
Reliable Testing: Detecting State-Polluting Tests to
Prevent Test Dependency

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{gyori,awshi2,hariri2,marinov}@illinois.edu

ABSTRACT

Writing reliable test suites for large object-oriented systems
is complex and time consuming. One common cause of unre-
liable test suites are test dependencies that can cause tests
to fail unexpectedly, not exposing bugs in the code under
test but in the test code itself. Prior research has shown
that the main reason for test dependencies is the “pollution”
of state shared across tests.

We propose a technique, called PolDet, for finding tests
that pollute the shared state. In a nutshell, PolDet finds
tests that modify some location on the heap shared across
tests or on the file system; a subsequent test could fail if it
assumes the shared location to have the initial value before
the state was modified. To aid in inspecting the pollutions,
PolDet provides an access path through the heap that leads
to the polluted value or the name of the file that was mod-
ified. We implemented a prototype PolDet tool for Java
and evaluated it on 26 projects, with a total of 6105 tests.
PolDet reported 324 polluting tests, and our inspection
found that 194 are relevant pollutions that can easily affect
other tests.

Categories and Subject Descriptors: D.2.5 [Software

Engineering]: Testing and Debugging

General Terms: Reliability

Keywords: Flaky Tests, Test Dependency, State Pollution

1. INTRODUCTION
Regression testing is a crucial activity in software devel-

opment. Developers rely on regression testing to determine
whether the newly made code changes break software func-
tionality. If a regression test-suite run produces a failure,
developers need to debug it. For a reliable test suite, failures
should indicate a problem introduced by the code change.
If the problem is indeed in the code under test, then it is
highly beneficial that the test suite failed. However, if the
problem is in the test code itself, then the test code should
be changed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

One common problem [1, 7, 13, 18, 23, 28] in regression
test suites is dependency between tests. These dependen-
cies arise when the tests read and write some shared re-
source, e.g., the heap state in the main memory, file system,
database, etc. Prior research showed that these dependen-
cies occur in various projects (ranging from small projects
such as Maven to medium projects such as Apache Aries
and to large projects such as Hadoop) [13], and that most
dependencies are on the heap state, reported to range from
53% [13] to 61% [28] of all test dependencies. These de-
pendencies make the outcome of regression test-suite runs
unreliable: even for the same version of the code under test,
the tests could pass when executed in one order but fail when
executed in another order [13,16,28].

Several research groups have started developing techniques
that can combat test dependencies. We discuss related work
in Section 7 but highlight two techniques here. Zhang et
al. [28] present a technique that can find existing test depen-
dencies by running a test suite in various, carefully selected,
orders and checking if any order fails. However, their tech-
nique requires that the test dependency already be present
in the test suite, i.e., it does not proactively find poten-
tial test dependencies even before they can manifest. Bell
and Kaiser [1] present VMVM, a technique that can tolerate
the presence of test dependencies by restoring shared heap
state, which may have been modified, after each test run.
However, their technique does not report whether there is a
modification or not; it always restores the state under the
assumption that it may have been modified.

The existing techniques do not directly provide the infor-
mation about the root cause of the dependencies, i.e., do not
report which test “pollutes”what part(s) of the shared state.
For example, consider a test t that starts from a shared state
s, modifies it to s′ such that there could be another test t′

that would pass when started from s but fail when started
from s′. Two issues are important to highlight. First, when
the test t′ seemingly non-deterministically fails or passes for
the same code, the culprit is not necessarily the test t′ but
the polluting test t, which makes debugging harder.1

Second, even if the current test suite does not have any
test t′ that can be affected by the polluting test t, it is still
valuable to know that t is a polluting test, so it could be
fixed even before t′ is added and the test order is changed.
For example, the change in test order significantly affected a
number of Java projects when they upgraded to Java 7 [8].

1While this paper does not consider fixing of test pollution,
a typical fix is either for t to clean the state after it finishes
its logic, or for t′ to clean the state before it starts its logic.

The reason was that Java 7 changed the Reflection API im-
plementation. Because JUnit uses reflection to find the tests
to run, the tests started running in different orders than in
previous versions of Java, exposing test dependencies as fail-
ing test suites. Some of those test suites were years old, and
debugging such old test suites is rather hard as reported by
several blog posts [9, 14, 15]. Ideally a polluting test should
be caught right when the developer is about to add it to the
test suite because that is when the developer is in the best
position to fix the polluting test, or at least label it as a
polluting test that could cause problems in the future.

We introduce PolDet, a technique that detects polluting
tests. PolDet proactively finds tests that pollute the state,
enabling the developers to fix the tests right away, rather
than later when the pollution manifests in a test failure.
Conceptually, PolDet is rather simple and finds polluting
tests “by definition”: for each test in a test suite, PolDet

captures the shared state (on the heap and the file system)
before and after the test, and then compares these two states
to determine if there were any relevant differences.

To help developers find polluting tests, PolDet has to
overcome several challenges. One challenge is to capture
and compare the states at the appropriate abstraction level
and appropriate program points such that the reported dif-
ferences are likely to be relevant pollutions. Some state dif-
ferences are irrelevant, e.g., if states s and s′ differ only in
the private content of some caches that the test code cannot
observe via the public API, then the difference is irrelevant.
An additional challenge is to offer information that helps
developers in fixing the pollution. The final challenge is to
make the technique efficient enough, but it is not the most
important: the technique could be run only occasionally for
the entire suite, or it could be run only for the newly added
tests rather than for all the tests in the test suite. Indeed,
our prior study [13] shows that 78% of the polluting tests
pollute the shared state right when they are added (i.e., only
22% start polluting due to later changes in the test code or
the code under test).

We make the following contributions:

• We formalize the problem of test pollution

• We present the PolDet technique that detects pollu-
tions on shared heap or file system

• We implement a prototype PolDet tool for Java

• We evaluate the tool on 26 projects from GitHub

The experimental results show that PolDet effectively
finds polluting tests. In the default configuration, PolDet

reported 324 tests (out of 6105 tests) as potential polluting
tests, and our inspection found that 194 of those are rele-
vant polluting tests. The runtime overhead of our PolDet

prototype is a geometric mean of 4.50x, on a machine rep-
resentative of a build-farm server. We believe this overhead
is acceptable for running PolDet occasionally on the entire
test suites and running always on the newly added tests.

2. MOTIVATING EXAMPLE
We next discuss a real example of a polluting test that

was added to the Apache Hadoop project [6] at one revi-
sion and then created problems in the test suite much later.
Figure 1 shows a simplified code snippet from the TestPath-

Data class. This snippet includes two tests of interest with

1 public class TestPathData {
2 static Path testDir;

3 ...
4 @BeforeClass
5 public static void initialize() {

6 ...
7 testDir = new Path(System.getProperty("test.build.data",

8 "build/test/data") + "/testPD");
9 }

10 @Test // FT
11 public void testAbsoluteGlob() {
12 PathData[] items = PathData.expandAsGlob(testDir +

13 "/d1/f1*", conf);
14 assertEquals(

15 sortedString(testDir + "/d1/f1", testDir + "/d1/f1.1"),
16 sortedString(items));
17 }

18 ...
19 @Test // PT

20 public void testWithStringAndConfForBuggyPath() {
21 dirString = "file:///tmp";

22 testDir = new Path(dirString);
23 assertEquals("file:/tmp", testDir.toString());
24 ...

