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Abstract. TestEra is a framework for automated specification-based testing of
Java programs. TestEra requires as input a Java method (in sourcecode or byte-
code), a formal specification of the pre- and post-conditions of that method, and
a bound that limits the size of the test cases to be generated. Using the method’s
pre-condition, TestEra automatically generates all nonisomorphic test inputs up to
the given bound. It executes the method on each test input, and uses the method
postcondition as an oracle to check the correctness of each output. Specifications are
first-order logic formulae. As an enabling technology, TestEra uses the Alloy toolset,
which provides an automatic SAT-based tool for analyzing first-order logic formulae.
We have used TestEra to check several Java programs including an architecture for
dynamic networks, the Alloy-alpha analyzer, a fault-tree analyzer, and methods from
the Java Collection Framework.

1. Introduction

Manual software testing, in general, and test data generation, in partic-
ular, are labor-intensive processes. Automated testing can significantly
reduce the cost of software development and maintenance [6]. This pa-
per describes TestEra, a framework for automated specification-based
testing of Java programs. TestEra requires as input a Java method (in
sourcecode or bytecode), a formal specification of the pre- and post-
conditions of that method, and a bound that limits the size of the
test cases to be generated; a test input is within a bound of k if at
most k objects of any given class appear in it. Using the method’s
pre-condition, TestEra automatically generates all nonisomorphic test
inputs up to the given bound. TestEra executes the method on each
test input, and uses the method postcondition as a test oracle to check
the correctness of each output.

Specifications are first-order logic formulae. As an enabling technol-
ogy, TestEra uses the Alloy toolset. Alloy [25] is a first-order declarative
language based on sets and relations. The Alloy Analyzer [27] is a fully
automatic tool that finds instances of Alloy specifications: an instance
assigns values to the sets and relations in the specification such that
all formulae in the specification evaluate to true.
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The key idea behind TestEra is to automate testing of Java pro-
grams, requiring only that the structural invariants of inputs and the
correctness criteria for the methods be formally specified, but not the
body of the methods themselves. This is in contrast to previous work [30]
on analyzing a naming architecture, we modeled both inputs and com-
putation in Alloy. We discovered that manually modeling imperative
computation is complicated due to Alloy’s declarative nature and lack
of support for recursion. Automatically modeling computation in Alloy
was performed [28] for a subset of Java. This approach has been opti-
mized [53], but it does not seem to scale to checking programs say of
the size of the aforementioned naming architecture.

Given the method precondition in Alloy, TestEra uses the Alloy
Analyzer to generate all nonisomorphic [49] instances that satisfy the
precondition specification. TestEra automatically concretizes these in-
stances to create Java objects, which form the test inputs for the
method under test. TestEra executes the method on each input and
automatically abstracts each output to an instance of the postcondition
specification. TestEra uses the Alloy Analyzer to check if this instance
satisfies the postcondition. If it does not, TestEra reports a concrete
counterexample, i.e., an input/output pair that violates the correctness
specification. TestEra can graphically display the counterexample, e.g.,
as a heap snapshot, using the visualization of the analyzer. Thus,
TestEra automates a complete suite of testing activities—generation
of tests, generation and execution of a test driver (which includes
concretization and abstraction translations), and error reporting.

TestEra can be used to identify why a program fails. When TestEra
finds a counterexample, it also reports which constraints in the post-
condition are violated, e.g., that the output list of a sorting method is
sorted and acyclic but not a permutation of the input list. TestEra can
also be used to test a method on “interesting” inputs by describing in
first-order logic desired properties of inputs—TestEra would then test
the method only on inputs that satisfy these properties.

Since TestEra can automatically generate Java data structures from
a description of the structural invariants, it is able to test code at
the concrete data type level. For example, in order to test a method
that performs deletion on balanced binary trees, the input tree can
automatically be generated from its structural description, without the
need to construct it using a sequence of method calls. This is especially
useful since it can be hard to determine the particular sequence of
element insertions in an empty tree that would produce a balanced
tree in a desired configuration, especially if some deletions need to be
interleaved with insertions to generate such a configuration.
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In this article, we describe the core components and analysis ar-
chitecture of TestEra. We also show various applications of our imple-
mentation of TestEra. We illustrate TestEra’s capabilities by checking
not only intricate library methods that manipulate complicated data
structures, but also stand-alone applications like the Alloy Analyzer
itself. TestEra was able to identify subtle bugs in a part of the Alloy-
alpha Analyzer; these bugs have been fixed in the current publicly
available release.

The rest of this article is organized as follows. Section 2 presents
an example of testing a linked data structure and illustrates how pro-
grammers can use TestEra to test their programs. Section 3 describes
the basics of the Alloy specification language and its automatic tool
support. Section 4 describes how we model in first-order logic the
mutable state of an object-oriented program. Section 5 describes the
key algorithms of the TestEra framework. Section 6 describes some
case studies that we have performed with TestEra. Section 7 describes
our TestEra prototype and discusses its performance. We present a
discussion (of TestEra’s limitations) in Section 8, discuss related work
in Section 9 and conclude in Section 10.

2. Example

This section presents an example of testing a linked data structure to
illustrate how programmers can use TestEra to test their programs.
The following Java code declares a singly linked list:

class List {
Node header;
static class Node {
int elem;
Node next;

Each object of the class List represents a singly linked list. The
header field represents the first node of a (non-empty) list; if empty,
header is null. Objects of the inner class Node represent nodes of the
lists. The field elem contains the (primitive) integer data in a node. The
field next points to the next node.

Let’s assume the class List implements acyclic lists. The class in-
variant of List can be stated using the following Alloy formula:

// acyclicity
all n: header.*next | not n in n. next
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In Alloy, ‘*’ denotes reflexive transitive closure, ‘~’ denotes transitive
closure, ‘:” and ‘in’ denote membership (mathematically, the subset
relation). The expression header . *next thus denotes the set of all nodes
reachable from the header node of a list following 0 or more traversals
along the next field; similarly, the expression n. next denotes the set
using 1 or more traversals. The quantifier ‘all’ stands for universal
quantification. The class invariant thus states that for all nodes that
are reachable from the header node of a list, traversing from such a
node along the next field any number of times does not lead back to
the same node.

Consider the following declaration of a (recursive) method that de-
structively updates its input list (represented by implicit parameter
this) to sort it:

void mergeSort() {
}

The precondition for mergeSort is simply this class invariant. The
postcondition for mergeSort includes the class invariant but also ex-
presses stronger properties, e.g., the input list in the post-state is
sorted! and moreover a permutation of the input list in the pre-state.
These properties can be expressed in Alloy as follows:

// sorted
all n: header.*next | some n.next implies n.elem <= n.next.elem

// output is permutation of the input
all i: Integer |
#{ n: header.*next | n.elem = i } =
#{ n: header” .*next” | n.elem” = i }

In Alloy, implies denotes logical implication, ‘#’ denotes set cardi-
nality, ‘{...}’ denotes a set comprehension expression. The backtick
character **’ denotes field traversal in the pre-state?. All other field
traversals are in the default state, which is pre-state for a pre-condition
and post-state for a post-condition.

The formula to check that output is sorted states that all nodes
reachable from the header are in order; the formula employs the form

! We use the comparison operator <= here for ease of exposition; in TestEra
we write the comparison x <= y as LE(x, y), where LE is a library function for
comparing integers.

