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ABSTRACT

Workflows make it easier for scientists to assemble computational
experiments consisting of many disparate components. However,
those disparate components also increase the probability that the
computational experiment fails to be reproducible. Even if software
is reproducible today, it may become irreproducible tomorrow with-
out the software itself changing at all, because of the constantly
changing software environment in which the software is run.

To alleviate irreproducibility, workflow engines integrate with
container engines. Additionally, communities that sprung up around
workflow engines started to host registries for workflows that fol-
low standards. These standards reduce the effort needed to make
workflows automatically reproducible.

In this paper, we study automatic reproduction of workflows
from two registries, focusing on non-crashing executions. The ex-
perimental data lets us analyze the upper bound to which workflow
engines could achieve reproducibility. We identify lessons learned
in achieving reproducibility in practice.
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1 INTRODUCTION

In recent years, scientific workflows have become a lingua franca for
expressing computational experiments [16]. Workflows offer porta-
bility, extensibility, reusability, and machine-readability, enabling
automated tooling. This success has led to a growing population of
workflows and workflow management systems on the web [15].

However, workflows are often irreproducible! [19]. They may
have always been irreproducible, or they may have initially been
reproducible but decayed into irreproducibility later due to changes
in computational environments [42]. Science is only self-correcting
because scientists can scrutinize and build on each others’ work [29],
so irreproducibility hinders scientific progress. Scrutiny is hindered
when readers need help to re-execute the workflow on their com-
puter, which in turn harms the communal practice of science, and
requires researcher to independently re-develop each others’ work.

Even outside of basic research, the reproducibility of workflows
is essential. Suppose engineers use workflows to simulate the be-
havior of a physical part. Simulations are rapidly improving, so
they may want to rerun a simulation done in the past with newer
techniques or with different parameters. The physical part may
have a lifetime measured in decades, but the software simulation
is much more fragile, lasting only years. If the computation is not
reproducible, engineers cannot easily rerun the simulation; they
must either attempt time-consuming digital archaeology or rewrite
the simulation from scratch.

A roadmap for workflow technologies by Deelman et al. notes an
urgent need for innovative approaches, methods, and tools to ensure
workflow reproducibility [9]. If archived and made discoverable,
workflows could eventually become an enduring resource for the
scientific community — enabling researchers to reproduce and build
upon each others’ work rapidly and credibly.

Current data on the frequency and causes of workflow failures
is crucial to building workflow archival and sustainment solutions.
A 2012 study by Zhao et al. was among the first to examine such
failure causes, specifically among Taverna workflows from the
myExperiment workflow registry [42]. Unfortunately, Taverna is no
longer actively maintained. The landscape of workflow technologies

'We use the ACM definition of reproducibility: a measurement is reproducible if a
different team can use the same experimental setup to make a concurring observa-
tion [36].
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has changed significantly, and newer tools have displaced Taverna
(see Table 1). In short, several positive developments have happened,
and we need a refreshed perspective on workflow reproducibility.

To explore this topic further, we collected workflows from two
workflow registries, Snakemake Workflow Catalog [38] and nf-
core [14], and attempted to reproduce crash-free executions for
them. We address the following research questions:

e RQO. What are the characteristics of workflows and revi-
sions in the selected registries? The answer tells us about
the external validity of the study.

¢ RQ1. How many workflows (and for how many revisions
of those workflows) in each selected registry are crash-free
reproducible? This question quantitatively assesses the level
of reproducibility in practice for those registries.

e RQ2. For workflows that we were unable to reproduce crash-
free executions, what are the most common failure modes?
These modes inform future work of workflow engine devel-
opers for what to fix, researchers on automatic reproducibil-
ity on what to focus on inferring, and workflow users of
what to watch out for.

o RQ3. What is the survival rate of crash-free reproducibility
of workflows over time? While we cannot wait for a specific
workflow to break, which may take months or years, we can
assume that software in the future will behave similarly to
software in the past and make population-level inferences.

e RQ4. For crash-free reproductions, how much and what
kinds of outputs do they produce? Future research seeking
to compare subsequent revisions semantically will need to
develop a handler for each kind of output. This research
question tells them what kinds of outputs to focus on.

The main differences between our work and prior large-scale
studies on automatic reproducibility [32, 39, 41, 41, 42] are:

e We study workflows?, not arbitrary computational exper-
iments (c.f. [32, 39, 41]). Workflows specifically aim to be
reproducible, and the workflows we study containerize each
step, for example, so they stand a better chance of being
reproduced than arbitrary computational experiments.

e We analyze the “survival rate” of workflows over time. To
the best of our knowledge, prior work [39, 42] used time as
a categorical rather than a continuous variable (informally,
“so many workflows from that year still work”) or did not
analyze time [32, 41].

o We analyze not only one but two registries and contrast their
results. To our knowledge, prior work has not examined the
similarities and differences in reproducibility from different
workflow registries.

The remainder of this paper is structured as follows. Sections 2
and 3 provide background and related work in curating and sustain-
ing scientific workflows. Section 4 describes our data collection and
analysis methodology. Section 5 presents the findings of our study.
Section 6 provides a detailed discussion of those findings, including
the limitations of our study. Finally, Section 7 summarizes the key
results of our study and describes directions for future work.

ZFor our purposes, a workflow language is a programming language where one as-
sembles an explicit dataflow graph, where each node is an existing program.
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2 PRELIMINARIES

The Association for Computing Machinery defines reproducibility
and replicability as follows:

Reproducibility means “The measurement can be obtained
with stated precision by a different team using the same measure-
ment procedure, the same measuring system, under the same op-
erating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an inde-
pendent group can obtain the same result using the author’s own
artifacts.” [36]

Replicability means “The measurement can be obtained with
stated precision by a different team, a different measuring system,
in a different location on multiple trials. For computational ex-
periments, this means that an independent group can obtain the
same result using artifacts which they develop completely indepen-
dently” [36]

Both definitions use “measurement”. For our study on reproduc-
ing scientific workflows, we define the following as “measurement”:

Crash-free execution refers to whether the computational
experiment runs to completion without crashing (specifically, ter-
minating with a non-zero exit code for POSIX programs).