25 }
26 }

Figure 1: Hadoop example of a polluting test that

leads to the failure of other tests

their full names—testAbsoluteGlob and testWithStringAnd-

ConfForBuggyPath; for brevity, we will refer to them as FT
and PT , respectively. The bug issue HADOOP-8695 [5]
reported that the test FT occasionally fails. Debugging
showed the cause was the pollution of the field testDir.

The static field testDir (line 2) is of type org.apache.-

hadoop.fs.Path. This class represents the name of a file or
a directory, and it performs operations on that name, e.g.,
extracting the components of the path.2 The field is ini-
tialized in the initialize method, which is annotated with
@BeforeClass so that JUnit executes it once before all the
tests in the test class (and not once before each test in the
test class).

In revision 1099612 in the Hadoop SVN repository [4], the
developers added the test PT (while FT did not exist yet).
PT sets the field testDir (line 22) and leaves it polluted. In
that revision, no other test read the value of testDir, so no
existing technique (e.g., Zhang et al.’s technique [28] based
on test reordering or Huo and Clause’s technique [7] based
on taint analysis) would report PT as a polluting test.

Later on, in revision 1186529, the developers added the
test FT . This test reads the value of testDir and expects
to get its initial value set by the initialize method. In
Java 6, JUnit indeed ran tests in the order they were listed
in the source of the test class; since FT was listed before
PT , FT was run first, causing no problems. However, in
Java 7, the order in which JUnit runs the tests became
non-deterministic, which led to FT failing seemingly non-
deterministically. This failure is reported in HADOOP-
8695, and debugging showed that FT fails whenever it is
run after PT. In this example, it is easy to establish that
the cause is the pollution of the field testDir.3

This example shows how test pollution can create prob-
lems, sometimes much later after the polluting test is added,

2While the objects in this example represent directory and
file names, all objects are still in memory, and the example
does not pollute the file system but only the heap.
3The fix in revision 1374447 moves the initialization of test-
Dir to a new method annotated with @Before such that JUnit
sets up the state before each test.

making it potentially hard to debug and fix. In this exam-
ple, the polluted shared state is directly the static field in the
test class. However, in general, the polluted shared state can
be an object much deeper in the heap (not directly pointed
to by the static field), and the polluted shared state can be
reachable starting from a static field in the code under test
(not in the test code). Debugging such cases is much harder,
especially long after the code is written. Most importantly,
the developers may not be aware that their tests pollute the
shared state until such pollution results in failures.

PolDet helps developers find polluting tests early. If it
were run on the class TestPathData when the test PT was
added (although FT did not exist yet), PolDet would re-
port that PT polluted the shared state. Moreover, PolDet

would also report where the states differ. Given such a re-
port, the developer can then choose to either fix the test
right away or to provide a configuration option for PolDet

to avoid reporting this pollution in the future. Had the
Hadoop developers used a PolDet(-like) tool in revision
1099612, they could have avoided the problems that started
after revision 1186529 and lasted until revision 1374447.

3. TECHNIQUE
We next describe our PolDet technique for finding pol-

luting tests. PolDet takes as input a set of tests (and
configuration options that specify how to compare states).
PolDet produces as output a subset of tests that modify
the state, and for each such test produces some difference,
identified by an access path through the heap or a file name.

Test executions operate on the system state that consists
of parts shared across tests (program heap, local file sys-
tem, and network-accessible persistent state, e.g., services,
databases, etc.) and parts not accessible across tests (e.g.,
the stack of each test invocation). We are interested in the
parts that are shared and can be polluted from one test
run to another. We refer to these parts as the cross-test-
shared state. In general, pollutions could occur via network
or databases, but in this paper, we focus on pollutions via
heap state and file system; prior studies show these two to
be the most prevalent causes of test dependency [13,28].

We first discuss points at which to compare states. We
then formalize the concept of heap-shared state, describe
the state abstraction that PolDet uses, define heap-shared
state differences, and describe what differences PolDet re-
ports. We finally discuss the comparison of file-system states.

3.1 Program Points
To find state pollutions, PolDet captures the state be-

fore the test starts executing and after the test finishes ex-
ecuting. So far we have intuitively referred to the program
points before and after the test execution. To precisely de-
fine these points, we need to consider how a test framework
invokes the tests. Most test frameworks allow the developer
to provide some setUp and tearDown code to execute before
each test (to set up the state) and after the test (to clean the
state at the end), respectively. Ideally, the states should be
captured before the setUp code and after the tearDown code.
We elaborate more on the choice of capture points in Sec-
tion 4.2. (Interestingly, our experiments show that the setUp

and tearDown code fragments do not themselves pollute the
state; if a test pollutes the state, then almost always the test
body itself pollutes the state.)

3.2 Heap-State Representation
Formally, we model the heap-shared state of an object-

oriented program as a graph with labeled edges. Nodes
represent the heap-allocated objects, classes, and primitive
values including null. Edges represent object fields: if the
graph models a concrete heap, then there exists an edge with
a label f from node o1 to node o2 iff the field f of the ob-
ject represented by node o1 points to the object represented
by node o2. Each object has a field representing its class.
Arrays are modeled as objects whose outgoing edges are la-
beled with array indexes and point to array elements. We
also allow for abstract heaps whose labels need not be fields,
as discussed later in this subsection.

Definition 1. A heap-shared state is a multi-rooted graph
G = 〈V, E, R〉 with V ⊆ O ∪ C ∪ P, E ∈ 2(O∪C)×F×(O∪P),
and R ⊆ V, where O is the set of objects in the heap, C is
the set of classes in the program, P is the set of primitive
values (including null), and F is the set of object fields in
the program, integers (for array indexes), and additional la-
bels introduced by abstraction. If the graph models a concrete
heap, then 〈o1, f, o2〉 ∈ E iff o1.f = o2 on the heap.

The heap-shared state represents the parts of the program
state reachable from the roots R. The roots correspond to
the variables in the global scope that are accessible across
test executions. For example, in the Java language, the roots
are the static fields of all classes loaded in the current ex-
ecution, while in the C language, the roots are the global
variables. The general definition of roots needs to be instan-
tiated for each language and even for each test framework
for the same language. For example, JUnit and TestNG are
the two most popular frameworks for Java, and they share
different parts of the heap across tests: JUnit shares only
the state reachable from the static fields, while TestNG also
shares the state reachable from the test-class instance.

State abstraction can ignore some parts of the state that
are overly complex or contain regions irrelevant for the tests.
For example, consider a state with an object representing a
set. The concrete set implementation uses some data struc-
ture, e.g., an array, a tree, or a hashtable. For most tests
(unless they focus on testing the set library itself), the par-
ticular set implementation is irrelevant, and only the ele-
ments that the set contains are relevant. A concrete heap-
shared state that captures all objects, including all the data-
structure implementation details, is usually not the best
choice. To compare the states and present the differences,
it is preferable to consider two sets with the same elements
to be the same regardless of their implementation details.
This is similar to how Java serialization ignores some fields
when writing object graphs to the disk. Abstraction can also
reduce the size of the captured state and runtime overhead.