2 Alloy does not have a built-in notion of state; to ease writing post-conditions,
TestEra defines a veneer on Alloy, in which backticks denote pre-state.
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some S (meaning that S is non-empty) to ensure that elements are
compared to their successors only if they exist. The formula to check
that output is a permutation of input states that each integer occurs
the same number of times in the list in the pre-state and in the list in
the post-state.

Given the Java bytecode (or sourcecode) for List and List$Node®,
the precondition (which in this case is just the class invariant for List)*
and postcondition above, and a bound on the input size, TestEra gen-
erates test inputs and executes the method on each input to check the
method’s correctness. TestEra builds appropriate Alloy specifications
to use the Alloy Analyzer for test generation and correctness checking.
TestEra also builds a Java test driver.

As an illustration of TestEra’s checking, consider erroneously revers-
ing a comparison in the helper method that merges lists from (m.elem
<= n.elem) to (n.elem >= m.elem); this results in mergeSort sorting the
lists in reverse order. Using a bound of three®, TestEra detects violation
of the correctness criterion and generates counterexamples, one of which
is the following;:

counterexample found:
pre-state

this: 0 -> 0 > 1
post-state

this: 1 -> 0 > 0

TestEra’s analysis also tells us that the list referenced by this in the
post-state is a permutation of the list referenced by this in the pre-state
but is not sorted.

It is worth noting that most shape analysis techniques [38, 46, 43|
are either unable to handle methods like mergeSort or require invariants
to be given explicitly by the user for loops and method calls. We discuss
this further in Section 9.

3. Alloy

We describe next the basics of the Alloy specification language and the
Alloy Analyzer; details can be found in [25-27]. We also briefly discuss
nonisomorphic generation.

3 List$Node denotes the inner class Node of class List.

4 In general, since precondition is a formula on all method inputs, it may consist
of several class invariants.

® A bound of two would also be sufficient to reveal this bug as all lists are sorted
in the reverse order.
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Alloy is a strongly typed language that assumes a universe of atoms
partitioned into subsets, each of which is associated with a basic type.
An Alloy specification is a sequence of paragraphs that can be of
two kinds: signatures, used for construction of new types, and a va-
riety of formula paragraphs, used to record constraints. Each specifi-
cation starts with a module declaration that names the specification;
existing specifications may be included in the current one using open
declarations.

We next introduce relevant parts of Alloy using the list example.
This section focuses on the syntax and semantics of Alloy. Section 4
explains the connection between mutable state of an object-oriented
program and the Alloy models that TestEra builds.

3.1. SIGNATURE PARAGRAPHS

A signature paragraph introduces a basic (or uninterpreted) type. For
example,

sig State {}

introduces State as a set of atoms. A signature paragraph may also
declare a subset. For example,

static part sig Pre extends State {}

declares Pre to be a subset of State. The qualifier static specifies the
declared signature to contain exactly one element; the qualifier part
declares Pre, together with any other subsets (of State) that have a
part qualifier, to partition State.

A signature declaration may include a collection of relations (that
are called fields) in it along with the types of the fields and constraints
on their values. For example,

sig List {
header: Node ?-> State }

sig Node {
elem: Integer !'-> State,
next: Node ?7-> State }

introduces List and Node as uninterpreted types. The field declaration
for header introduces a relation of type List -> Node -> State (for
some sig Node). The marking ‘?’ indicates that for each List atom 1,
1.header is a relation of type Node —> State such that for each State
atom s, 1.header maps at most one Node atom to s; similarly the
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markings ‘!” and ‘+’ indicate respectively exactly one and at least one.
We explain the dot operator ‘.’ below in Section 3.2.1.

3.2. FORMULA PARAGRAPHS

Formula paragraphs are formed from Alloy expressions.

3.2.1. Relational expressions
The value of any expression in Alloy is always a relation—that is a
collection of tuples of atoms. Each element of such a tuple is atomic
and belongs to some basic type. A relation may have any arity greater
than one. Relations are typed. Sets can be viewed as unary relations.
Relations can be combined with a variety of operators to form ex-
pressions. The standard set operators—union (+), intersection (&), and
difference (-)—combine two relations of the same type, viewed as sets
of tuples.
The dot operator is relational composition. For relations p and q

where p has type T1 -> ... -> Tm and q has type U1 -> ... -> Un
such that Tm = U1 and m + n > 2, p.q is a relation of type T1 -> ...
-> T(m-1) -> U2 -> ... -> Un such that for each tuple (t1, ..., tm)
in p and each tuple (u1l, ..., un) inqwithtm = u1, (¢1, ..., t(m-1),
u2, ..., un) is a tuple in p.q. When p is a unary relation (i.e., a set)

and q is a binary relation, p.q is functional image, and when both
p and g are binary relations, p.q is standard composition; p.q can
alternatively be written as p::q, but with higher precedence.

The unary operators ~ (transpose), ~ (transitive closure), and * (re-
flexive transitive closure) have their standard interpretation; transpose
can be applied to arbitrary binary relations, and closures can only be
applied to homogeneous binary relations, whose type is T -> T.

3.2.2. Formulas and declarations
Expression quantifiers turn an expression into a formula. The formula
no e is true when e denotes a relation containing no tuples. Similarly,
some e, sole e, and one e are true when e has some, at most one,
and exactly one tuple respectively. Formulas can also be made with
relational comparison operators: subset (written : or in), equality (=)
and their negations (!:, !in, !=). So el:e2 is true when every tuple
in (the relation denoted by the expression) et is also a tuple of e2.
Alloy provides the standard logical operators: && (conjunction), ||
(disjunction), => (implication), <=> (bi-implication), and ! (negation);
a sequence of formulas within curly braces is implicitly conjoined.

A declaration is a formula v op e consisting of a variable v, a com-
parison operator op, and an arbitrary expression e. Quantified formulas
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consist of a quantifier, a comma separated list of declarations, and a
formula. In addition to the universal and existential quantifiers a11 and
some, there is sole (at most one) and one (exactly one). In a declaration,
part specifies partition and disj specifies disjointness; they have their
usual meaning.

The declaration

disj vi,v2,... : e

is equivalent to a declaration for each of the variables v1,v2,..., with
an additional constraint that the relations denoted by the variables are
disjoint (i.e., share no tuple). Therefore, the formula

all disj v1, v2: e | F
is equivalent to
all vl, v2: e | no vl & v2 => F

The declaration part additionally makes the union of variables be e.

3.2.3. Functions, facts and assertions
A function (fun) is a parameterized formula that can be “invoked”
elsewhere. For example, the function f declared as:

fun T1::£(p2: T2, ..., pn: Tn): R { ... }

has n parameters: the implicit parameter this of type T1 and p2, ...,
pn of types T2, ..., Tn respectively. The return value of a function is
referred using the keyword result and the type of the return value of
f is R. A function may not have an explicitly declared return type; the
use of implicit parameter this is also optional.

A fact is a formula that takes no arguments and need not be invoked
explicitly; it is always true. An assertion (assert) is a formula whose
correctness needs to be checked, assuming the facts in the model.

3.3. ALLOY ANALYZER

The Alloy Analyzer [27] is an automatic tool for analyzing models
created in Alloy. Given a formula and a scope—a bound on the number
of atoms in the universe—the analyzer determines whether there exists
a model of the formula (that is, an assignment of values to the sets
and relations that makes the formula true) that uses no more atoms
than the scope permits, and if so, returns it. Since first order logic
is undecidable, the analyzer limits its analysis to a finite scope. The
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analysis [27] is based on a translation to a boolean satisfaction problem,
and gains its power by exploiting state-of-the-art SAT solvers.