While replicable research conclusions are the end goal, assessing
that goal in practice requires expert case-by-case analysis. Assessing
reproducible crash-free executions, on the other hand, is possible
to do automatically and is a vital stepping-stone for replicable
research conclusions. If an experiment has a reproducible crash-
free execution, the workflow can be scrutinized, extended, and
reused in future inquiries.

One salient question about reproducibility is how it relates to
time. A computational experiment may be reproducible only up to
some point in time but become irreproducible after that point. This
change could be due to several reasons. For example, the software
environment may not be fully specified, so retrieving the “latest” de-
pendency may stop working at some point. It could also be because
the software depends on some network resource that is no longer
available. This phenomenon is often called software collapse [21]
because software with an unstable foundation is analogous to a
building with an unstable foundation. Software collapse for work-
flows manifests itself as irreproducible computational experiments.

3 PRIOR WORK

Prior works on large-scale quantitative reproducibility studies can
be split into those whose reproduction is assessed by automatic
means versus a manual effort.

Zhao et al. [42] evaluate automatic reproducibility of Taverna
workflows from the myExperiment registry. However, Taverna is
now defunct, and there have been many changes since 2012 (see
Table 1), so we should expect the results to change. Furthermore,
Zhao et al. do not examine the correlation of crashes with time or
the kinds of outputs when the execution is crash-free.

Trisovic et al. [39] evaluate automatic reproducibility of R code
from the Harvard Dataverse repository. While Trisovic et al. pro-
pose to study reproducibility based on R version and time (in their
RQ8), they treat time as a categorical variable and do not perform a
statistical analysis to generalize their data. Furthermore, Trisovic et
al’s reproduction of R code does not include the order in which the
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scripts in a single project were originally run, so it incurs failures
that may be simply due to a wrong order; our work studies work-
flows, which avoid the ordering problem because the workflow
specifies dependencies between tasks.

Pimentel et al. [32] and Wang et al. [41] automatically run
Jupyter Notebooks from GitHub. Jupyter Notebooks have different
strengths and use-cases than workflows. Jupyter Notebooks are
usually used for small, interactive jobs, whereas workflows are used
for large, batch-processing jobs [12, 27]. For example, Snakemake
and Nextflow at the language-level both provide facilities to run jobs
on a cluster. Snakemake and Nextflow, by default, write interme-
diate results to disk so that workflows can be resumed if the node
halts or needs to be restarted. While both batch-scheduling sub-
mission, crash-recovery, and containerization can be implemented
in Python, workflow engines are more specialized for analyzing
data at a large scale. Therefore, we expect that the reproducibility
characteristics can be quite different. For example, Wang et al. find
that using one set of Python packages, namely those in the default
Anaconda distribution®, was sufficient for running their evaluation;
in contrast, workflows in Snakemake and Nextflow often provide a
distinct set of Python packages for each task! Finding the correct
set of packages is non-trivial, as we will see in RQ2.

As an example of manual reproduction, Krafczyk et al. execute
an in-depth case study on a small set of computational experi-
ments [25]. Stodden et al. [37] perform case studies with specific
attention to journal policies. The case-study methodology is helpful
for in-depth results but has difficulty generalizing the results to an
entire population. Our work attempts an automatic reproduction
of a large set of experiments to address population-level questions
but does not perform an in-depth analysis of a small subset.

Continuous integration [20] seeks to run tests at every change.
However, software can fail not just by changes to the code itself
but also by changes to the environment (see “software collapse”
above). Continuous integration usually does not seek to cover the
case of static code under an evolving environment. Beaulieu-Jones
and Greene [4] propose “continuous analysis” to maintain repro-
ducibility. That approach is complementary to ours; future work
could combine techniques with our work to continuously evaluate
large-scale reproductions.

Provenance is also an important research direction. Pouchard et
al. showed how collecting provenance data and performance met-
rics can aid in confirming the reproducibility of extreme-scale appli-
cation workflows [33]. Meng and Thain developed a framework for
capturing execution environments of workflows at a task-by-task
level of granularity [28]. Large-scale reproduction tells provenance
researchers where to start looking for examples of working work-
flows, examples of common errors, and other data. On the other
hand, provenance systems improve the reproducibility of workflow
engines, which large-scale reproductions can evaluate.

Functional package managers such as Nix and Guix [6, 7] treat
building and installing a package as a pure function. To enforce
purity, a functional package manager builds packages inside a sand-
boxed environment that only contains the declared inputs. One can
use symlinks to link together built aritfacts into a project-specific
environment. This approach solves dependency issues but leaves

3See https://www.anaconda.com/
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Table 1: A sample of tools, organizations, and policies regard-
ing reproducibility since 2010.

Year Kind Description

2012 Tool Snakemake paper [27]

2013 Policy Geoscientific Model Development (GMD) jour-
nal requires code sharing [1]

2013 Policy Office of Science and Technology Policy memo-
randum (Holden et al.) [22]

2015 Tool  Spack paper [18]

2015 Org  Volume 1 of ReScienceC published [35]
2015 Tool  Guix for HPC paper [7]

2017 Tool Nextflow paper [12]

2017 Tool  Singularity paper [26]

2017 Tool  Nix for HPC paper [6]

2020 Org  Nextflow community curates nf-core [14]

2022 Policy Office of Science and Technology Policy memo-
randum (Nelson et al.) [30]

2022 Policy NASA Science Mission Directorate Science Pol-
icy Document 41a [43]

other sources of irreproducibility open, such as applications that
access network resources at run-time (at build-time the network is
unavailable). A subset of the problems we are studying here would
also be problems for Nix and Guix. Guix Workflow Language [40]
takes this idea a step further by creating a workflow where each step
runs in a Guix-specified environment. While these are promising
tools for future development, this work focuses on current, popular
workflow engines such as Snakemake and Nextflow to capture an
image of reproducibility in the real-world.