Our technique allows for abstraction that omits some con-
crete edges from the heap-shared state or introduces new
edges to it. In a concrete heap-graph, every edge label cor-
responds to some concrete field or array index in the heap,
but an abstract heap-graph can have additional edge labels.
More importantly, in an abstract heap-graph, some objects
may have multiple outgoing edges with the same label. In
general, PolDet users can define abstractions specific to
their program; by default, our implementation uses some
generic abstractions from the XStream library [26] as de-
scribed in Section 4.5.

3.3 Finding Heap-Shared State Differences
PolDet compares heap-graphs using graph isomorphism

based on node bijection [24]. In other words, the actual iden-
tity of the objects in the two states does not matter, but only
the shape that connects these objects and the primitive val-
ues stored in the objects do matter. The rationale for this
is twofold. First, the two captured states come from the
same program execution, so two nodes that bijectively cor-
respond in the two heap-graphs most likely represent only
one object in the actual program state. Second, most tests
do not depend on the object identity, so even if two nodes
that bijectively correspond do not represent the same object
but represent two different objects that have equivalent field
values, the test execution is unlikely to observe the differ-
ence. (In Java, code can observe the identity of an object o

with System.identityHashCode(o).)
We first define isomorphism for two heap-graphs that have

exactly the same set of roots.

Definition 2. Two multi-rooted graphs G = 〈V, E, R〉
and G′ = 〈V′, E′, R〉 are isomorphic, in notation G ≈ G′,
iff there exists a bijection ρ : V → V′ that is identity for all
classes and primitive values (ρ(x) = x for all x ∈ C∪P) and
E′ = {〈ρ(o), f, ρ(o′)〉 | 〈o, f, o′〉 ∈ E}.

Because this definition requires the two graphs to have
the same set of roots, it is too strict for comparing heap-
graphs in most popular languages, because the set of roots
can change during program execution. For example, lan-
guages that run on the JVM [12] or CLR [10] have lazy class
loading that can add static fields, increasing the number of
roots, and programs can also dynamically unload classes,
decreasing the number of roots. To accommodate different
sets of roots, we define a restriction of a heap-graph with
respect to a set of roots, intuitively capturing only the sub-
graph that is reachable from the given set of roots.

Definition 3. A root-restriction of a graph G = 〈V, E, R〉
for a set of roots R′ ⊆ R, in notation G|R′ , is the graph
G′ = 〈V′, E′, R′〉 with V′ = {v ∈ V | ∃r ∈ R′.〈r, v〉 ∈ E∗}
(where E∗ is the reflexive transitive closure of E) and E′ =
E ∩ (V ′ × F × V ′).

We next define common-roots isomorphism that requires
two restrictions to be isomorphic for the common roots.

Definition 4. Let G = 〈V, E, R〉 and G′ = 〈V′, E′, R′〉
be two heap-graphs. We say G is common-roots isomorphic
with G′, in notation G ≈∩ G′, iff G|R∩R′ ≈ G′

|R∩R′ .

Finally, we precisely specify that PolDet checks common-
roots isomorphism of heap-graphs to find tests that pollute
the heap-shared state. If two heap-graphs are not common-
roots isomorphic, PolDet reports a difference. More specif-
ically, PolDet finds the difference by traversing the two
graphs simultaneously from each root and then reports some
path, called access path, that leads to two nodes that can-
not bijectively correspond. For abstract heap-graphs, where
some nodes may have multiple outgoing edges with the same
label, there could be many differences even for the same
node; we require the tool to report any one difference, rather
than all differences.

Definition 5. Two graph nodes v ∈ G and v′ ∈ G′ are
not bijective if the subgraphs rooted in v and v′ are not iso-
morphic, i.e., G|{v} 6≈ ∩G′

|{v′} when ρ(v) = v′.

3.4 Class Loading
The use of common-roots isomorphism can lead to false

negatives, i.e., not finding a difference between the graphs of
two states even when a test does pollute the state. Common-
roots isomorphism would not detect a test that polluted a
part of the state only reachable from the roots (static fields)
of classes that were lazily loaded after the test has begun.
For example, consider a test whose execution loads a new
class and initializes its static fields with default values, but
the test modifies those values (or the state reachable from
the static fields of the newly loaded class) before PolDet

captures the state. If another test relies on the state reach-
able from this newly loaded class, this subsequent test could
fail when the values are not the default from the class ini-
tialization. Because common-roots isomorphism ignores the
roots of the new class, it misses this state pollution.

One solution we propose for lazy class loading is to eagerly
load all classes needed by a test before starting the test.
Such eager loading keeps the roots of the graphs the same
at all capture points, reducing common-roots isomorphism
(Def. 4) to simple isomorphism (Def. 2). Determining what
classes a test needs can be done by running the test twice:
first run just to collect the set of loaded classes, and second
run, after eagerly loading all the classes, to actually compare
the states. The granularity of the collection offers a trade-off
between the performance of collection and comparison: col-
lection at the test-suite level may load classes that are not
needed for some tests (resulting in bigger states being col-
lected for each test, incurring a high comparison overhead),
while collection at the test-class or test-method level incurs
a higher overhead for the collection itself. Moreover, ea-
ger class loading is challenging, e.g., when code dynamically
generates and loads/unloads classes, uses specialized class
loaders, or otherwise may change the behavior based on the
order in which classes are loaded. Another solution to handle
lazy class loading would be to capture and compare states
also right after the static class initializer finishes; however,
that requires more instrumentation and runtime overhead.

3.5 Finding File-System State Differences
A test can pollute not only heap-shared state but also

file-system state. For example, a test can create a new file
or modify an existing file, without deleting the new file or
resetting the content of the existing file after it finishes, re-
sulting in a polluted file system that could affect the be-
havior of some subsequent test. PolDet tracks file-system
state by tracking which files are present, hashing their con-
tents, and checking the file/directory last-modified times-
tamps provided by the operating system. Before a test
starts, PolDet iterates through each file in a given portion
of the file system, computes a hash of the content for each
file, and stores a map from the file name to the file hash.
PolDet also saves the time before the test starts. After
the test finishes, PolDet uses the last-modified timestamp
of the files in the portion of the file system to check if any
file or directory was modified. If an existing file was written
to, PolDet hashes the new content of the file to compare
with the saved hash in order to check if the content indeed
changed (or if the write just rewrote the old value). If a file
PolDet hashed before no longer exists, then the file was
deleted. If any existing file is changed or deleted, or if some
new file is created, PolDet reports that the test polluted
the file-system state.

1 class T {

2 @Before void setUp() {
3 ...

4 }
5 @Test void t1() {
6 ...

7 }
8 @Test void t2() {

9 ...
10 }

11 @After void tearDown() {
12 ...
13 }

14 }

15 // before constructor

16 T t = new T();
17 // before setup

18 t.setUp();
19 // after setup
20 t.t1();

21 // before teardown
22 t.tearDown();

23 // after teardown
24

25 t = new T();
26 t.setUp();
27 t.t2();

28 t.tearDown();

Figure 2: JUnit workflow for running tests and il-

lustration of capture points

4. IMPLEMENTATION
We have implemented a prototype of our PolDet tech-

nique in a tool, also called PolDet, that finds polluting tests
written in the JUnit testing framework. We built PolDet

on top of JUnit, so it can be run on any project that uses JU-
nit. We first introduce the relevant background about JUnit,
then describe where and how PolDet captures and com-
pares heap-shared states, and finally describe how PolDet

compares file-system states.