The models of formulae are termed instances. The following valua-
tions of sets and relations introduced earlier in this section represent
two distinct instances:

Instance 1:
State = {S0}
Pre = {S0}

int = {0, 1, 2}
List = {LO}
Node = {NO, N1, N2}

header = {(LO, NO, SO)}
next = {(NO, N1, SO), (N1, N2, SO)}
elem = {(NO, 0, S0), (N1, 0, SO), (N2, 1, SO)}

Instance 2:
State = {S0}
Pre = {SO0}

int = {0, 1, 2}
List = {LO}
Node = {NO, N1, N2}

header = {(LO, N1, S0)}
next = {(NO, N2, S0), (N1, NO, SO)}
elem {mo, 0, s0), (N1, 0, SO), (N2, 1, SO}

We use the standard definition of graph isomorphism for (edge-labeled
graphs) to define isomorphic instances: atoms that do not represent
primitive values are permutable. For example, Instance 1 and Instance
2 are isomorphic. (They represent the example input list illustrated in
the counterexample given in Section 2.)

The analyzer can enumerate all possible instances of an Alloy model.
The analyzer adapts the symmetry-breaking predicates of Crawford et
al. [12] to provide the functionality of reducing the total number of
instances generated—the original boolean formula is conjugated with
additional clauses in order to produce only a few instances from each
isomorphism class [49]. The input parameters to the analyzer can be
set such that the analyzer enumerates exactly nonisomorphic instances.
However, the resulting formulae tend to grow very large, which slows
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down enumeration so that it takes more time to enumerate fewer in-
stances. We have recently shown how to manually construct Alloy
formulae that completely break isomorphs and also provide efficient
generation for a variety of benchmark data structures [33]—we follow
this approach here.

4. State

Alloy does not have a built in notion of state mutation. We next de-
scribe how we model the state of an object-oriented program® in a logic
of sets and relations.

The heap of an executing program is viewed as a labeled graph whose
nodes represent objects and whose edges represent fields. The presence
of an edge labeled f from node o to o’ says that the f field of the
object o points to the object o’. Mathematically, we treat this graph
as a set (the set of nodes) and a collection of relations, one for each
field. We partition the set of nodes according to the declared classes
and partition the set of edges according to the declared fields.

To model mutation, we simply associate a distinct graph with each
state. In a specification there are only two states—the pre-state and the
post-state. Mathematically, we treat fields as ternary relations, each of
which maps an object to an object in a given state.

For the singly linked list example of Section 2, we model the Java
class and field declarations as three sets (List, Node, int) and three rela-
tions (header: List -> Node -> State, elem: Node -> int -> State,
next: Node —> Node -> State) respectively, where State is a set with
two atoms Pre and Post representing respectively the pre- and the
post-state.

We model the value null as empty-set. In particular, to say the value
of field £ in object o is non-null, we express the formula ¢ ‘some o.f’’;
similarly for null, we express ‘‘no o.f’’.

Notice that there exists a (trivial) isomorphism between (concrete)
state of a program and our (abstract) model of state. This allows us to
define straightforward algorithms to perform translations between the
abstract and concrete domains; we present the algorithms in Section 5.

In building specifications, it is worth keeping in view the semantic
data model of Alloy, which deals only with sets and relations. We are
currently working on making it more intuitive for Java developers to
write specifications in a logic of sets and relations [32]. We discuss this
further in Section 8.

6 We provide a treatment for programs that manipulate only reference or
primitive types.
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counter
example

Figure 1. Basic TestEra framework

5. TestEra

TestEra is a novel framework for automated testing of Java programs.
We have built TestEra upon Alloy and the Alloy Analyzer with the
aim of checking actual Java implementations, without having to model
Java computations in Alloy.

Figure 1 illustrates the main components of TestEra. A TestEra
specification for a method states the method declaration (i.e., the method
return type, name, and parameter types), the name of the Java classfile
(or sourcefile) that contains the method body, the class invariant, the
method precondition, the method postcondition, and a bound on the
input size. In our current implementation, we give this specification
using command line arguments to the main TestEra method.

Given a TestEra specification, TestEra automatically creates three
files. Two of these files are Alloy specifications: one specification is for
generating inputs and the other specification is for checking correctness.
The third file consists of a Java test driver, i.e., code that translates
Alloy instances to Java input objects, executes the Java method to test,
and translates Java output objects back to Alloy instances.

TestEra’s automatic analysis proceeds in two phases:

— In the first phase, TestEra uses the Alloy Analyzer to generate all
non-isomorphic instances of the Alloy input specification.

— In the second phase, each of the instances is tested in turn. It is first
concretized into a Java test input for the method. Next, the method
is executed on this input. Finally, the method’s output is abstracted
back to an Alloy instance. The output Alloy instance and the origi-
nal Alloy input instance valuate the signatures and relations of the
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AlloySpec generateInputSpec(Classfiles jar, Method m,
Formula pre) {
result is alloy specification consisting of:
sig declarations for (pre)state
foreach class C in jar (which does not have a library spec)
sig declaration for C
foreach field f declared in class C
if £ is of reference type T
field declaration, f: T ?-> State, in sig C
if £ is of primitive type T
field declaration, f: T !-> State, in sig C
function repOk that has signature corresponding to that of m
and has as body pre (i.e., m’s precondition), where
each field f is replaced by f::Pre

Figure 2. Algorithm for creating input generation specification

Alloy input/output specification. TestEra uses the Alloy Analyzer
to determine if this valuation satisfies the correctness specification.
If the check fails, TestEra reports a counterexample. If the check
succeeds, TestEra uses the next Alloy input instance for further
testing.

5.1. ALLOY SPECIFICATIONS

We next discuss the Alloy specifications that TestEra automatically
generates; these specifications are used by the Alloy Analyzer for gen-
erating inputs and checking correctness. Details of Alloy language can
be found in [25] and of the Alloy Analyzer in [27]. See Section 3 for
relevant details.

TestEra automatically parses Java classfiles and builds Alloy speci-
fications. The current TestEra implementation uses the ByteCode En-
gineering Library [13] for bytecode parsing. TestEra builds Alloy speci-
fications by combining signature declarations with Alloy functions that
express given method pre and postconditions.

Alloy does not have a built in notion of state or mutation. The Alloy
specifications that TestEra builds explicitly introduce state (following
the approach we described in Section 4).

Figure 2 describes the basic algorithm TestEra uses to build the
Alloy specification for input generation (the ”Alloy input spec” in
Figure 1). This algorithm first constructs appropriate sig and field dec-
larations and next constructs an Alloy function (repOk) that represents
the method precondition. Since precondition expresses a constraint on
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AlloySpec generateOracleSpec(Method m, AlloySpec inputSpec,
Formula post) {
result is inputSpec together with:

sig declaration for post state

function methodOk that has signature corresponding to m

and has as body post (i.e., m’s postcondition), where
each backticked field f¢ is replaced by f::Pre
each non-backticked field f is replaced f::Post

Figure 3. Algorithm for creating correctness checking specification.

the pre-state, the algorithm systematically introduces dereferencing in
the pre-state. To generate input instances, TestEra uses the Alloy An-
alyzer to solve the constraints represented by repOk within the input
scope’.

