L. Luo, S. Nath, L. R. Sivalingam, M. Musuvathi, and L. Ceze, “Troubleshooting
transiently-recurring problems in production systems with blame-proportional log-
ging,” in USENIX, 2018.

[126] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,”
in FSE, 2014.

[127] Q. Luo and G. Roşu, “EnforceMOP: A runtime property enforcement system for mul-
tithreaded programs,” in ISSTA, 2013.

[128] “Manage flaky tests,” Accessed 2021. [Online]. Available: https://docs.microsoft.com/
en-us/azure/devops/pipelines/test/flaky-test-management

[129] “Managed vs. Unmanaged development,” Accessed 2021. [Online]. Available:
https://bit.ly/2Or4C3p

[130] E. R. B. Marques, F. Martins, and M. Simões, “Cooperari: A tool for cooperative
testing of multithreaded Java programs,” in PPPJ, 2014.

[131] “Maven,” Accessed 2021. [Online]. Available: https://maven.apache.org

[132] “Maven Surefire plugin,” Accessed 2021. [Online]. Available: https://maven.apache.
org/surefire/maven-surefire-plugin

176



[133] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch
synthesis via symbolic analysis,” in ICSE, 2016.

[134] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco,
“Taming Google-scale continuous testing,” in ICSE SEIP, 2017.

[135] “MemorySanitizer,” Accessed 2021. [Online]. Available: https://clang.llvm.org/docs/
MemorySanitizer.html

[136] J. Micco, “Continuous integration at Google scale,” Ac-
cessed 2021. [Online]. Available: https://www.slideshare.net/JohnMicco1/
2016-0425-continuous-integration-at-google-scale

[137] ——, “The state of continuous integration testing at Google,” in ICST, 2017.

[138] “Microsoft Azure,” Accessed 2021. [Online]. Available: https://azure.microsoft.com

[139] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting test suite evolution through
test case adaptation,” in ICST, 2012.

[140] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov, “Parallel test
generation and execution with Korat,” in ESEC/FSE, 2007.

[141] M. Monperrus, “Automatic software repair: A bibliography,” ACM Computer Survey,
2018.

[142] K. Muşlu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit tests,” in ES-
EC/FSE, 2011.

[143] R. Mudduluru, J. Waataja, S. Millstein, and M. D. Ernst, “Verifying determinism in
sequential programs,” in ICSE, 2021.

[144] K. Muşlu, Y. Brun, and A. Meliou, “Preventing data errors with continuous testing,”
in ISSTA, 2015.

[145] L. Naish, H. Lee, and K. Ramamohanarao, “A model for spectra-based software diag-
nosis,” TOSEM, 2011.

[146] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression testing in the
presence of non-code changes,” in ICST, 2011.

[147] S. C. Narayanan, “Clustered test execution using Java PathFinder,” in University of
Texas at Austin, Master’s Thesis, 2010.

[148] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder, “Automatically
classifying benign and harmful data races using replay analysis,” in PLDI, 2007.

[149] “Netflix automation talks - Test automation at scale,” Accessed 2021. [Online].
Available: https://youtu.be/FrBN94gUn_I?t=764

177



[150] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix: Program repair
via semantic analysis,” in ICSE, 2013.

[151] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing Surveys,
2011.

[152] P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric, “Debugging the
performance of Maven’s test isolation: Experience report,” in ISSTA, 2020.

[153] “NUnit framework,” Accessed 2021. [Online]. Available: https://nunit.org

[154] M. Ollis, “Sequenceable groups and related topics,” Electronic Journal of Combina-
torics, 2013.

[155] “Order unit tests,” Accessed 2021. [Online]. Available: https://docs.microsoft.com/
en-us/dotnet/core/testing/order-unit-tests

[156] A. Orso and B. Kennedy, “Selective capture and replay of program executions,” in
WODA, 2005.

[157] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large software sys-
tems,” in FSE, 2004.

[158] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random test
generation,” in ICSE, 2007.

[159] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “Flake it ’till you make it:
Using automated repair to induce and fix latent test flakiness,” in APR, 2020.

[160] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and A. Bertolino,
“What is the vocabulary of flaky tests?” in MSR, 2020.