4.1 JUnit Background
We briefly summarize some details of JUnit 4. JUnit is

the most popular unit testing framework for Java, e.g., out
of 666 most active Maven-based Java projects from GitHub,
520 use JUnit. JUnit test suites are organized in test classes,
with each test being an instance method annotated with
@Test. Test classes can also have methods that set up the
state before the test and clean it after the test; these meth-
ods are annotated with @Before and @After, respectively.
Figure 2 shows an example test class with two tests and
illustrates how JUnit invokes the constructor and methods
of this class.

First, JUnit creates a new instance of the test class. Next,
it invokes on the instance the setup methods annotated with
@Before. Then, it invokes the test method itself on the in-
stance, running the test. Finally, it invokes the cleanup
methods annotated with @After. JUnit uses each test-class
instance to run only one test; hence, it creates a new in-
stance and repeats the same process for each test method
defined in the test class. Any instance fields defined in the
test class cannot be accessed across test-method runs be-
cause they belong to their own separate instances. There-
fore, the heap-shared state consists of all objects reachable
from static fields.

4.2 Capture Points
PolDet extends the JUnit’s test running mechanism to

capture the state before and after the test executes. Fig-
ure 2 shows various execution points in the JUnit’s workflow
where the state could be captured. For example, the state
before the test is run can be captured at the point before
or after the setUp is run, and the state after the test is run
can be captured at the point before or after the tearDown

method. In general, all these points could have different
states because setUp and tearDown methods can mutate the
state either to set it up or clean it for the test execution.
Moreover, some software projects may enforce a discipline

where tests only use @Before methods to set up the entire
state the test depends on, so one could compare the states
right after @Before methods across consecutive tests rather
than at various points for the same test. Our tool can be
configured to these various scenarios.

4.3 Capturing Heap-Shared State
To capture states, we (1) modified the JUnit runner to call

our state-capturing logic whenever a test execution reaches
one of the capture points and (2) wrote a Java agent that
keeps track of all classes loaded (and unloaded) by the JVM.
Running our PolDet tool requires providing the agent to
the JVM and using our modified JUnit. The modified JUnit
runner invokes our state-capturing logic that first queries the
agent to obtain all the classes loaded at the point of capture.
For each loaded class, PolDet uses reflection to obtain all
the static fields for that class. PolDet ignores final static
fields that point to immutable objects because the heap val-
ues reachable from these fields cannot be changed. All other
static fields that are not final or point to mutable objects
become the roots of the heap-graph. The state reachable
from these roots can change, so PolDet needs to capture
the objects reachable from these fields. Note that PolDet

does consider static fields that are not public because the
values referred to by these fields can still be observed and
modified through various getter or setter methods.

More specifically, PolDet first creates a map whose keys
are fully qualified names of static fields and values are the
pointers to the actual heap objects pointed by these fields.
PolDet then invokes XStream [26], a Java library for XML
serialization, to traverse the entire heap reachable from this
map and to serialize it into an XML format. The produced
XML string encodes the captured state of the program.

4.4 Comparing Heap-Shared States
After obtaining the serialized XML strings of the cap-

tured states, PolDet diffs them using XMLUnit [25], an
XML diffing library. XMLUnit compares (XML) parse trees
rather than graphs. However, if XMLUnit reports no differ-
ences, the two heap-graphs encoded in XML are common-
roots isomorphic (Def. 4). If XMLUnit does report some
difference, it also provides a path to some differing entry in
the trees; in other words, it provides an access path that
leads to the difference (Def. 5). Each access path starts
from one of the roots (static fields), traverses fields through
the heap, and ends up with a differing value pointed to by
the last field on the path. Such access paths can aid the
developer in debugging the state modification.

4.5 Abstracting Heap State for Java
As discussed in Section 3.2, not all heap objects are rel-

evant for state pollution. Some regions of the state are ex-
pected to change between test runs and are not observable
by any natural code that developers would likely write in a
test. While one could always observe all the state changes
via reflection—indeed, that is how XStream traverses the
state to produce XML—most natural code does not do that.

For example, common data structures found in the stan-
dard java.util package, such as ArrayList or HashMap, have
a field modCount, which is an integer that counts how many
times a data structure is modified in order to detect con-
current iteration and modification of collections. As this
counter is private, the test code cannot easily access this

field, and the developer is unlikely to desire to observe this
state. XStream abstracts away many such implementation
details when performing serialization. For example, by de-
fault it serializes data structures from the java.util package
at an abstract level, e.g., serializes sets as unordered collec-
tions without storing the concrete implementation details.

While some fields should be ignored when considering
state pollution for all projects, other fields may be ignored
only for some projects. The developer can decide whether or
not some modified field could affect other tests, and PolDet

provides three options for the user to specify what fields to
ignore when comparing states.

First, PolDet has an include_roots option. Typically,
the developer is only concerned with problems in her own
code. Any pollution accessible only from some third-party
library static field is less likely to be something the developer
can easily fix or even reason about. The include_roots op-
tion allows the developer to define a set of packages in which
PolDet should search for roots. For example, PolDet can
include the static fields only from classes that belong to the
packages in the current code under test.

Second, PolDet allows the user to ignore certain roots
by specifying regular expressions for names of static fields.
For example, many tests use mocking frameworks, such as
Mockito, that keep internal counters or other static variables
that do not affect the execution of the test. (Many static
fields that originate from Mockito are not filtered out by the
include_roots option as the generated mocks are in some
package from the code under test.) The developer can opt
to ignore such static fields with the exclude_roots option.

Third, PolDet allows the user to apply a finer-grain con-
trol and ignore certain instance fields of classes with the ex-

clude_fields option. Our inspection found fields that may
refer to values such as caches, which are easily affected by
the execution of tests, yet will not affect their execution.
As PolDet uses XStream for state traversal, it can easily
specify fields to ignore by passing the class and field names
to XStream, so it does not serialize the field.

4.6 Eager Class Loading
We implement eager class loading by (1) reusing the agent

from PolDet to keep track of all loaded classes, (2) adding
a shutdown hook, which is a thread that JVM runs right
before it exits, and (3) adding code that uses reflection to
load a set of classes whose names are in a given file. We run
PolDet twice on all tests. The first run is with the agent
but without state capturing, and the hook queries the agent
to obtain all classes loaded by the tests and saves the class
names to a file. The second run is with state capturing, but
before capturing any state, our code loads all the classes
from the first run.