Recall the singly linked list example introduced in Section 2. TestEra
builds the following Alloy specification for generating inputs for the
method mergeSort:

module mergeSort_phase_1
open java/primitive/integer

sig State {}
static part sig Pre extends State {}

sig List {
header: Node 7-> State }

sig Node {
elem: Integer !-> State,
next: Node 7-> State }

fun List::RepO0k() {
// ayclic
all n: header::Pre.*next::Pre | not n in n. next::Pre }

Figure 3 describes the basic algorithm TestEra uses to build the
Alloy specification for correctness checking (the ”Alloy 1/O spec” in
Figure 1). The algorithm first constructs a sig declaration for post-state
and next constructs an Alloy function (methodOk) that represents the
method postcondition. Since a postcondition may express a constraint

" The scope of State for input generation is fixed at 1 since the pre-condition is
a formula on the pre-state only and therefore there is only one state to consider.
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that relates pre-state and post-state, the algorithm systematically in-
troduces dereferencing in the appropriate state following the conven-
tion that backtick represents pre-state. To check correctness, TestEra
uses the Alloy Analyzer to check whether the given input/output pair
satisfies the constraints expressed in method0Ok for the output scope®.
For the singly linked list example (Section 2), TestEra builds the
following Alloy specification for checking correctness of mergeSort:

module mergeSort_phase_2
open java/primitive/integer

sig State {3}
static part sig Pre extends State {}
static part sig Post extends State {}

sig List {
header: Node 7-> State }

sig Node {
elem: Integer !-> State,
next: Node 7-> State }

fun List::RepOk() {
// acyclic
all n: header::Pre.*next::Pre | not n in n. next::Pre }

fun List::method0k() {
// acyclicity
all n: header::Post.*next::Post | not n in n. next::Post

// sorted
all n: header::Post.*next::Post |
some n.next::Post implies
n.elem: :Post <= n.next::Post.elem: :Post

// output is permutation of the input

all i: Integer |
# { n: header::Post.*next::Post | n.elem::Post = i } =
# { n: header::Pre.*next::Pre | n.elem::Pre = i } }

8 The scope of State for correctness checking is fixed at 2 since the post-condition
is a formula that may relate pre-state and post-state, which are two distinct states.
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InputsAndMaps a2j(Instance a) {
Map mapAJ, mapJA;

// for each atom create a corresponding Java object
foreach (sig in a.sigs())
foreach (atom in sig) {
SigClass obj = new SigClass();
mapAJ.put (atom, obj);
mapJA.put (obj, atom);
}

// establish relationships between created Java objects
foreach (rel in a.relations())
foreach (<x,y> in rel::Pre)
setField(mapAJ.get(x), rel, mapAJ.get(y));

// set inputs

Object[] inputs;

for (i = 0; i < a.numParams(repOk); i++)
inputs[i] = mapAJ.get(a.getParam(repOk, i));

result = (inputs, mapAJ, mapJA);

Figure 4. Concretization algorithm a2j

5.2. ABSTRACTION AND CONCRETIZATION TRANSLATIONS

We next discuss the test driver that TestEra generates to test the
specified method. A test driver consists of Java code that performs
abstraction and concretization translations and appropriately executes
the method to test. The translations are generated fully automatically
when method specification is given at the representation level of method
inputs. If the specification introduces a level of data abstraction, the
translations have to be manually provided.

A concretization, abbreviated a2j, translates Alloy instances to Java
objects (or data structures). An abstraction, abbreviated j2a, translates
Java data structures to Alloy instances.

Concretization a2j typically operates in two stages. In the first stage,
a2j creates for each atom in the Alloy instance, a corresponding object
of the Java classes, and stores this correspondence in a map. In the
second stage, a2j establishes the relationships among the Java objects
created in the first stage and builds the actual data structures.

Figure 4 describes a generic concretization algorithm a2j. The al-
gorithm takes as input an Alloy instance and returns an array of Java
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j2a(0Object result, InputsAndMaps imap, Instance ret) {
Set visited;
List worklist = result + imap.inputs;

while (!worklist.isEmpty()) {

Object current = worklist.getFirst();

if (!'visited.add(current)) continue;

foreach (field in getFields(current)) {
Object to = getValue(field, current);
if (to == null) continue;
ret.addTuple(field, imap.mapJA.get(current),

imap.mapJA.get(to), Post);

if (!visited.contains(to)) worklist.add(to);

Figure 5. Abstraction algorithm j2a

objects that represent a test input and maps that are used in checking
correctness. The algorithm maintains two maps to store correspondence
between Alloy atoms and Java objects: mapAJ maps atoms to objects
and mapJA maps objects to atoms. In the first step, a2j creates Java
objects of appropriate classes for each atom in the instance”. In the
second step, a2j sets values of objects according to tuples in the input
relations; notice that all tuples represent values in pre-state. Finally,
a2j builds an array of objects that represents a test input, e.g., for an
instance method, input [0] represents the object on which to invoke the
method, input[1] represents the first declared parameter and so on.
Figure 5 describes a generic abstraction algorithm j2a. The algo-
rithm takes as input the method return value (result), imap con-
structed during concretization and the instance that was concretized,
and adds tuples to this instance to build an instance that represents
the corresponding input/output pair. The algorithm adds the output
component to ret by traversing the structures referenced by result and
inputs in imap (in the post-state). This traversal is a simple worklist
algorithm that tracks the set of visited objects. For each object that is
visited for the first time, j2a adds tuples to ret according to field values
of that object. For simplicity, we do not show the step in the algorithm

9 For atoms that represent primitive values, TestEra uses library classes
testera.primitive.*; for other atoms TestEra assumes accessibility permission for
invoking appropriate constructors. TestEra also assumes accessibility permission
for setting field values. Alternatively, TestEra could use Java’s security manager
mechanism to disable access checks for reflection.
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that creates new atoms when it encounters an object that does not
exist in the maps; this accounts for cases when a method allocates new
objects that appear in the output but did not exist in the pre-state.

The algorithms a2j and j2a describe generic translations that make
use of reflection. TestEra optimizes this by generating translations that
are specialized for the particular method and relevant classes being
tested, and do not use reflection.

TestEra generates Alloy specifications and abstraction and concretiza-
tion translations automatically. The users may modify these specifi-
cations and translations, e.g., to introduce some abstractions in the
Alloy specifications and improve efficiency of the analysis. However,
introduction of abstraction in specifications requires manual generation
of translations.

6. Case studies

We have used TestEra to check a variety of programs, including meth-
ods of some classes in the java.util package. Most of these programs
manipulate non-trivial data structures. We have also tested a part of
the Alloy Analyzer with TestEra. In this section, we illustrate some of
the analyses performed by TestEra and the bugs that it detected.

6.1. RED-BLACK TREES (JAVA.UTIL.TREEMAP)

We first outline TestEra’s analysis of the red-black tree implementation
given in java.util.TreeMap from the standard Java libraries (version
1.3).

Red-black trees [11] are binary search trees with one extra bit of
information per node: its color, which can be either “red” or “black”.
By restricting the way nodes are colored on a path from the root to a
leaf, red-black trees ensure that the tree is “balanced”, i.e., guarantee
that basic dynamic set operations on a red-black tree take O(lgn) time
in the worst case.

A binary search tree is a red-black tree if:

1. Every node is either red or black.
2. Every leaf (NIL) is black.
3. If a node is red, then both its children are black.

4. Every path from the root node to a descendant leaf contains the
same number of black nodes.
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All four of these red-black properties are expressible in Alloy. We
use TestEra to test the implementation of red-black trees given in
java.util.TreeMap. In particular, we illustrate TestEra’s analysis of
the remove method in class java.util.TreeMap, which deletes a node
with the given element from its input tree. Deletion is the most com-
plex operation among the standard operations on red-black trees and
involves rotations. The method remove in java.util.TreeMap, together
with the auxiliary methods is about 300 lines of code.