[161] “Pull request #2148: Fixing flaky tests in DateTest4_indian and DateTest5_iso8601,”
Accessed 2021. [Online]. Available: https://github.com/alibaba/fastjson/pull/2148

[162] “Pull request #2906: Fixing flaky tests in PortTelnetHandlerTest,” Accessed 2021.
[Online]. Available: https://github.com/apache/incubator-dubbo/pull/2906

[163] “Pull request #3291: Fixing flaky tests in DefaultExtJSONParser_parseArray,”
Accessed 2021. [Online]. Available: https://github.com/alibaba/fastjson/pull/3291

[164] “Pull request #592: Fixing flaky test ShutdownListenerMan-
agerTest.assertIsShutdownAlready,” Accessed 2021. [Online]. Available: https:
//github.com/elasticjob/elastic-job-lite/pull/592

[165] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and high failure tests
on the number of crash reports associated with Firefox builds,” in ESEC/FSE, 2018.

[166] “Riptide,” Accessed 2021. [Online]. Available: https://github.com/zalando/riptide

178



[167] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An empirical analysis of
UI-based flaky tests,” in ICSE, 2021.

[168] “Root causing flaky tests,” Accessed 2021. [Online]. Available: https://sites.google.
com/view/root-causing-flaky-tests

[169] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu, “On test suite
composition and cost-effective regression testing,” TOSEM, 2004.

[170] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical study of the
effects of minimization on the fault detection capabilities of test suites,” in ICSM,
1998.

[171] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for
regression testing,” TSE, 2001.

[172] “Rspec-core issue 635,” Accessed 2021. [Online]. Available: https://github.com/
rspec/rspec-core/issues/635

[173] M. J. Rummel, G. M. Kapfhammer, and A. Thall, “Towards the prioritization of
regression test suites with data flow information,” in SAC, 2005.

[174] “Run tests in parallel using the Visual Studio Test task,” Accessed 2021.
[Online]. Available: https://docs.microsoft.com/en-us/azure/devops/pipelines/test/
parallel-testing-vstest

[175] “Running your tests in a specific order,” Accessed 2021. [Online]. Available:
https://www.ontestautomation.com/running-your-tests-in-a-specific-order

[176] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter, “Tricorder: Build-
ing a program analysis ecosystem,” in ICSE, 2015.

[177] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test factoring for Java,”
in ASE, 2005.

[178] D. Saff and M. D. Ernst, “Reducing wasted development time via continuous testing,”
in ISSRE, 2003.

[179] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar: A large-scale,
diverse dataset of real-world Java bugs,” in MSR, 2018.

[180] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, “Continuous
deployment at Facebook and OANDA,” in ICSE Companion, 2016.

[181] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invari-
ant violations,” in ISSTA, 2009.

[182] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for C,” in
ESEC/FSE, 2005.

179



[183] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Balancing trade-offs in
test-suite reduction,” in FSE, 2014.

[184] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions on determin-
istic implementations of non-deterministic specifications,” in ICST, 2016.

[185] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating test-suite re-
duction in real software evolution,” in ISSTA, 2018.

[186] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A framework for
automatically fixing order-dependent flaky tests,” in ESEC/FSE, 2019.

[187] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka, “Optimizing
test placement for module-level regression testing,” in ICSE, 2017.

[188] D. Silva, L. Teixeira, and M. d’Amorim, “Shake it! Detecting flaky tests caused by
concurrency with Shaker,” in ICSME, 2020.

[189] “SLOCCount,” Accessed 2021. [Online]. Available: https://dwheeler.com/sloccount

[190] “Spock,” Accessed 2021. [Online]. Available: http://docs.spockframework.org

[191] “Spock stepwise,” Accessed 2021. [Online]. Available: https://www.canoo.com/blog/
2011/04/12/spock-stepwise

[192] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development envi-
ronment,” in ISSTA, 2002.

[193] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and value of empirical
assessments of the accuracy of coverage-based fault locators,” in ISSTA, 2013.

[194] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in ESEC/FSE,
2018.

[195] P. Stratis and A. Rajan, “Test case permutation to improve execution time,” in ASE,
2016.

[196] ——, “Speeding up test execution with increased cache locality,” STVR, 2018.

[197] P. Sudarshan, “No more flaky tests on the Go team,” Accessed 2021. [Online]. Avail-
able: http://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team

[198] W. Sumner, T. Bao, and X. Zhang, “Selecting peers for execution comparison,” in
ISSTA, 2011.

[199] V. Terragni, P. Salza, and F. Ferrucci, “A container-based infrastructure for fuzzy-
driven root causing of flaky tests,” in ICSE NIER, 2020.