Besides research literature, the community has been developing
new policies, organizations, and tools to encourage reproducibility
(see Table 1).

4 METHODOLOGY

The Workflow Community Initiative* lists four registries: Dock-
store [31], Snakemake workflow catalog [38] (here on, “SWC”),
WorkflowHub [17], and nf-core [14]. Dockstore and WorkflowHub
contain workflows of many different workflow languages, and they
overlap as the same workflow can be in both registries. For this
study, we chose SWC and nf-core because they contain only one
workflow language each but are still well-populated. The Pegasus
Workflow Engine also has a workflow hub called PegasusHub”, but
at the time of this writing, it had only twelve workflows, most of
which were examples. Future work could extend our experiment to
more workflow registries.

Each entry in SWC and nf-core refers to a specific project on
GitHub. These registries are in machine-readable formats.

o The SWC registry includes any project on GitHub that satis-
fies its requirements, of which the chief'is to have a Snakefile
orworkflows/Snakefile in the root directory. Users can op-
tionally include a .snakemake-workflow-catalog.yml, with
a machine-readable description of how to run the workflow.

4https://workflows.community/registries
Shttps://pegasushub.io
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e The nf-core registry is a community-curated set of analy-
sis pipelines built using Nextflow. The authors follow the
convention of having main.nf and nextflow.config files
in the root directory. Also, nextflow.config must define
a profile for test and docker, singularity, podman, and
other virtualization providers. These workflows have many
users and contributors.

Snakemake and Nextflow are interpreters for domain-specific
language that researchers use to write workflow scripts. The
workflow scripts construct a directed acyclic graph (DAG) of tasks
based on the input and configuration. The Snakemake and Nextflow
languages contain directives to encapsulate each task in a specific
container.

We use the appropriate workflow engine for each revision of
each workflow in the registry. When we run the workflow, we are
a different team using the same measuring system (experiment);
therefore, we are checking its reproducibility [36]. Testing if the
research result is consistent with a specific claim requires data
from the original run and expert knowledge, so instead, we just
test if the default command with default parameters has a non-
crashing execution. We run the experiments in a Spack environment
(see Appendix A for the exact environment) that has the workflow
managers and their dependencies: Snakemake, Nextflow, Conda,
Singularity, and others.

We also had to install a few dependencies that workflows assume
to exist on the system. Snakemake and Nextflow both allow the
workflow to specify a container image to run the tasks in, but they
do not provide a way to specify the environment of the program that
generates the DAG. In some cases, the environment is determined
by convention, but these conventions are neither universally used
nor automatically consumed by tools. These dependencies include
domain-general processing tools such as Numpy, Pandas, and Peppy.
We discovered the exact set of dependencies through trial-and-error.
We recognize that the computational experiments may rely on other
unspecified dependencies or internet-accessible resources that no
longer exist. We expect these to fail, and in fact, this research aims
to count how many fail that way.

While most workflows finish within 30 minutes, some can take
multiple hours (see Figure 1). In total, we spent over 5,600 CPU
hours executing workflows. We use Parsl [3] to run different exper-
iments on a parallel cluster to reduce the waiting time. We used
Microsoft Azure to provide the parallel cluster, but Parsl supports a
wide range of parallel cluster providers or even a single node. Each
worker node runs a specific set of workflow revisions, writes the
output to storage, and sends the success indication back to the main
node. At the end of execution, we have one or more “execution
records” for every revision of every workflow.

We initially ran our setup on a small random sample of revisions.
Then we looked through every crash; some were due to the under-
lying workflow crashing, but some were artificial and caused by
our experimental setup. We spent thirty minutes per crash debug-
ging it; if no leads were pointing to our experimental setup after
that, we assumed the problem was with the workflow under test.
We iteratively improved our experimental setup and repeated all
experiments on the latest version.
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Figure 1: A cumulative frequency histogram of CPU time per
revision (crashing and crash-free).

5 RESULTS

See Appendix A for the raw and processed results.

RQO. We only attempt to reproduce revisions the developers
mark as “releases” in GitHub. These revisions are more likely to
have worked on the developer’s original machine. SWC has 2,045
workflows but only 53 with some revision marked as releases, and
nf-core has 48 workflows with revisions marked as releases. For
these 101 total workflows for both registries combined, we enumer-
ated every revision marked as a release, yielding 589. The number
of revisions per workflow follows a power-law distribution. Most
workflows have just 1 revision, but a prolific few have over 20 re-
visions (see Figure 2). 75% of the SWC workflows have seven or
fewer revisions, but one® has 61 at the time this paper was written.
75% of the nf-core workflows also have seven or fewer revisions,
but the maximum’ is 25 revisions.

Revisions of nf-core workflows are somewhat older, between
0 and 4.5 years old, while most revisions of SWC workflows are
between 0 and 2 years old (see Figure 3). Nf-core officially began
in early 2018%, while SWC only began in late 2020°, but older revi-
sions are possible. Each registry only holds the URL of the GitHub
repository, so a workflow with historical revisions stretching past
the inception of the registry can be added to the registry, and our
enumeration does include all such older revisions.

RQO. The selected registries contain 101 workflows combined
with 589 revisions, where the distribution of revisions to work-
flows follows a power-law distribution. The revisions are up to
five years old, so these registries are appropriate for ana-
lyzing mid-term reproducibility.