Part of the java.util.TreeMap declaration is:

public class TreeMap {
Entry root;

static class Entry {
Object key;
Object value;
Entry left;
Entry right;
Entry parent;
boolean color;

}
public Object remove(Object key) {...}

}

Red-black trees in java.util.TreeMap implement a mapping between
keys and values and therefore an Entry has two data fields: key and
value. The field value represents the value that the corresponding
key is mapped to. There are several fields of red-black trees that we
have not presented above. Some of these fields are constants, e.g.,
field RED is the constant boolean false and some are not relevant
for testing the remove method, e.g., modCount, which is used to raise
ConcurrentModificationException and we do not currently check for
exceptional behavior. TestEra allows users to specify which fields to
exclude from the Alloy models it builds. We exclude from generation
fields other than the ones declared above.

The declared type of key is Object. However, key objects need to be
compared with each other as red-black trees are binary search trees.
For comparisons, an explicit Comparator for keys can be provided at
the time of creation of the tree or the natural ordering of the actual
type of key objects can be used. TestEra allows users to define actual
type of fields, which are then used for generation of objects. We define
actual type of field key to be java.lang.Integer; TestEra automatically
generates appropriate tree objects.
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We use TestEra to generate red-black trees as test inputs for remove
method. First, we need the class invariant for red-black trees:

// parent ok
all e, f: root.*(left+right) |
e in f.(left + right) <=> f = e.parent

// binary search tree properties
// unique keys
all disj el, e2: root.*(left + right) |
el.key != e2.key
// distinct children
all e: root.*(left + right) |
no e.(left+right) || e.left != e.right
// tree is acyclic
all e: root.*(left + right) |
e lin e.  (left+right)

// left subtree has smaller keys
all e: root.*(left + right) |
all el: e.left.*(left+right) |
el.key <= e.key
// right subtree has larger keys
all e: root.*(left + right) |
all er: e.right.*(left+right) |
e.key <= er.key

// red black tree properties
// 1. every node is red or black, by construction
// 2. all leafs are black
// 3. red node has black children
all e: root.*(left + right) |
e.color = false && some e.left + e.right =>
(e.left + e.right).color = true
// 4. all paths from root to NIL have same # of black nodes
all el, e2: root.*(left + right) |
(no el.left || no el.right) && (no e2.left || no e2.right) =>
#{ p: root.x(left+right) |
el in p.*(left+right) && p.color = true } =
#{ p: root.*(left+right) |
e2 in p.*(left+right) && p.color

true }

The class invariant requires parent field to be consistent with the fields
left and right, the tree to be a binary search tree and also to satisfy
the four properties of red-black trees mentioned above.

After generating test inputs using the class invariant above, TestEra
in phase 2 of its analysis tests remove. By default, TestEra checks the
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input input
[pre—state] [post-state]

Ce i
4

input.remove(new Integer(0))

Figure 6. A counterexample for an erroneous version of remove. Nodes are labeled
with the keys of the entries. Round filled nodes represent entries colored black and
empty nodes represent entries colored red. Square filled nodes represent NIL nodes
and are colored black. The entry with key 0 is to be deleted from the input red-black
tree. The tree in post-state is not balanced; more precisely, property 4 is violated.

partial correctness property that the class invariant is preserved by
the method. We can also check stronger properties, e.g., to check that
the key to remove is actually removed from the tree, we can use the
following post-condition:

root.*(left + right).key = root™.*(left™ + right”).key - key

Recall, backtick (‘*7) indicates field access in pre-state.

As expected, TestEra’s analysis of the original implementation pro-
vided in java.util does not produce any counterexamples. However, if
we erroneously swap BLACK with RED in the following code fragment:

if (p.color == BLACK)
fixAfterDeletion(p);

TestEra detects violation of structural constraints on red-black trees
and produces concrete counterexamples. Figure 6 presents a counterex-
ample. The tree in post-state is not balanced; more precisely, property
4 is violated.

It should be noted here that Alloy provides an expressive notation for
writing properties of data structures. In contrast, the fourth property
of red-black trees is not expressible in the PALE logic [43]. Similarly,
TVLA [46] cannot check the remove method above.

6.2. INTENTIONAL NAMING SYSTEM

The Intentional Naming System (INS) [1] is a recently proposed nam-
ing architecture for resource discovery and service location in dynamic
networks. In INS, services are referred to by intentional names, which
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Figure 7. (a) Intentional names in INS, (b) and (c) counterexamples for
Lookup-Name

describe properties that services provide, rather than by their network
locations. An intentional name is a tree consisting of alternating lev-
els of attributes and wvalues. The Query in Figure 7(a) is an example
intentional name; hollow circles represent attributes and filled circles
represent values. The query describes a camera service in building NE-
43. A wildcard may be used in place of a value to show that any value
is acceptable.

Name resolvers in INS maintain a database that stores a mapping
between service descriptions and physical network locations. Client
applications invoke resolver’s Lookup-Name method to access services
of interest. Figure 7(a) illustrates an example of invoking Lookup-Name.
Database stores description of two services: service RO provides a camera
service in NE-43, and service R1 provides a printer service in NE-43.
Invoking Lookup-Name on Query and Database should return RO.

To illustrate the variety of TestEra’s analyses, we discuss some flaws
identified by TestEra in the Java implementation of INS [48]. These
flaws actually existed in the INS design, and we first corrected the
design. We then modified the implementation of INS and checked its
correctness using TestEra. Details of our INS case study with TestEra
can be found in [31]. The original Java implementation of INS [48]
consists of around 2000 lines of code.

Our checking of INS using TestEra focuses on the Lookup-Name method.

Lookup-Name returns the set of services from the input database that

conform to the input query. To investigate the correctness of Lookup-Name,

we would like to test its soundness (i.e., if it returns only conform-
ing services) and completeness (i.e., if it returns all conforming ser-
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vices). However, the INS inventors did not state a definition of confor-
mance and stated only certain properties of Lookup-Name. We investi-
gate Lookup-Name’s correctness by checking whether it satisfies certain
basic properties that are necessary for its correctness and a published
claim about its behavior.

The published description of Lookup-Name claims: “This algorithm
uses the assumption that omitted attributes correspond to wildcards;
this is true for both the queries and advertisements.” TestEra disproves
this claim; Figure 7(b) illustrates a counterexample: IQueryNoWC is the
same as IQuery, except for the wildcarded attribute A0. Different results
of the two invocations of Lookup-Name contradict the claim.

TestEra also shows that addition in INS is not monotonic, i.e.,
adding a new service to a database can cause existing services to erro-
neously become non-conforming. Figure 7(c) illustrates such a scenario:
both services RO and R1 are considered conforming to IQuery by the
semantics of INS, but their co-existence in IDatabase makes both of
them erroneously non-conforming to IQuery. In other words, if we con-
sider resolving IQuery in a database that consists only of advertisement
by R1, Lookup-Name returns R1 as a valid service; however, in IDatabase
which includes both advertisements by R1 and R2, the algorithm returns
the empty-set. This flaw points out that INS did not have a consistent
notion of conformance. Both preceding flaws exist in the original design
and implementation of INS.