4.7 Comparing File-System State
To detect file-system state pollutions, PolDet hashes file

contents and uses the file last-modified timestamps provided
by the operating system. To avoid the high overhead of ex-
ploring the entire file system, PolDet allows the user to
specify the portions of the file system to consider. By de-
fault, we consider the current directory where the tests are
run and the temporary directory (/tmp on Linux systems),
because these are most likely places where tests would mod-
ify files. Before the test suite starts running, PolDet finds
all files recursively reachable from these starting directories,

Classes w/ Number of
Static Fields Static Fields

Project LOC All CUT All CUT

android-rss 1733 80 5 244 9
Athou Commafeed 11095 62 1 220 5
FizzBuzzEE 1353 29 0 72 0
Maven-Plugins 2061 216 0 1093 0
JSoup 14925 52 23 242 170
Mozilla Metrics 4180 255 10 981 19
Spring JDBC 3170 47 1 106 8
Jopt Simple 9655 88 5 241 13
slf4j 14085 42 13 129 57
Spring MVC 3675 364 1 1397 4
Spring Petclinic 2970 219 0 1161 0
Spring Test MVC 8240 446 17 1575 22
Apache Httpclient 78497 437 106 4593 355
Bukkit 32984 166 90 1393 1108
Caelum Vraptor 33898 449 62 5837 94
cuke4duke 8104 429 5 2230 5
Dropwizard 25838 1910 44 15886 105
Fakemongo Fongo 13755 458 76 2904 1616
Scribe Java 6049 60 21 151 46
Kuujo Vertigo 27708 165 12 484 43
Java APNS 5462 264 17 1006 62
Spark 6075 277 23 1096 58
Square Retrofit 9729 388 40 1482 104
Square Wire 13998 109 51 499 299
twitter Ambrose 5927 248 10 866 37
twitter hbc 6025 215 13 1595 54

Total 351191 7475 646 47483 4293

Figure 3: Project statistics

hashes each file’s content, and maps the file name to this
hash. Before each individual test run, PolDet creates a new
file marked with the current timestamp, executing touch f

to create a fresh file f. When the test finishes, PolDet runs
find d -newer f, where f is the file created before the test
started, and d is either the current directory or /tmp. This
command finds all files (and directories) reachable from d

whose last-modified timestamp is newer than f. For each
such file, if it was mapped to some hash (i.e., it existed be-
fore the test), PolDet hashes the file content again and
compares it with the hash from the map. If a file that was
hashed before no longer exists, then the test deleted the file.
If any file is new, the hash of some old file differs, or a file
is deleted, the test polluted the file system, and PolDet

reports the polluting test and the file name. The map of file
name to hash is updated with any changed hash and any
deleted files are removed from the mapping in preparation
for the next test run.

5. EVALUATION
To evaluate PolDet, we ask the following questions:

RQ1. What percentage of tests pollute heap-shared state?
RQ2. How accurate is PolDet (true vs. false positives)?
RQ3. What is the time overhead of running PolDet?
RQ4. How does eager loading compare with lazy loading?
RQ5. What percentage of tests pollute file-system state?

5.1 Experimental Setup
To scale our experiments to a wide variety of projects, we

automated the integration of PolDet into Maven. Maven
is a popular build system for Java projects, widely used on
the GitHub repository for open-source projects. Because
PolDet builds on top of JUnit, we integrated PolDet

Test Methods Test Classes
AR ER ER FS AR ER ER FS

Project #Tot #Pol #Pol #TP #Pol #Tot #Pol #Pol #TP #Pol Roots Fields Overhead

android-rss 24 0 0 n/a 0 4 0 0 n/a 0 0 0 2.37
Athou Commafeed 8 0 0 n/a 0 2 0 0 n/a 0 0 0 1.13
FizzBuzzEE 1 0 0 n/a 0 1 0 0 n/a 0 0 0 1.07
Maven-Plugins 28 0 0 n/a 1 5 0 0 n/a 1 0 0 1.18
JSoup 410 0 0 n/a 0 24 0 0 n/a 0 0 0 23.56
Mozilla Metrics 33 0 0 n/a 0 14 0 0 n/a 0 0 0 1.95
Spring JDBC 12 0 0 n/a 0 1 0 0 n/a 0 0 0 1.34
Jopt Simple 701 0 0 n/a 1 115 0 0 n/a 1 0 0 1.76
slf4j 13 0 0 n/a 0 2 0 0 n/a 0 0 0 1.21
Spring MVC 36 0 0 n/a 0 9 0 0 n/a 0 0 0 1.22
Spring Petclinic 2 0 0 n/a 0 2 0 0 n/a 0 0 0 1.17
Spring Test MVC 288 3 3 0 0 44 1 1 0 0 1 14 4.15
Apache Httpclient 1634 129 94 78 0 138 35 20 14 0 6 7 1.72
Bukkit 285 11 9 1 0 38 2 2 1 0 3 4 24.07
Caelum Vraptor 1132 172 36 1 5 165 66 4 1 4 8 5 56.01
cuke4duke 51 25 25 0 0 10 3 3 0 0 1 4 1029.57
Dropwizard 419 37 3 1 1 108 22 3 1 1 3 5 27.54
Fakemongo Fongo 359 68 64 50 0 15 14 13 2 0 2 4 4.17
Scribe Java 99 3 3 0 0 18 1 1 0 0 1 3 2.14
Kuujo Vertigo 63 13 13 13 0 4 2 2 2 0 1 5 1.55
Java APNS 89 18 15 0 0 15 10 9 0 0 10 6 1.82
Spark 54 42 42 39 0 6 4 4 3 0 5 18 622.74
Square Retrofit 197 9 1 0 0 17 4 1 0 0 1 3 2.14
Square Wire 61 5 5 0 0 8 3 3 0 0 1 3 2.70
twitter Ambrose 13 8 8 8 0 7 3 3 3 0 2 2 3.09
twitter hbc 93 32 3 3 0 14 4 1 1 0 1 1 2.00

Total 6105 575 324 194 8 786 174 70 28 7 46 84 4.50

Figure 4: State pollution results; the columns are described in Section 5.2

into Maven by replacing the junit.jar file in the Maven de-
pendency repository with our version that invokes PolDet

instead of the original JUnit. Moreover, we automatically
modify the Maven pom.xml configuration file for each project
to add our Java agent to run alongside our modified JUnit.
With this setup, any Maven project using JUnit 4 can be
run with PolDet to find polluting tests.

For our evaluation, we randomly chose 26 diverse Maven-
based Java projects from GitHub, varying in size (from 1,353
to 78,497 LOC), number of tests, number of static fields,
and application domains (including web frameworks, gam-
ing servers, or networking libraries). Figure 3 shows some
statistics about these projects.