RQ1. We automatically reproduced crash-free executions for
28% of the total 589 revisions from both registries. The nf-core
workflows had a much higher crash-free reproducibility rate, 51%,
compared to SWC workflows, 11%. This difference is surprising,
considering that revisions of the nf-core workflows are older on

Chttps://github.com/snakemake-workflows/dna-seq-varlociraptor
"https://github.com/nf-core/eager

8See https://nf-co.re/about

9See https://github.com/snakemake/snakemake-workflow-catalog/commit/
4d0155429dc2fb75e4916e0e938d02f8b1efch81
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Figure 2: A cumulative frequency histogram of revisions per
workflow in selected registries.
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Figure 3: A cumulative frequency histogram of staleness of
executions in selected registries.

average (see Figure 3). There are multiple explanations for this
difference:

o The nf-core registry is a curated selection of workflows that
select for popularly used pipelines.

o Of the workflows that we examined in more detail, the nf-
core workflows defer most of their data processing to con-
tainerized tasks rather than the main script, which is not
containerized. In contrast, SWC workflows process data in
the main script and containerized tasks. For example, some
SWC workflows require BioPython to run the main workflow
script.

e The SWC standard does not identify an obvious place for a
default or example configuration. In RQ2, we will see that
many of these failures are due to missing example data. The
nf-core registry requires workflows to have a test profile
where this information can go.

e Snakemake uses Conda, which can fail for the reasons de-
scribed later in RQ2. This issue affects Snakemake work-
flows, which use Conda to manage environments, but not
nf-core workflows, which are less likely to use Conda. Even
excluding these cases from the sample, we get a rate of 13%,
which is still significantly less than nf-core.
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Quantity All SWC nf-core
# workflows 101 53 48

# revisions 584 333 251
% of revisions with no crash 28% 11% 51%

% of workflows with at least one 53%  23% 88%
non-crashing revision

Table 2: Summary of data from automatic reproduction.

Zhao et al. [42] find a 20% of their experiments can be reproduced
without crashing. The SWC registry has a lower reproducibility
rate, due to the effects above The nf-core registry has a higher
reproducibility rate, probably because it is community-curated,
whereas Zhao et al. tested workflows in a self-depository called
myExperiment. myExperiment is like Zenodo or GitHub in that
almost anyone can upload almost anything.

Trisovic et al. [39] reported crash-free reproduction for 25% for
R scripts, but they excluded codes which timed out from the denom-
inator. When considering timeouts as failures (the computational
experiment might be reproducible but require longer time), the rate
falls to 12%, on par with SWC but lower than nf-core. We expect
workflows to be more reproducible than a bundle of R scripts be-
cause repositories with R scripts may not specify the order to run
the R scripts that may have dependencies between them; workflows
explicitly encode those dependencies. However, issues similar to
the SWC environment are a possible culprit. The scripts studied by
Trisovic et al. are from such different domains that the crash-free
reproduction rate may differ.

For both registries we study, the crash-free executions do not all
come from the same workflows. Namely, workflows are not simply
reproducible in either most of their revisions or none; rather, we
see a diversity of crash-free reproduction rates across workflows
(see Figure 4).

The reproducibility of SWC is biased by many revisions com-
ing from workflows where we could not reproduce any revision,
nine of which are due to the same kind of crash. That one cause
substantially reduces the number of non-crashing SWC workflow
revisions. On the other hand, three of the working workflows have
just one revision. The nf-core workflows, being more evenly spread
in the number of revisions, do not suffer the same way.

RQ1. In all, we reproduced non-crashing executions for 28% of
all revisions of all workflows in our selected registries. Consid-
ering the prevalence of irreproducibility, more work needs to
be done on achieving reproducibility with low effort.

RQ2. For each crashing execution, we examined the log files
and standard error to find the low-level cause of the crash. Then
we wrote a regular expression that could parse the information
for other crashes with the same cause (e.g., if the program crashed
because an exception was thrown in a Snakemake script, we wrote
a regular expression to parse the traceback). Next, we repeated the
process for the first crash not classified by the set of previously
written regular expressions. Note that these crashes are only the
earliest crash present in the code. If we were to fix the immediate
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Figure 4: Each workflow is represented by a bubble: its radius
is proportional to the number of revisions, its y-position
corresponds to its registry, and its x-position is the percent
of revisions that were reproducible.

crash, another crash of a different kind may still happen later, for
which we have no information. Finally, we putatively categorized
the failure cases according to their causes:

e Missing input: a crash due to missing data or configuration.
e Missing dependency: a crash due to missing a dependency.
o Network resource changed: a workflow expects a network
resource with a behavior different than current, e.g., the
workflow queries a database using an API that has since
changed.
e Timeout reached: we limited each revision run to 2 hours.
Unclassified reason: not all crash causes can be easily iden-
tified automatically. For example, two workflows may fail
with the same IndexError, but in one case, the code may
try to access a configuration file that was not passed (i.e.,
missing input), and in another case, the same error may be
caused by a bug in the script (i.e., workflow script error).
Singularity error: the workflow failed while invoking Sin-
gularity. One cause for some of these errors is due to a bug
in Singularity'°.
e Conda environment unsolvable: Conda can fail to solve
an environment for a number of reasons. One observed prob-
lem is that Conda cannot manage packages installed by other
package managers. We might have a specific version of libc
or other packages installed by Spack to support the experi-
ment. If these packages conflict with the packages requested
by the environment, then Conda will fail to solve. We count
this as a true reproducibility failure because a user may have
packages installed that conflict with the Conda environment
for a specific project; that project would not be automatically
reproducible on that user’s system.
Other (workflow script): the workflow fails for some other
reason, and the crash happens within the workflow script,
i.e., the program that generates a DAG of tasks.
Other (containerized task): the workflow fails for some
other reason, and the crash happens within one of the con-
tainerized tasks, i.e., the nodes of the workflow DAG.

While some of these errors, especially missing inputs, may be
easy to fix, there are too many to fix manually. They make the
workflows not automatically crash-free reproudcible.

These reasons are similar to those by Zhao et al. [42], but we
allow for the timeout to be reached and “other” The “other” crashes

10See https://github.com/sylabs/singularity/issues/1721. The bug has since been fixed,
but we were not able to re-run all of our experiments due to resource constraints.
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Kind of crash All  SWC nf-core
Missing input 32.2% 43.8% 16.7%
Conda environment unsolvable 10.8% 18.9% 0.0%
Unclassified reason 7.9% 12.0%  2.4%
Timeout reached 7.0%  5.7% 8.8%
Singularity error 6.0%  6.6% 5.2%
Other (workflow script) 57% 1.5%  11.2%
Other (containerized task) 1.2%  0.0% 2.8%
Network resource changed 0.7%  0.0% 1.6%
Missing dependency 0.5%  0.9% 0.0%
No crash 28.1% 10.5% 51.4%
Total 100% 100% 100%

Table 3: Reasons for crashes in revisions we failed to repro-
duce. These percentages are normalized to the total number
of executions (crashing and crash-free).

indicate that the workflow was started correctly, had all necessary
inputs, had complete software dependencies, and did not reach a
timeout. Therefore, the “other” crashes are probably due to the
workflow never working. This cause is consistent with what we
find when manually analyzing those cases.