To correct INS, we first defined the notion of conformance between
a service and a query: a service s is conforming to a query ¢ if ¢ is
a subtree of the name of s, where the wildcard matches any value.
This means that a service is conforming to ¢ if it provides all the
attributes and (non-wildcard) values mentioned in ¢ in the right order.
TestEra’s analysis of the original implementation of Lookup-Name with
respect to this definition of conformance reports several counterexam-
ples. We modified the implementation and re-evaluated the correctness
of Lookup-Name using TestEra. This time TestEra reports no flaws, in-
creasing the confidence that our changes have corrected the problems.
The corrected algorithm now forms a part of the INS code base.

6.3. ALLOY-ALPHA ANALYZER

The main design goal for TestEra is that it efficiently analyzes complex
data structures. But, TestEra can be applied also to test various other
kinds of programs. As an illustration, we show how we used TestEra to
uncover subtle bugs in the Alloy-alpha Analyzer.

The bugs appear in the analyzer because it generates instances that,
for the user’s convenience, retain the names that the user gives for
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static signatures. The problems only appear in the rare case when the
user explicitly declares a static subsignature with the same name as
the one that the analyzer picks for an atom of a basic signature. These
bugs have simple fixes and have now been corrected in the new version
of the analyzer, which is publicly available for download.

Recall that the basic signatures in Alloy introduce new types. There-
fore, distinct basic signatures must not share atoms, and the atoms
within each signature must be also unique. We test the conjecture that
instances produced by the old analyzer satisfy these properties.

We build an Alloy (meta-)specification of a simplified Alloy spec-
ification that consists only of basic signature and subsignature dec-
larations. In phase 1, TestEra generates all non-isomorphic instances
of this specification. Each of these instances I essentially represents an
Alloy specification M. In phase 2, TestEra takes each instance I in turn
and build the corresponding Alloy specification M. The testing next
invokes the analyzer again to generate all instances of M and finally
checks whether each such instance I’ satisfies the uniqueness properties
stated above.

The following Alloy code models an Alloy specification that con-
sists only of signature declarations, with some of their atoms explicitly
named (as static subsignatures).

sig SigName {}
sig Prefix {3}
sig Suffix {3}

sig Atom {
namePrefix: Prefix,
nameSuffix: Suffix }

fact AtomsHaveUniqueNames {
all disj al,a2:Atom |

al.namePrefix != a2.namePrefix ||
al.nameSuffix !'= a2.nameSuffix }
sig Sig {

name: SigName,
staticAtoms: set Atom }
fact SignaturesHaveUniqueNamesAndAtoms {
all disj s1,s2:Sig |
sl.name != s2.name &&
no sl.staticAtoms & s2.staticAtoms}

static part sig Signature, Test extends SigName {3}
static part sig S, T extends Prefix {}
static part sig Zero, One extends Suffix {}
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Basic type SigName denotes signature names, and Prefix and Suffix
build atom names. The fact AtomsHaveUniqueNames specifies that names
of distinct atoms differ in either the prefix or the suffix. A Sig has a
name and can have several atoms declared explicitly (i.e., its static
subsignatures). The fact SignaturesHaveUniqueNamesAndAtoms constrains
distinct signatures to have distinct names and atoms.

For the sake of simplicity, we let the pool for signature names be
only {Signature,Test}, for prefixes {S,T}, and for suffixes {Zero,One}.
(Zero and One are placeholders for symbols 0 and 1, since these symbols
without a leading alphabetic character are not allowed as subsignature
names in Alloy.)

An example instance I that the analyzer generates for the above
specification is:

SigName = {Signature, Test}
Prefix = {S, T}

Suffix = {Zero, One}

Atom = {A1, A2}

Sig = {Sigl, Sig2}

namePrefix={(A1, S), (A2, S)}
nameSuffix={(A1, One), (A2, Zero)}

name = {(Sigl, Test), (Sig2, Signature)}
staticAtoms = {(Sigl, A1), (Sig2, A2)}

This instance represents the Alloy specification M:

sig Test {}
sig Signature {}

static sig S1 extends Test {}
static sig SO extends Signature {}

As stated earlier, for any instance generated by the analyzer, the
valuations of signatures (and relations) in the instance must satisfy the
uniqueness properties for the analyzer to be sound.

TestEra’s analysis of this conjecture produces a counterexample. In
particular, TestEra detects the following instance I’ of M as produced
by the analyzer:

Signature = {S0, S1}
Test = {S1}

This instance violates the property that atoms in distinct signatures
must be distinct.
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Table I. Summary of TestEra’s analyses
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phase 1 phase 2

case study method/property tested size | F# gen # check
test | [sec] | pass | [sec]

singly linked lists | mergeSort 3 27 9 27 7
mergeSort (erroneous) 3 27 0 3 7

red black trees remove 5 70 26 70 19
(java.util) remove (erroneous) 5 70 0 50 18
INS published claim 3 12 9 10 6
addition monotonic 4 160 14 | 150 9

Lookup-Name (original) 3 16 8 10 6

Lookup-Name (corrected) 3 16 0 16 6

Alloy-alpha disj sigs / unique atoms 2 12 5 6 25

Another counterexample that TestEra generates is:

Signature = {S0,S0}
Test = {S1}

This instance also violates the property that atoms in a signature must
be distinct. Both violations of the uniqueness properties also affect the
visualization part of the analyzer. As mentioned, though, these bugs
have been fixed in the new version of the Alloy Analyzer, which is
publicly available for download.

7. Implementation and Performance

We have implemented TestEra in Java. Table I summarizes the per-
formance of our implementation on the presented case studies; we
conducted the analyses on a Pentium III, 700 MHz processor. We
tabulate, for each case study, the method we test, a representative
input size, and the phase 1 (i.e., input generation) and phase 2 (i.e.,
correctness checking) statistics of TestEra’s checking for that size. For
phase 1 we tabulate, the number of inputs generated and the time to
generate these inputs. For phase 2, we tabulate the number of inputs
that satisfy the correctness criteria and the total time for checking. A
time of 0 seconds in phase 1 indicates reusing already generated tests.
All times are in seconds. In all the cases, TestEra takes less than a
minute to complete both the automatic generation of instances and
the verification of correctness, for the given small input sizes.
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In phase 1, TestEra typically generates several test inputs per sec-
ond. Among the studies we have presented, the most complex structural
invariants are those for red-black trees. Note that the number of pos-
sible states to consider for generating red-black trees with five nodes
is over 2%0. Of course, the Alloy Analyzer prunes away most of these
states, and that is why the test inputs are generated fairly quickly.

In phase 2, TestEra’s performance depends on both the time to
perform abstraction translation and the time to execute code to test.
The Alloy-alpha analyzer study represents the largest implementation
that we tested and for this study TestEra took 25 seconds to check the
12 cases.

When TestEra detects a violation of the property being tested,
TestEra generates concrete counterexamples. In case no violation is
detected, we can increase our confidence in the implementation by gen-
erating test inputs using a larger number of objects. Simply increasing
the bound on input size and regenerating inputs produces some test
inputs that have already been used in the smaller bound. TestEra’s
performance in such a case can be improved by ruling out inputs that
can be found in a smaller bound; notice however that the number of
inputs can grow exponentially with size so this improvement may only
be marginal. As an illustration, the tabulated results are for linked lists
with exactly three nodes (using up to 3 integers) and red-black trees
with exactly five nodes (using up to 5 integers).

Notice that there is no need to generate all test cases first and then
perform testing. If disk space is an issue, TestEra can perform testing
and checking as the inputs are generated without having to store them.
Selecting this trade-off, however means that these inputs cannot be
reused to test other implementations or methods.