PolDet has four main configuration options:
-capture_points determines where to capture the states to
be compared. Figure 2 illustrates several points at which
PolDet can capture the state, and the user can configure
PolDet to use any pair of capture points. Our default uses
the point before setUp paired with the point after tearDown.
We have also evaluated several other pairs and obtained al-
most identical results.
-include_roots determines whether the graph roots should
include static fields from all loaded classes or only from the
classes whose name matches given regular expressions. In
our experiments, we set the expressions to match the pack-
ages from the project under test such that PolDet ignores
fields from library classes. Figure 3 shows some statistics
about classes and static fields. It shows the number of classes
that are loaded during the execution of the project’s test
suite and have at least one static field; it shows this num-
ber both “All” from all packages (i.e., as if running PolDet

with no specified include_roots, considered disabled) and
“CUT” only from the packages whose source belongs to the

project under test (i.e., as if running PolDet with the
include_roots option matching package names, considered
enabled). Likewise, it shows the number of static fields
as if include_roots was both disabled and enabled. How-
ever, disabling include_roots results in many more roots
and much larger heap-graphs. (In fact, our PolDet pro-
totype would often run out of memory if comparing states
for include_roots disabled.) All our subsequent experiments
run with include_roots enabled. We automatically find the
packages in the project under test by exploring the project’s
source code.
-exclude_roots specifies the set of roots to ignore when se-
rializing the states; while this set can be arbitrary, our ex-
periments evaluate two settings: (1) not ignoring any roots
and (2) ignoring roots from classes that are known to lead
to irrelevant state, in particular mock classes, certain fields of
standard libraries, and automatically generated classes that
have $$ in their name (but not the inner classes that have
only $ in their name).
-exclude_fields specifies the set of instance fields to ignore
when serializing the states; while this set can be arbitrary,
our experiments evaluate two settings: (1) not ignoring any
fields and (2) ignoring the minimum number of fields that
makes PolDet report no pollution (which is used just in
the experiments to measure the size of pollutions and is not
a recommended option as it makes PolDet miss both all
true positives and all false positives).

5.2 Results
Figure 4 shows the results of running PolDet. For both

test methods and test classes, it tabulates the total num-
ber, the number that PolDet reports as polluters when
run without exclude_roots (AR #Pol), the number that

PolDet reports as polluters when run with exclude_roots

(ER #Pol), the number of true positives among the latter
reports (ER #TP), and the number that PolDet reports
as polluting the file-system state (FS #Pol).

5.3 Heap-State Pollution
Inspection Procedure: We manually inspect each report

to determine if it is a true positive or a false positive. We
label a report as a true positive if one can write a reason-
able test that would pass or fail depending on whether it was
run before or after the reported polluting test. Otherwise,
if one cannot write a test that would observe the state dif-
ference using the available API but would need to resort to
reflection, we label the report as a false positive. We inspect
the access path from a static root to the polluted field re-
ported by PolDet to find how to access the polluted state.
For each field on the path, we check how it can be accessed
starting from the static root. If we find a reasonable way to
read the polluted field, we consider the case a true positive.
When the path is short, it is relatively easy to determine
whether a report is a true positive or a false positive. In
contrast, if the polluted field is in some third-party library
code or the access path to it is long, then the code under
test very likely cannot directly observe the value of the field,
suggesting it to be a false positive. Indeed, we used the lo-
cation of the field and the length of the path to prioritize
our inspection of the reported polluting tests; we examine
first the reports where the polluted field is in the code under
test and has a relatively short access path. We recommend
such simple prioritization for developers to inspect the re-
ports. We discuss one example of each true positive and
false positive later in this section. When PolDet reports
no pollution, the true positive count does not apply, so we
mark the cell n/a; we still show the other statistics about
PolDet, e.g., runtime overhead.

Inspection Results: Our brief, initial inspection of the
reports without exclude_roots (i.e., with all roots – AR)
found many cases of false positives due to a small number
of common issues across projects. As one example, sev-
eral projects use the Mockito library that internally keeps
various counters, e.g., SequenceNumber.sequenceNumber that
tracks the number of times a mock instance is created. A
developer using Mockito would not care that such an internal
counter changed as it is effectively inaccessible. As another
example, several states include java.lang.ref.SoftReference

objects that have a field updated by the JVM to track the
timestamp of when an object was garbage collected. We
want to avoid such fields. Finally, we found several projects
with automatically generated classes whose name includes
double $$.

Our default configuration for the PolDet tool is thus to
run with exclude_roots (ER) to exclude mockito, standard
library fields for timestamps, and classes with $$. In this
configuration, we provide the answers to our first two ques-
tions. RQ1: PolDet reported 5.30% (324 out of 6105)
tests as polluting tests. RQ2: Of those, 59.87% (194 out of
324) tests are true positive polluters.

While PolDet reports test methods, we also present the
results for test classes: a test class is considered a polluter if
it has at least one method that is a polluter, and a test class
is considered a true positive if it has at least one method
that is a true positive. The ratios for classes are similar
as for methods: PolDet reported 8.90% (70 out of 786)

classes, and of those, 40.00% (28 out of 70) are true positive
polluters. An interesting finding is that a class often has
both true positive and false positive test methods.

We have even more interesting findings for roots that
lead to the heap-shared state differences for the tests in our
projects. Given the overall small number of such roots (46),
we wonder if we can classify the reported polluting tests
based on these roots. Intuitively, a developer determines if
a report is a true positive by examining some portion of the
polluted state, and the developer can begin examining the
state from the static root. We clustered all the reports by the
46 static roots that lead to the pollution. We found that the
number of polluting tests associated with a reported static
root ranges from 1 to 76, with an average of 10.02 tests per
root. We also found that for almost all of the roots (43 out
of 46), the tests associated with the root are either all true
positives or all false positives. Only three of the roots are as-
sociated with tests that are a mix of both. Two roots are in
Apache Httpclient: NTLMEngineImpl.RND_GEN has 3 associated
tests, and LocalTestServer.TEST_SERVER_ADDR has 15 associ-
ated tests. One root is in Spark: Spark.server has 33 associ-
ated tests. In all these cases, tests associated only with this
static root are false positives, while the other tests associated
also with another, different static root are true positives.
Moreover, all the tests associated with that other static root
are true positives. Overall, for all tests reported by PolDet,
a developer could just examine the static root(s) that lead(s)
to the state difference and with high confidence determine
if the report is a true positive or a false positive.

While we expect a developer would inspect the PolDet

reports starting from the roots of the access paths that lead
to differences, the developer could also inspect starting from
the differences themselves. The column “Fields” in Figure 4
shows the minimum number of fields that should be set in
exclude_fields to obtain zero reports from PolDet, and
it is a measure of how much the states differ. Note that
these fields are instance fields, close to the difference, rather
than static fields that are roots from which the differences
are reachable. Overall we find that the user would need to
ignore a larger number of fields than roots to cover all the
differences. As a result, we recommend the users to inspect
PolDet reports starting from the roots.

Example True Positive: One example true positive
found by PolDet is the PotionTest.setExtended test from
the Bukkit project [2]. Bukkit implements a server for the
popular Minecraft game. The root PotionEffectType.byName

(declared in the code under test) has type java.util.Map and
tracks the added potion effects (which are one of the game
features to modify game entities).

Figure 5 shows the relevant code snippet. The body of
the polluting test setExtended calls the method registerPo-

tionEffectType, which leads to adding the PotionEffectType

passed as the argument. In this case, the argument passed
is 19, representing the type of potion effect to be created
and registered. The problem is that the potion type still re-
sides inside the static map byName even after the test finishes
execution, and other tests could depend on that map. To
confirm this is a true positive, we generate the test flakyTest,
which adds the PotionEffectType 18 (which increases damage
to an entity over time), and assert that the PotionEffectType

19 (which decreases damage to an entity over time) does not
exist. This added test passes if run before setExtended and
fails if run after setExtended.

1 public class PotionTest {
2 ...