RQ2. Among workflows that crashed, the leading
cause of crashes was missing input data or configura-
tion files. Missing is more prevalent in SWC because
.snakemake-workflow-catalog.yaml has no place to
specify an example invocation.

RQ3. While we cannot easily look back in time to see when
any individual revision stopped working, we can instead reason
about the aggregate population of revisions. We assume that the
probability that a workflow revision published some time ago (e.g.,
two years ago) works is a good estimate for the probability that a
workflow revision published today will work in the same amount of
time (e.g., two years). We attempt to find a trend between crash-free
reproduction rate and “staleness,” the difference in time between
when the revision was published and when we execute it in 2023.

We make the simplifying assumption that all revisions of all
workflows in our selected registries were automatically reproducible
when that revision was initially uploaded. The assumption may not
hold for arbitrary workflow revisions, but our focus is precisely on
the revisions that were marked as releases because such releases
are highly likely to have worked for the original developers. With
each passing day, a change may cause a workflow to break. We
also assume that, as workflows age, the risk that they will break
increases over time. We fitted a Weibull survival function on our
data to model this behavior. The following parameterized formula
describes a Weibull probability distribution:

k /x\k-1 .
k(x o .
fc(xs A k) = A(k) exp(=(x/H)¥) x>0 o
0

x<0
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Weibull Survival Curve
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Figure 5: Estimates for expected workflow reproducibility
over time modeled using a Weibull decay function. The esti-
mated median survival time across all workflows in either
registry is 1.42 years, which means half of the workflows
remain crash-free reproducible after that. As the graph indi-
cates, however, the nf-core workflows are much longer-lived
(median 2.81 years) than the SWC workflows (median 0.81
years).

A(95% CI) k (95% CI) Med. Surv. Time
All 717 (657-777) 1.15 (1.06-1.24) 521d
SWC 420 (382-458) 1.31 (1.20-1.43) 317d
nf-core 1292 (1144-1439) 1.59 (1.36-1.82) 1026d

Table 4: Parameters used in Weibull estimates in Figure 5.

The parameter x represents the time-to-failure for a workflow.
The parameter k is the shape parameter; a value k < 1 means that
the failure rate decreases over time, k = 1 means that the failure
rate is constant, and k > 1 means that the failure rate increases over
time. Finally, A is a scale parameter; it can be interpreted as how
much time must pass until 63.2% of workflows have failed. Using
the Python package lifelines (version 0.27.4), we fit curves on our
workflow reproducibility data for SWC workflows, nf-core work-
flows, and all workflows taken together. We provide a summary
table of the curves in Figure 5.

The difference in outcomes between the SWC and nf-core work-
flows calls attention to characteristics we are not directly measuring.
The nf-core registry is a carefully curated, community-driven effort
to build and sustain nf-core genomics workflows, and most of the
failing cases are old revisions that are no longer officially supported.
Meanwhile, the SWC workflows are drawn from a much larger cor-
pus across GitHub. The fact that curated revisions of workflows
survive three times longer than those in the wild is not surpris-
ing, but it does show that a sharp decline in reproducibility is not
inevitable.
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Type All SWC nf-core
ASCII text 85% 33% 100%
HTML document 59% 0% 76%
SVG image 26% 0% 33%
Zip archive data 7% 0% 10%
XML 1.0 document 4% 0% 5%
CSV text 19% 0% 24%
JSON text data 15% 0% 19%
very short file (no magic) 4% 0% 5%
gzip compressed data 11% 0% 14%
PDF document 7% 0% 10%
Blocked GNU Zip Format 7%  17% 5%
PNG image data 4% 0% 5%
LaTeX 2e document 4% 0% 5%
Total 27 6 21

Table 5: Each row shows what proportion of workflows with
multiple revisions with crash-free executions have a common
output of that file type. Note that these need not add to 100%;
one workflow might have a common output of ASCII text
and a common output of PNG images; this would increment
the count in both rows.

RQ3. Aging workflows are more likely, all things being equal,
to crash. However, different populations of workflows (such as
those drawn from different registries) can decay at different
rates. Moreover, biological survival analysis is a useful tool
to study software collapse and plan ahead for it.

RQ4. This work examines just the reproducibility of crash-free
executions. While full reproducibility of research results requires
expert knowledge, some intermediate levels of reproducibility can
be automatically assessed. An automated tool might look at the
outputs produced and compute their variation if they have the same
structure. “Structure” here refers to both the location of the files
(e.g., the directory and filename of specific output datasets) and the
content within the files (e.g., the order of columns in CSV). Such a
tool would need to know what types of files are common outputs
between the two executions.

We call a file path relative to the experiment’s working directory
an output if it does not match a list of known intermediate outputs,
log files, or temporary data. This notion is biased towards assum-
ing a file is an output because that is the default for workflows.
The list of known non-output files includes work/, pipeline_info,

.snakemake and logs for Snakemake, and .nextflow.log and
.nextflow for Nextflow. We also added directives to store the Sin-
gularity container file systems and Conda environments in separate
file paths, so they would not be considered outputs. We call an out-
put common to a workflow if the workflow has more than one
revision with crash-free executions and the output is present with
the same file type in at least two-thirds of the executions. We used
filell, a “file type guesser,” to guess the file type.

See https://www.darwinsys.com/file. We used file —brief.
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The result (Table 5) shows that when there are common outputs,
at least one of them is usually ASCII text with no “higher level”
structure like CSV or JSON. Only 25% of the nf-core workflows can
be compared through CSV.