The INS and Alloy-alpha Analyzer studies were performed using
the Alloy-alpha analyzer. For these studies we wrote by hand the Java
code to perform abstractions and concretizations; for other studies
the presented analysis is fully automatic. For manual translations, it
took us a few hours (less than 8 man-hours) to write them; these
translations were straightforward simply because we could define an
isomorphism between structures represented by the Alloy model and
those represented by the Java implementation.

To illustrate the nature of translations that we wrote by hand let
us consider the INS study. Recall the property that an attribute in a
database can have several children values. In the Java implementation
of INS, each attribute has a children field of type java.util.Vector.
We model this property in Alloy as a relation from attributes to values.
To concretize, we systematically translate tuples of the relation by
adding elements to the children field of appropriate attribute objects.
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Similarly, to abstract we systematically iterate over the elements of
children and add tuples to the relation.

It is worth noting that translations used by TestEra are at the input
datatype level and therefore independent of the body of the method
that is being tested. In other words, the same translations can be used
to test several different methods that operate on a given set of input
datatypes.

8. Discussion

We next discuss some limitations of the TestEra framework and our
current implementation. We also address some feasibility issues of a
systematic black-box testing approach based on first-order logic.

8.1. PRIMITIVE TYPES

To allow users to build specifications that include primitive types,
we need to provide Alloy models for key operations on those types.
Note that the use of SAT solvers as the underlying analysis technology
necessitates a non-trivial treatment of such operations. For example,
to support the addition operation for integers, we need to explicitly
build a formula that encodes all valid triples (within the given scope)
that represent result of adding two integers. Consequently, the cor-
rectness specification must also mention a scope that is sufficiently
large; determining such a scope (e.g., for sequences of integer opera-
tions) can be non-trivial. However, we envision enabling the TestEra
framework to use (in conjunction with SAT solvers) specialized de-
cision procedures for handling operations on a variety of primitive
types. Our current implementation provides limited support for integer
and boolean types, including library code that automatically generates
formulas for common integer operations, given an input scope.

8.2. EXCEPTIONS, ARRAYS, MULTI-THREADEDNESS ETC.

Treatment of exceptions and arrays is straightforward. Our current
implementation does not support these. Also, we do not currently sup-
port automatic initialization of field values (e.g., for final fields), which
requires building an Alloy model corresponding to the Java code.
Dynamically checking correctness of multi-threaded programs for
deadlocks and race conditions requires the ability to control thread
scheduling. We envision using a model checker in conjunction with a
SAT solver (and perhaps other decision procedures) to check for multi-
threaded programs that operate on complex structures (similar to [34]).
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In object-oriented programs, inheritance plays a fundamental role.
So far we have not addressed how to utilize class hierarchy in test
generation. We present a systematic treatment of inheritance in a first-
order setting in [41]; we have not yet implemented this approach.

8.3. EASE OF SPECIFICATION

Even though use of path expressions is intuitive and allows building
succinct formulas, use of (nested) quantifiers in building a specifica-
tion can provide a learning challenge for most developers who are not
adept at programming in a declarative style. We have addressed this
limitation by providing a variety of (static and dynamic) analyses for
the same specifications to make it more attractive for users to adopt
our notation (see [32] for details.)

A key issue with building specifications that define complex struc-
tures is to correctly write constraints that precisely define the desired
structure. For example, a tree structure may be intuitively easy to see,
to state the constraints in a formal notation, however, is non-trivial.
There are various strategies we can use to enhance our confidence in the
specification: 1) the Alloy toolset allows users to visualize instances that
satisfy given constraints; users can scroll through different instances to
inspect for violation of an expected property; 2) users can formulate
the same constraint as different formulas and use the Alloy Analyzer
to check whether these formulas are equivalent; 3) for several common
data structures, the number of nonisomorphic structures for various
benchmark data structures (including red-black trees) and sizes ap-
pears in the Sloane’s On-Line Encyclopedia of Integer Sequences [50];
for these structures, users can simply compare the number of structures
enumerated by the analyzer with the published numbers. We used these
strategies for building specifications for the presented studies; we built
each specification within a day’s work (less than 8 man-hours).

We have recently explored adding common patterns to the speci-
fication language [40], such as acyclicity along a set of fields. These
patterns not only allow users to easier specify common data structure
properties, but also allow faster generation of structures [40]. In the
context of TestEra, we would like to investigate how we can guide
the SAT solver’s search to exploit these patterns; as a first step, we
would like to define a pattern-aware translation from first-order logic
to boolean logic. We would also like to explore identifying such patterns
automatically from an input constraint.
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8.4. BLACK-BOX TESTING

It is worth emphasizing that TestEra performs black-box [6] (or specification-
based) testing. In other words, when testing a method the implemen-
tation of the method is not used in test generation. Since TestEra
generates inputs from an input constraint, the constraint can be manu-

ally “strengthened” to generate “interesting” counterexamples, e.g, to
rule-out generation of inputs that witness previously identified bugs—

this also allows to identify new bugs without having to fix the ones
previously discovered.

8.5. SYSTEMATIC TESTING ON AN INITIAL INPUT SEGMENT

TestEra’s approach to systematic testing is to exhaustively test the
program on all nonisomorphic inputs within a small input size. A clear
limitation of this approach is that it fails to explore program behaviors
that are witnessed by large inputs only. For example, to test a program
that sorts an input array using different sorting algorithms depending
on the size of the array, it would be natural to test on inputs within
a range of sizes to check each of the algorithms (at least) on some
inputs. A strategy TestEra users can apply is to test exhaustively on
all small inputs and test selectively on a few larger inputs to gain more
confidence about the correctness of the program. Clearly, this strategy
can be guided by the standard test adequacy criteria, such as structural
code coverage. We plan to investigate such a strategy in the future.
Users can also gain confidence by iteratively increasing the bound and
testing on larger inputs as permitted by time constraints.

To determine how program coverage varies with bound on input size,
we have recently [40] tested several benchmarks with the Korat frame-
work [7] (see Section 9 for more details on Korat). The experiments
show that it is feasible to achieve full statement and branch coverage
for several data-structure benchmarks by testing on all inputs within a
small input size.

8.6. GENERATING STRUCTURALLY COMPLEX DATA

A key aspect of TestEra’s test input generation is that the inputs repre-
sent structurally complex data. Such data cannot be feasibly generated
at the representation level merely by a random (or even brute force)
assignment of field values as the number of valid structures with respect
to the number of candidate structures tends to zero. Also, generating
such data at the abstract level by a sequence of construction sequence
can be inefficient; for example, to generate all red-black trees with 10
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nodes we may require 10! (or about 3.6 x 10%) sequences'? whereas there
are only 240 nonisomorphic red-black trees with 10 nodes. Efficient
generation of structurally complex data requires systematic constraint
solving techniques, such as those provided by TestEra and Korat.

9. Related work

We first discuss how TestEra relates to other projects on specification-
based testing. We then compare TestEra with static analysis (and in
particular model checking of software); although TestEra performs test-
ing, i.e., dynamic analysis, it does so exhaustively within a given scope,
which makes it related to some static analyses.

9.1. SPECIFICATION-BASED TESTING

There is a large body of research on specification-based testing. An
early paper by Goodenough and Gerhart [20] emphasizes its impor-
tance. Many projects automate test case generation from specifications,
such as Z specifications [51, 24, 52, 17], UML statecharts [45, 44], ADL
specifications [47, 8], or AsmL specifications [22, 21]. These specifica-
tions typically do not consider structurally complex inputs, such as
linked data structures illustrated in TestEra’s case studies. Further,
these tools do not generate Java test cases.