3 @Test
4 public void setExtended() {
5 PotionEffectType.registerPotionEffectType(new

6 PotionEffectType(19) { ... }
7 });

8 }
9 ...

10 @Test
11 public void flakyTest() { // we added this test
12 PotionEffectType.registerPotionEffectType(new

13 PotionEffectType(18) { ... }
14 });

15 assertNull(PotionEffectType.getByName(new
16 PotionEffectType(19) { ... }
17 });

18 }
19 }

Figure 5: The Bukkit true positive example with a

test written to confirm the pollution

We chose this, relatively simple example for the ease of
presentation. In many other cases, the difference would be
hard to understand without the access paths from PolDet.

Example False Positive: Some of the pollutions re-
ported by PolDet are false positives, i.e., no reasonable test
may fail because of the polluted state. Figure 6 shows an
example from the Java APNS project [17]. PolDet reports
that the test ApnsConnectionTest.sendOneQueued pollutes the
field marshall reachable from the static root msg1 declared
in the test class. We omit details of the test body not rel-
evant to the pollution; the key is the assert statement that
calls the method marshall() on msg1. The code of marshall()
inside the class SimpleApnsNotification lazily initializes the
field marshall, so the state modification is a false positive. In
fact, we find lazy initialization to be a common cause of false
positives in PolDet, and we plan in the future to devise a
heuristic to automatically remove such reports.

5.4 Efficiency
We evaluate the overhead of PolDet by measuring the

ratio of the runtimes of executing the test suites with and
without PolDet. We ran our timing experiments on a 64-
core Scientific Linux machine with 64 GB of RAM. While
such a machine is not a common developer’s desktop/laptop,
it is representative of a build-farm server on which many
projects run their continuous integration systems. All time
measurements are wall-clock time. Note that our PolDet

prototype is not optimized for real deployment but aimed
for experimental purposes (e.g., it collects states at several
points in test execution).

The last column of Figure 4 shows the PolDet overhead.
It ranges from 1.07x to 1029.57x. The two outliers, Spark
and cuke4duke, have large overhead due to heavy use of
highly complex objects. For example, cuke4duke is a speci-
fication framework that embeds JRuby, a Ruby JVM inter-
preter, and hence the state that PolDet traverses is highly
complex, including all JRuby data structures. In such cases,
using good state abstractions or filtering out static roots and
fields in PolDet can be useful not only to stop the traversal
of irrelevant state and reduce the high overhead but also to
control false positives. The last row (“Total”) reports the
geometric mean of overheads: 4.50x. RQ3: PolDet has a
reasonable overhead on a build-farm server even when run
on the entire test suite, but we expect that most developers
would run PolDet only on their newly added tests.

1 public class ApnsConnectionTest {
2 ...

3 static SimpleApnsNotification msg1 =
4 new SimpleApnsNotification(...);
5 @Test(timeout = 2000)

6 public void sendOneQueued() {
7 ...

8 assertArrayEquals(msg1.marshall(), ...);
9 }

10 }
11

12 public class SimpleApnsNotification {

13 ...
14 private byte[] marshall = null;

15 public byte[] marshall() {
16 if (marshall == null)
17 marshall = Utilities.marshall(COMMAND,

18 deviceToken, payload);
19 return marshall;

20 }
21 }

Figure 6: The Java APNS false positive example

5.5 Eager Class Loading
We also apply the eager loading of PolDet on all 26

projects except Jopt Simple, where eager loading causes the
tests to deadlock. PolDet reports 468 polluting tests (144
more than with the default lazy loading) and has a geomet-
ric mean overhead of 12.29x (as test suites are run twice, and
bigger heap-graphs are created and compared). The new re-
ports stem from common-roots isomorphism ignoring static
field roots of classes not loaded before the test. Many new
reports are tests that are the first to run in their test class,
often with some other tests from the same test class pre-
viously reported by the default lazy loading, and the true
or false positive status of the new reports being the same
as the other reports in the test class. However, with eager
loading, PolDet reports more false positives than with lazy
loading. The majority of the new false positives (120 out of
144) are from Bukkit and largely due to eager loading in-
cluding a static field to an instance of a server whose fields
indirectly point to thread-related services from the JVM; the
only heap-shared state modifications are to these thread ser-
vices, which are rather non-deterministic and not controlled
by the code under test. In total, of 468 reports, 203 are
true positives, i.e., eager loading detected 9 true positives
not detected by lazy loading. RQ4: With eager loading,
PolDet can detect more true positives, but at the cost of
many more false positives and higher overhead.

5.6 File-System Pollution
Figure 4 also shows the results for file-system state pollu-

tions (FS #Pol). PolDet found only eight file-system state
polluting tests, much fewer than heap-shared state polluting
tests, with a geometric mean overhead of 2.73x. Interest-
ingly, two projects that had no heap-shared state polluting
tests had file-system state polluting tests.

We examined all eight reports and found that each pol-
lutes the /tmp directory. More precisely, each test adds some
new file, using Java’s File.createTempFile method, which
creates a temporary file guaranteed to have a fresh name.
PolDet reports these tests because they do not delete the
new files. Although the pollution is mostly benign as the
name is guaranteed to be fresh every time the test is run,
one can still consider this pollution unnecessary as the file
system has extra files added, potentially resulting in filling
up the disk space or reaching the limit on inodes. Hashing
files removes some false positives, e.g., a Caelum Vraptor

test writes to an existing file in /tmp, but writes the same
content. RQ5: PolDet reports that very few tests pollute
the file system and just create fresh temporary files in /tmp.

6. THREATS TO VALIDITY
There are several threats to the validity of our evaluation.

First, our results may not generalize beyond the projects
used in our evaluation. To mitigate this threat, we randomly
selected a diverse set of actively developed and popular open-
source projects that vary in size, number of developers, and
number of tests, and that span domains such as web frame-
works, gaming servers, or networking libraries.

Second, we implemented our PolDet tool only for JUnit
4 and for heap-shared state and file-system state pollutions.
Our results may be affected by the way JUnit runs tests,
but JUnit is the most popular testing framework for Java.
PolDet does not report pollutions in the database state or
network-connected storage systems. While those were not
found as widespread in the past [13,28], they are becoming
more important, and future work is needed to address the
other persistent cross-test-shared state.

Third but most important, we manually examined the pol-
luting tests reported by PolDet to label false positives and
true positives. Because we are not developers on the projects
and lack domain knowledge, our labeling can be wrong. We
discussed the inspection results with one another to mini-
mize the risk of mislabeling. However, a further study with
real developers is required to establish that PolDet reports
are useful and prompt changes of polluting tests. Note that
reodering the existing test suite [28] to find a failure due to
test-order dependency may not work in many cases as the
test suite may have no test that can fail due to the pollu-
tion. Indeed, the goal of PolDet is to help proactively find
pollutions even before they can manifest in test failures.

7. RELATED WORK
Finding problems in test suites is an active area of re-

search. PolDet focuses on a particular type of problems,
namely test pollution. We discuss prior research on test
dependence, proactive detection of potential software prob-
lems, and handling shared state or multiple states.