If one cannot deduce any structure of plain text files, the only
choice may be to treat them as strings or a list of strings (for each
line). Future work may investigate methods for quantifying the
difference between ASCII text files; e.g., one could use the edit
distance at a line-level (similar to what diff does). If there are a
lot of sub-line changes, one might use edit-distance on characters,
although this comparison would be time-consuming.

RQ4. The most common output across revisions of a workflow
is usually unstructured text.
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Continuous integration (CI) scripts do not help much.

Often, a human could glean how to run a computational experi-
ment given the CI scripts. However, selecting the right target is
difficult to automate because the CI scripts contain instructions
for many different goals besides the goal of testing the software.
When looking at GitHub Action scripts in SWC, we found scripts
that lint, generate reports (without running), and test the Conda
environment; these would have to be excluded by automatic repro-
ducibility software. If the computational experiment has a rather
long running time, users will exclude it from CI testing, so we have
no guarantee that any CI action actually tests the code.

There can be more than one way to test the workflow.

6 DISCUSSION

6.1 Lessons learned for reproducers

Superuser is required to reproduce normal workflows!

Big supercomputers are often shared among a whole department or
multiple institutions, so most users do not have superuser access.
Ideally, one should not need superuser access just to reproduce
someone else’s computational experiment. However, some func-
tionality in container engines currently requires superuser access,
which did affect this work. While a normal user can install Singu-
larity and its successor Apptainer, that installation do not support
full set of features and experience worse filesystem performance
than when installed by a superuser [11, 13] in “setuid mode.” We
noticed several failures due to inability to mount the right paths
in a Singularity container, which we fixed by installing Singularity
as superuser. While one does not need to run the workflow engine
itself as a superuser, it calls Singularity, which calls a setuid binary
that escalates into superuser privileges, so a superuser has to install
that binary. Also note that setuid Singularity cannot nest within
another Singularity (setuid or not) [13], so we had to run our ex-
periment on bare-metal such that the workflow engine could start
a setuid Singularity container.

Ongoing developments in the “unpriveleged user namespace”
feature of the Linux Kernel open the door to container engines
that do not run as root, but old versions of the kernel hinder this
use-case. For example, CentOS 6 uses the 2.6 Linux Kernel, but
user namespaces were not available until 3.8 or later [10]. Even
in later kernels, user namespaces may be disabled. Enabling user
namespaces opens a much larger surface for attacks (e.g., see CVE-
2020-14386 in Linux Kernel 5.9 [8]), so many security standards
recommend disabling them [2]. Still, Linux developers are making
progress in securing user namespaces, and old supercomputers
are being retired, so eventually, reproducibility can be improved
through unpriveleged user namespaces. Given a recent enough
kernel, Charliecloud [34] provides precisely that. However, Snake-
make has yet to integrate with Charliecloud (see ongoing issue'?).
Future work could quantify how the choice of container engine and
root-user privilege changes the non-crashing reproducibility rate.

2https://github.com/snakemake/snakemake/issues/44

The CI discussion also raises another point: what should the “test
configuration” be? Should it be a scaled-down execution or a full-
fledged one? What if the experiment supports multiple different
modes; which should be used? In practice, the nf-core repositories
specify one configuration as the “default” test configuration, but
they often contain multiple test_x configurations, providing for
test variants. An open ontology could describe what knobs to turn
in each test. Such configurability would open the door to many
automatic testing applications, such as autotuning configuration
parameters, outcome-preserving input reduction, or other kinds of
parameter searching if the system knows what knobs it can turn
without breaking the experiment’s semantics.

6.2 Recommendations for workflow engine
designers

The presence and rigor of community standards greatly affect
reproducibility.

The nf-core repositories usually have a configuration profile in the
root called test that runs whatever the workflow author defines as
a test. Other tools choose conventions to make their tools easier to
use (e.g., make all). Other Nextflow workflows outside of nf-core
do not usually follow this convention'?, so it would be much harder
to test them automatically.

SWC does have a similar convention, but it is not rigorous
enough. While SWC workflows have a place for “mandatory flags”
in the . snakemake-workflow-catalog.yml, there is no place for
an example invocation'®. As such, many of the workflows fail be-
cause our default command does not provide them with any exam-
ple data.

We should use metadata to link the publication, funding, and
authors to the workflow.

We could not find a machine-readable link between the workflow
and the publication, funding, and authors. Linking the workflow
would allow us to study the impact of policies on reproducibility.
Git stores a history of the authors who touch the code, but these do

BFor an example, see https://github.com/marcodelapierre/toy-gpu-nf
148ee https://github.com/snakemake-workflows/dna-seq-varlociraptor/pull/204 for
discussion
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not include all collaborators (e.g., a university professors when the
student does the work) or other facilitators. Transitive Credit aims
to solve this problem with JSON-LD [23], but it is not yet widely
used.

Workflow engines should report resource requirements in a
machine-readable format.

Each of these different test variants may have different resource
requirements too. In batch compute systems, such as supercom-
puters, on which many computational scientists work, the users
request a compute resource allocation (such as the number of CPUs,
GPUs, peak disk utilization, peak memory utilization, or total time).
In practice, the users guess the request using rules-of-thumb; if
the guess is wrong, their job may fail, and they will have to retry
with a larger resource request. While not strictly necessary for
reproducibility, it may be easier if the original authors publish the
resources needed to run their experiment. Modern retrospective
provenance systems [5, 24] do not yet provide a way of capturing
or storing this information, although it would be straightforward to
add. Knowing at least the total time the computational experiment
takes helps future users to know if the run got “stuck” in a deadlock
or infinite loop. We do report resource utilization requirements for
the workflows in our dataset, which can be found in Appendix A.

Opaque container images may be reproducible but are not ideal.

Workflow programs supply a container image for each step of their
execution. This gives a high level of reproducibility for the task
which runs in the container, but the dozens of container images
used in an experiment become another digital artifact which need
to either be archived (heavy storage cost) or reproducibly built
(pushes the buck to another tool). Functional package managers
have the potential to fill this gap by either building container images
reproducibly or managing the environment natively for each step
in the experiment.