Recently, the AsmL Test Generator (AsmLT) [18] was extended to
handle structurally complex inputs using a Korat-like technique (see be-
low). The first version of AsmLT [21] was based on finite-state machines
(FSMs): an AsmL [22] specification is transformed into an FSM, and
different traversals of FSM are used to construct test inputs. Dick and
Faivre [16] were among the first to use an FSM-based approach: their
tool first transforms a VDM [29] specification into a disjunctive normal
form and then applies partition analysis to build an FSM. This work
influenced the design of tools such as CASTING [2] and BZTT [37].
These tools readily handle sequence of method calls, whereas we used
TestEra only for testing one method at a time; more precisely, the
method under test can contain a sequence of method calls, but we
did not use TestEra to generate such sequences. However, with the
exception of AsmLT, the other tools were not applied for structurally
complex inputs such as those in TestEra’s case studies.

Cheon and Leavens developed jmlunit [9] for testing Java programs.
They use the Java Modeling Language (JML) [36] for specifications;

10 Fach sequence represents one particular order of insertion of 10 elements into
an empty red-black tree.
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jmlunit automatically translates JML specifications into test oracles for
JUnit [5]. This approach automates execution and checking of methods.
However, the burden of test case generation is still on the tester who has
to provide sets of possibilities for all method parameters and construct
complex data structures using a sequence of method calls.

We have recently developed Korat [7], a framework that uses JML
specifications and automates both test case generation and correctness
checking. Korat uses a novel search algorithm to systematically explore
the input space of a given Java predicate and generate all noniso-
morphic inputs (within a given input size) that satisfy the predicate.
Korat monitors each execution of the predicate on candidate inputs and
prunes the search based on the fields accessed during the execution.
We have primarily used Korat for black-box testing [7], but it can be
also used for white-box testing [40]. In black-box testing, the predicate
given to Korat represents the method precondition, and thus inputs
that satisfy the predicate represent valid inputs for the method under
test.

TestEra and Korat can be primarily compared in two aspects: ease
of specification and performance of testing. There is no clear winner in
any aspect so far, and we view TestEra and Korat as complementary
approaches. Regarding the ease of specification, we have a small ex-
perience with beginner users of TestEra and Korat: the users familiar
with Java find it easier to write specifications in JML (for Korat) than
in Alloy (for TestEra)—-this is not surprising, because JML specifica-
tions are based on familiar Java expressions—whereas the users familiar
with Alloy typically find it easier to write Alloy specifications that
also tend to be more succinct than their JML equivalents. Regarding
the performance of testing, the main factor is the performance of test
input generation. Generation in Korat is sensitive to the actual way
a specification is written, whereas generation in TestEra is relatively
insensitive: for any two equivalent specifications, TestEra takes about
the same time to generate inputs. Our experiments on several com-
mon data structures [7] showed that Korat, with JML specifications
written to suit Korat, generates inputs faster than TestEra. Further,
Korat is amenable to the use of dedicated generators [40] that make
the generation even faster, while making the specifications easier to
write. However, a specification not written to suit Korat could make
generation in Korat much slower than in TestEra.

9.2. STATIC ANALYSIS

Several projects aim at developing static analyses for verifying program
properties. The Extended Static Checker (ESC) [15] uses a theorem
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prover to verify partial correctness of classes annotated with JML
specifications. ESC has been used to verify absence of errors such as
null pointer dereferences, array bounds violations, and division by zero.
However, tools like ESC cannot verify complex properties of linked data
structures (such as invariants of red-black trees). There are some recent
research projects that attempt to address this issue. The Three-Valued-
Logic Analyzer (TVLA) [46, 39] is the first static analysis system to
verify that the list structure is preserved in programs that perform
list reversals via destructive updating of the input list. TVLA has
been used to analyze programs that manipulate doubly linked lists and
circular lists, as well as some sorting programs. The pointer assertion
logic engine (PALE) [43] can verify a large class of data structures
that can be represented by a spanning tree backbone, with possibly
additional pointers that do not add extra information. These data
structures include doubly linked lists, trees with parent pointers, and
threaded trees. While TVLA and PALE are primarily intraprocedural,
Role Analysis [35] supports compositional interprocedural analysis and
verifies similar properties.

In summary, while static analysis of program properties is a promis-
ing approach for ensuring program correctness in the long run, the
current static analysis techniques can only verify limited program prop-
erties. For example, none of the above techniques can verify correctness
of implementations of balanced trees, such as red-black trees. Testing,
on the other hand, is very general and can verify any decidable program
property, but for inputs bounded by a given size.

Vaziri and Jackson propose Jalloy approach [28, 53] for analyzing
methods that manipulate linked data structures. Their approach is
to first build an Alloy model of bounded segments of computation
sequences and then check the model exhaustively with the Alloy Ana-
lyzer. Jalloy provides static analysis, but it is unsound with respect to
both the size of input and the length of computation. TestEra not only
checks the entire computation, but also handles larger inputs and more
complex data structures than Jalloy. Further, unlike Jalloy, TestEra
does not require specifications for all (helper) methods.

9.3. SOFTWARE MODEL CHECKING

There has been a lot of recent interest in applying model checking to
software. JavaPathFinder [54] and VeriSoft [19] operate directly on a
Java, respectively C, program and systematically explore its state to
check correctness. Other projects, such as Bandera [10] and JCAT [14],
translate Java programs into the input language of existing model
checkers like SPIN [23] and SMV [42]. They handle a significant portion
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of Java, including dynamic allocation, object references, exceptions,
inheritance, and threads. They also provide automated support for
reducing program’s state space through program slicing and data ab-
straction. SLAM [3, 4] uses predicate abstraction and model checking
to analyze C programs for correct calls to API.

Most of the work on applying model checking to software has fo-
cused on checking event sequences, specified in temporal logic or as
“API usage rules” in the form of finite state machines. These projects
developed tools that offer strong guarantees in this area: if a program
is successfully checked, there is no input/execution that would lead
to an error. However, these projects typically did not consider linked
data structures or considered them only to reduce the state space to be
explored and not to check the data structures themselves. TestEra, on
the other hand, checks correctness of methods that manipulate linked
data structures, but provides guarantees only for the inputs within the
given bound.

10. Conclusion

TestEra is a novel framework for automated testing of Java programs.
The key idea behind TestEra is to use structural invariants for input
data to automatically generate test inputs. As an enabling technology,
TestEra uses the first-order relational notation Alloy and the Alloy
Analyzer. The automatic constraint solving ability of the Alloy Ana-
lyzer is used to generate concrete inputs to a program. The program is
executed and each input-output pair is automatically checked against
a correctness criteria expressed in Alloy. TestEra requires no user input
besides a method specification and an integer bound on input size. A
precise statement of a desired input-output relationship is something
that any formal (automated) correctness checking framework requires.

We presented experimental results from several programs that were
efficiently analyzed by TestEra. In all the cases, the analysis com-
pleted in less than a minute for the given small input bounds. When
a program violates a correctness property, TestEra generates concrete
counterexamples.

The experiments show that TestEra provides efficient enumeration
of structurally complex data, which can be hard to systematically gen-
erate otherwise. Systematic testing on an initial segment of input space
presents an exciting technique for finding errors. We believe TestEra’s
approach of modeling data but not computation promises scalability
and wide application. We plan to extend TestEra’s analysis to also
report on structural code coverage, which would help users decide
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when the program has been sufficiently tested. We also plan to evaluate
TestEra on other programs.
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