Test Dependence: Zhang et al. [28] empirically stud-
ied test-order dependence and proposed a technique to find
dependent tests in the existing test suites. Their study of
issue-tracking systems for five projects found 96 dependent
tests, of which 61% are due to heap-shared state. Their
technique explores selected permutations of test suites to
manifest dependent tests. While their technique can actively
detect dependent tests among the tests in the existing test
suite, PolDet can proactively detect polluting tests even
before a dependency can manifest.

Huo and Clause [7] use taint analysis to find brittle as-
sertions, i.e., cases when a test reads from state regions not
explicitly written by the test. These reads can find potential
test dependencies on heap-shared state. Our common goal
is to find potential dependencies, but PolDet finds writes
to the shared state rather than reads from the shared state.
Combining the two techniques could give more accurate re-
ports by pairing the tests that pollute certain state regions
with the tests that read from those state regions.

Bell and Kaiser [1] present VMVM, a tool that runs multi-
ple tests in the same JVM but selectively resets state regions

that may have been written by tests such that each test runs
from the initial state as if run in a separate JVM. VMVM
instruments all classes and re-initializes the static fields that
can be shared across tests. The goal is to speed up testing
compared to running each test in a separate JVM. VMVM
can tolerate test pollution by providing support for automat-
ically resetting state, but it does not determine if a pollution
occurred or not. Muslu et al. [16] also proposed to handle
test dependence by running each test in an isolated environ-
ment. In contrast, PolDet uses a less intrusive instrumen-
tation than VMVM, can also detect not only avoid/tolerate
test dependence, and proactively encourages developers to
fix polluting tests.

Proactive Tools: Various research projects proactively
detect software problems. For example, Shacham et al. [19]
propose a technique that finds atomicity violations that can
lead to potential bugs after software changes; Lin et al. [11]
propose a technique for retrofitting parallelism into existing
applications to prevent performance problems; and Yaban-
deh et al. [27] propose a technique for distributed systems
where nodes predict distributed consequences of their ac-
tions and can avoid errors. We share the common philosophy
of proactively detecting problems but focus on test suites.

Handling State: Researchers have developed techniques
that compare states. For example, Cleve and Zeller [3] and
Sumner and Zhang [20] use the state differences between a
passing run and a failing run to isolate the cause of a failure.
In contrast, PolDet uses state comparison to determine
whether or not a test pollutes state.

Researchers have also proposed techniques to refactor shared
state into private state. For example, Wloka et al. [21] pro-
pose a program transformation for re-entrant programs to
refactor shared state to thread-local state, and Wrigstad et
al. [22] propose a simple type system to annotate thread-
local data for Java. Similar research could be applied to
refactor data to be test local to remove pollution. We plan
in the future to consider automatic fixing of polluting tests.

8. CONCLUSIONS
When a test fails without exposing a bug in the code un-

der test, the testing process becomes less reliable. Polluting
tests introduce dependencies, leading developers to waste
time and resources. We formalize the test pollution problem
and present PolDet, a technique to find polluting tests by
capturing and comparing heap-graphs and file-system states
during test execution. Our PolDet prototype runs rela-
tively fast on build machines, incurring on average 4.50x
overhead. Our manual inspection of PolDet reports found
194 polluting tests that could easily cause other tests to fail.
We envision PolDet to be used during testing to prevent
the introduction of polluting tests in the test suite. We be-
lieve the philosophy of proactively maintaining a reliable test
suite can help software teams to develop and test software
faster and better. We foresee future research in automati-
cally finding and fixing more causes of flaky tests [13].

Acknowledgments: We thank Xinyue Xu for help with
PolDet code; Milos Gligoric for feedback on our ideas; and
Owolabi Legunsen, Tifany Yung, and the anonymous re-
viewers for feedback on a paper draft. This research was
partially supported by the NSF Grant Nos. CCF-1012759,
CCF-1421503, and CCF-1434590. Alex Gyori was partially
supported by the Saburo Muroga Endowed Fellowship.

9. REFERENCES
[1] J. Bell and G. Kaiser. Unit test virtualization with

VMVM. In ICSE, pages 550–561, 2014.

[2] Bukkit. http://bukkit.org/.

[3] H. Cleve and A. Zeller. Locating causes of program
failures. ICSE, pages 342–351, 2005.

[4] Hadoop Trunk. http:
//svn.apache.org/repos/asf/hadoop/common/trunk.

[5] TestPathData fails intermittently with JDK7. https:
//issues.apache.org/jira/browse/HADOOP-8695.

[6] Welcome to Apache Hadoop.
http://hadoop.apache.org/.

[7] C. Huo and J. Clause. Improving oracle quality by
detecting brittle assertions and unused inputs in tests.
In FSE, pages 621–631, 2014.

[8] JUnit 4.11 - What’s new? Test execution order.
http://randomallsorts.blogspot.com/2012/12/

junit-411-whats-new-test-execution-order.html.

[9] JUnit and Java 7. http://intellijava.blogspot.
com/2012/05/junit-and-java-7.html.

[10] A. Kennedy and D. Syme. Design and implementation
of generics for the .NET Common Language Runtime.
In PLDI, pages 1–12, 2001.

[11] Y. Lin, C. Radoi, and D. Dig. Retrofitting
concurrency for Android applications through
refactoring. In ESEC/FSE, pages 341–352, 2014.

[12] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java virtual machine specification. Pearson
Education, 2014.

[13] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An
empirical analysis of flaky tests. In FSE, pages
643–653, 2014.

[14] Maintaining the order of JUnit3 tests with JDK 1.7.
http://www.coderanch.com/t/600985/Testing/

Maintaining-order-JUnit-tests-JDK.

[15] all and sundry: JUnit test method ordering.
http://www.java-allandsundry.com/2013/01/

junit-test-method-ordering.html.

[16] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. ESEC/FSE, pages 496–499, 2011.

[17] Java APNS - Version 1.0.0.
https://github.com/notnoop/java-apns.

[18] Pivotal Labs: Fighting test pollution. http:
//pivotallabs.com/find-test-pollution-rspec/.

[19] O. Shacham, N. Bronson, A. Aiken, M. Sagiv,
M. Vechev, and E. Yahav. Testing atomicity of
composed concurrent operations. In OOPSLA, pages
51–64, 2011.

[20] W. N. Sumner and X. Zhang. Comparative causality:
Explaining the differences between executions. In
ICSE, pages 272–281, 2013.

[21] J. Wloka, M. Sridharan, and F. Tip. Refactoring for
reentrancy. In ESEC/FSE, pages 173–182, 2009.

[22] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and
J. Vitek. Loci: Simple thread-locality for Java. In
ECOOP, pages 445–469, 2009.

[23] J. Wuttke, K. Muşlu, S. Zhang, and D. Notkin. Test
dependence: Theory and manifestation. Technical
report, University of Washington, 2013.

[24] T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented

unit tests using symbolic execution. In TACAS, pages
365–381, 2005.

[25] XMLUnit. http://www.xmlunit.org/.

[26] XStream. http://xstream.codehaus.org/.

[27] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak.
CrystalBall: Predicting and preventing inconsistencies
in deployed distributed systems. In NSDI, pages
229–244, 2009.

[28] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam,
M. D. Ernst, and D. Notkin. Empirically revisiting the
test independence assumption. In ISSTA, pages
385–396, 2014.