6.3 Threats to Validity

The workflows we selected may not be representative of all work-
flows. We worked with two large registries and ran every workflow
in each registry uniformly, but there may be a selectivity bias for
workflows submitted to workflow registries. Still, problems for the
community’s most publicized workflows are likely also problems
for the other workflows.

We only test for reproducible crash-free execution. We cannot
test research reproducibility because we do not have access to the
original results, and we would need the expertise to compare results
from two runs to see if they are equivalent. However, reproducible
crash-free execution is a necessary condition for reproducible re-
search results, and right now, only 51% of nf-core workflows and
11% of SWC workflows have even crash-free reproducibility.

Our system’s packages may also be conflicting with the packages
that the experiment wants to install. While the exact symptom is
specific to our system, the pathology is a problem for reproducibility
more generally.
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The workflows we test may be reproducible, but our automated

system could not figure out the correct command to run. These
would be manually reproducible but not automatically reproducible.

However, automatic reproducibility confers benefits that manual
reproducibility does not. For example, automatic reproducibility
makes it easy to set up continuous integration.

On the other hand, one might argue that in designing our auto-
mated system, we encoded too much information discovered from
manually debugging failed workflows. For example, we found that
the SWC workflows often require Peppy and Pandas, just to sub-
select the data for input to the tasks. Because it is reasonable to
expect these packages might be installed on the user’s machine,
we added them into our software environment. One might argue
that experiments which depend on a package without declaring
a dependency on that package should be marked as not automati-
cally reproducible; we considered this position, but then so many
workflows would be not reproducible that we would not have much
data left to work with for the rest of the RQs.

7 CONCLUSION

Reproducibility allows science to be self-correcting and helps us
build on each other’s results. While it intuitively seems that com-
putational experiments should be perfectly reproducible, especially
compared to bench work, computational experiments are often the
root of irreproducible research.

In this work, we investigate how reproducible workflows are
in practice by looking at workflows from two specific registries,
SWC and nf-core. The fact that our experiment on reproducibility
is possible is a testament to the improvements in tooling and com-
munity practices. The nf-core registry could be used an example
of how communities standardize around standard conventions and
tooling. However, the current practice needs to be improved for a
higher degree of reproducibility. In particular, workflow authors
should incorporate example data that runs “out of the box.” More
work needs to be done on standardizing how to specify the means
to reproduce a computational experiment.

A CODE & DATA AVAILABILITY

A snapshot of the latest state of this code can be found at: https:
//doi.org/10.5281/zenodo.7996835.
A rolling release of the code can be found at: https://github.com/
charmoniumQ/wf-reg-test.
In the rolling release or snapshot:
e data holds a machine-readable view of the data, split across
several files.
e data/results.html is a human-readable HTML view of
the data.
e REPRODUCING.md contains instructions on how to reproduce
the results in this paper from various steps.
e spack/spack. lock contains the Spack environment in which
this experiment was run.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-1763788 and
CCF-1956374. We acknowledge support for research on flaky tests
from Google and Meta.


https://doi.org/10.5281/zenodo.7996835 
https://doi.org/10.5281/zenodo.7996835 
https://github.com/charmoniumQ/wf-reg-test
https://github.com/charmoniumQ/wf-reg-test

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz

REFERENCES

[1] J. Annan, D. Hargreaves, D. Lunt, A. Ridgwell, . Rutt, and R. Sander. 2013. Edi-

[17] Rafael Ferreira da Silva, Loic Pottier, Taina Coleman, Ewa Deelman, and Henri
Casanova. 2020. WorkflowHub: Community Framework for Enabling Scientific

=

flaa

=

=

[

= =

torial: The publication of geoscientific model developments v1.0. Geoscientific
Model Development 6, 4 (Aug. 2013), 1233-1242. https://doi.org/10.5194/gmd-6-
1233-2013 Publisher: Copernicus GmbH.

STIG Authors. 2020. Red Hat Enterprise Linux 8 Security Technical Implementa-
tion Guide. https://www.stigviewer.com/stig/red_hat_enterprise_linux_8/2020-
11-25/

Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC °19). Association for Computing Machinery,
New York, NY, USA, 25-36. https://doi.org/10.1145/3307681.3325400

Brett K. Beaulieu-Jones and Casey S. Greene. 2017. Reproducibility of computa-
tional workflows is automated using continuous analysis. Nature Biotechnology
35,4 (April 2017), 342-346. https://doi.org/10.1038/nbt.3780 Number: 4 Publisher:
Nature Publishing Group.

Anila Sahar Butt and Peter Fitch. 2020. ProvONE+: A Provenance Model for Sci-
entific Workflows. In Web Information Systems Engineering — WISE 2020 (Lecture
Notes in Computer Science), Zhisheng Huang, Wouter Beek, Hua Wang, Rui Zhou,
and Yanchun Zhang (Eds.). Springer International Publishing, Cham, 431-444.
https://doi.org/10.1007/978-3-030-62008-0_30

Bruno Bzeznik, Oliver Henriot, Valentin Reis, Olivier Richard, and Laure Tavard.
2017. Nix as HPC package management system. In Proceedings of the Fourth
International Workshop on HPC User Support Tools (HUST’17). Association for
Computing Machinery, New York, NY, USA, 1-6. https://doi.org/10.1145/3152493.
3152556 interest: 99.

Ludovic Courtés and Ricardo Wurmus. 2015. Reproducible and User-Controlled
Software Environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops (Lecture Notes in Computer Science), Sascha Hunold, Alexandru Costan,
Domingo Giménez, Alexandru Iosup, Laura Ricci, Maria Engracia Gémez Re-
quena, Vittorio Scarano, Ana Lucia Varbanescu, Stephen L. Scott, Stefan Lankes,
Josef Weidendorfer, and Michael Alexander (Eds.). Springer International Pub-
lishing, Cham, 579-591. https://doi.org/10.1007/978-3-319-27308-2_47 interest:
99.