[200] “Test execution order,” Accessed 2021. [Online]. Available: https://github.com/
junit-team/junit4/wiki/Test-execution-order

180



[201] “Test verification,” Accessed 2021. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Mozilla/QA/Test_Verification

[202] “TestingResearchIllinois/testrunner,” Accessed 2021. [Online]. Available: https:
//github.com/TestingResearchIllinois/testrunner

[203] “TestNG,” Accessed 2021. [Online]. Available: http://testng.org

[204] “TestNG Documentation,” Accessed 2021. [Online]. Available: https://testng.org/
doc/documentation-main.html

[205] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests in Android
apps,” in ICSME, NIER Track, 2018.

[206] N. Tillmann and J. De Halleux, “Pex: White box test generation for .NET,” in TAP,
2008.

[207] T. W. Tillson, “A Hamiltonian decomposition of K∗
2m, 2m ≥ 8,” Journal of Combina-

torial Theory, Series B, 1980.

[208] “Travis CI - Test and deploy with confidence,” Accessed 2021. [Online]. Available:
https://travis-ci.org

[209] “Unit testing C# with MSTest and .NET,” Accessed 2021. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-mstest

[210] “Valgrind,” Accessed 2021. [Online]. Available: http://valgrind.org

[211] “Visual Studio Developer Community - How to run tests in
a particular order instead of default alphabetical order,” Accessed
2021. [Online]. Available: https://developercommunity.visualstudio.com/t/
how-to-run-tests-in-a-particular-order-instead-of/824789

[212] “vmlens,” Accessed 2021. [Online]. Available: https://vmlens.com

[213] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static race detection on millions of
lines of code,” in ESEC/FSE, 2007.

[214] K. Wang, S. Khurshid, and M. Gligoric, “JPR: Replaying JPF traces using standard
JVM,” SEN, 2018.

[215] W. Wang, W. Lam, and T. Xie, “An infrastructure approach to improving effectiveness
of Android UI testing tools,” in ISSTA, 2021.

[216] M. Waterloo, S. Person, and S. Elbaum, “Test analysis: Searching for faults in tests,”
in ASE, 2015.

[217] A. Wei, P. Yi, T. Xie, D. Marinov, and W. Lam, “Probabilistic and systematic coverage
of consecutive test-method pairs for detecting order-dependent flaky tests,” in TACAS,
2021.

181



[218] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller, “Auto-
mated fixing of programs with contracts,” in ISSTA, 2010.

[219] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches
using genetic programming,” in ICSE, 2009.

[220] E. Wendelin, “Introducing flaky test mitigation tools,” Accessed 2021. [Online].
Available: https://blog.gradle.org/gradle-flaky-test-retry-plugin

[221] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Publishing Company, 2012.

[222] E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for effective software
fault localization,” Transactions on Reliability, 2014.

[223] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set mini-
mization on fault detection effectiveness,” in ICSE, 1995.

[224] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo, H. Guo, L. Zhou, and
Z. Zhang, “Language-based replay via data flow cut,” in FSE, 2010.

[225] “xUnit framework,” Accessed 2021. [Online]. Available: https://xunit.net

[226] G. Yang, S. Khurshid, and M. Kim, “Specification-based test repair using a lightweight
formal method,” in FM, 2012.

[227] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
A survey,” STVR, 2012.

[228] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection of semantic
code clones via tree-based convolution,” in ICPC, 2019.

[229] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?” in ESEC/FSE,
1999.

[230] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” TSE,
2002.

[231] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie, “Automated
test input generation for Android: Are we really there yet in an industrial case?” in
FSE Industry Track, 2016.

[232] J. Zhang, W. Xiong, Y. Liu, S. Park, Y. Zhou, and Z. Ma, “ATDetector: Improving
the accuracy of a commercial data race detector by identifying address transfer,” in
MICRO, 2011.

[233] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired by test
prioritization and reduction,” in ISSTA, 2013.

182



[234] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression mutation testing,” in
ISSTA, 2012.

[235] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to localize developer
faults for evolving software,” in OOPSLA, 2013.

[236] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi, “Domain-specific
fixes for flaky tests with wrong assumptions on underdetermined specifications,” in
ICSE, 2021.

[237] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin,
“Empirically revisiting the test independence assumption,” in ISSTA, 2014.

[238] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and dynamic automated
test generation,” in ISSTA, 2011.

[239] H. Zheng, D. Li, X. Zeng, B. Liang, W. Zheng, Y. Deng, W. Lam, W. Yang, and
T. Xie, “Automated test input generation for Android: Towards getting there in an
industrial case,” in ICSE SEIP, 2017.

[240] C. Ziftci and J. Reardon, “Who broke the build?: Automatically identifying changes
that induce test failures in continuous integration at Google scale,” in ICSE, 2017.

183