CVE database. 2020. CVE - CVE-2020-14386.  https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-14386

Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers, Ker-
stin Kleese van Dam, Kenneth Moreland, Manish Parashar, Lavanya Ramakrish-
nan, Michela Taufer, and Jeffrey Vetter. 2018. The future of scientific workflows.
The International Journal of High Performance Computing Applications 32, 1 (Jan.
2018), 159-175.  https://doi.org/10.1177/1094342017704893 Publisher: SAGE
Publications Ltd STM.

Linux Developers. 2021. user_namespaces(7) - Linux manual page.  https:
//www.man?7.org/linux/man-pages/man7/user_namespaces.7.html

Singularity Developers. 2023. Security in SingularityCE — SingularityCE Admin
Guide 3.11 documentation. https://docs.sylabs.io/guides/latest/admin-guide/
security.html

Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible compu-
tational workflows. Nature Biotechnology 35, 4 (April 2017), 316-319. https:
//doi.org/10.1038/nbt.3820 Number: 4 Publisher: Nature Publishing Group.
Dave Dykstra. 2022. Apptainer Without Setuid. https://doi.org/10.48550/arXiv.
2208.12106 arXiv:2208.12106 [cs].

Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Al-
neberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso, and Sven
Nahnsen. 2020. The nf-core framework for community-curated bioinformatics
pipelines. Nature Biotechnology 38, 3 (March 2020), 276-278. https://doi.org/10.
1038/541587-020-0439-x Number: 3 Publisher: Nature Publishing Group.

Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas, Rosa M Badia,
Bartosz Balis, Taina Coleman, Frederik Coppens, Frank Di Natale, Bjoern Enders,
Thomas Fahringer, Rosa Filgueira, Grigori Fursin, Daniel Garijo, Carole Goble,
Dorran Howell, Shantenu Jha, Daniel S. Katz, Daniel Laney, Ulf Leser, Maciej
Malawski, Kshitij Mehta, Loic Pottier, Jonathan Ozik, J. Luc Peterson, Lavanya
Ramakrishnan, Stian Soiland-Reyes, Douglas Thain, and Matthew Wolf. 2021. A
Community Roadmap for Scientific Workflows Research and Development. In
2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS). IEEE,
St. Louis, MO, USA, 81-90. https://doi.org/10.1109/WORKS54523.2021.00016
arXiv:2110.02168 [cs] interest: 90.

Rafael Ferreira da Silva, Kyle Chard, Henri Casanova, Dan Laney, Dong Ahn,
Shantenu Jha, William E. Allcock, Gregory Bauer, Dmitry Duplyakin, Bjoern
Enders, Todd M. Heer, Eric Langon, Sergiu Sanielevici, and Kevin Sayers. 2021.
Workflows Community Summit: Tightening the Integration between Computing
Facilities and Scientific Workflows. Technical Report ORNL/TM-2022/1832. Oak
Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://doi.org/10.
2172/1842590

Workflow Research and Development. In 2020 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS). IEEE, Georgia, USA, 49-56. https://doi.org/10.
1109/WORKS51914.2020.00012

Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack package man-
ager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’15). Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/2807591.2807623 interest: 80.

José Manuel Gomez-Pérez, Esteban Garcia-Cuesta, Aleix Garrido, José Enrique
Ruiz, Jun Zhao, and Graham Klyne. 2013. When History Matters - Assessing
Reliability for the Reuse of Scientific Workflows. In The Semantic Web — ISWC
2013 (Lecture Notes in Computer Science), Harith Alani, Lalana Kagal, Achille
Fokoue, Paul Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha
Noy, Chris Welty, and Krzysztof Janowicz (Eds.). Springer, Berlin, Heidelberg,
81-97. https://doi.org/10.1007/978-3-642-41338-4_6

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’16). Association for Computing Machinery, New York,
NY, USA, 426-437. https://doi.org/10.1145/2970276.2970358

Konrad Hinsen. 2019. Dealing With Software Collapse. Computing in Science
& Engineering 21, 3 (May 2019), 104-108. https://doi.org/10.1109/MCSE.2019.
2900945 Conference Name: Computing in Science & Engineering.

John P. Holden. 2013. Increasing Access to the Results of Federally Funded
Scientific Research.

Daniel S. Katz and Arfon M. Smith. 2015. Transitive Credit and JSON-LD. Journal
of Open Research Software 3, 1 (Nov. 2015), e7. https://doi.org/10.5334/jors.by
Number: 1 Publisher: Ubiquity Press.

Farah Zaib Khan, Stian Soiland-Reyes, Richard O Sinnott, Andrew Lonie, Carole
Goble, and Michael R Crusoe. 2019. Sharing interoperable workflow provenance:
A review of best practices and their practical application in CWLProv. GigaScience
8, 11 (Nov. 2019), giz095. https://doi.org/10.1093/gigascience/giz095 interest: 98.
Matthew S. Krafczyk, August Shi, Adhithya Bhaskar, Darko Marinov, and Victoria
Stodden. 2021. Learning from reproducing computational results: introducing
three principles and the Reproduction Package. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 2197
(March 2021), 20200069. https://doi.org/10.1098/rsta.2020.0069 Publisher: Royal
Society.

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (May 2017),
€0177459. https://doi.org/10.1371/journal.pone.0177459 Publisher: Public Library
of Science.

Johannes Koster and Sven Rahmann. 2012. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 28, 19 (Oct. 2012), 2520-2522. https://doi.org/
10.1093/bioinformatics/bts480

Haiyan Meng and Douglas Thain. 2017. Facilitating the Reproducibility of Scien-
tific Workflows with Execution Environment Specifications. Procedia Computer
Science 108 (Jan. 2017), 705-714. https://doi.org/10.1016/j.procs.2017.05.116
Robert K. Merton. 1974. The sociology of science: theoretical and empirical investi-
gations (4. dr. ed.). Univ. of Chicago Pr, Chicago.

Alondra Nelson. 2022. Ensuring Free, Inmediate, and Equitable Access to Feder-
ally Funded Research.

Brian D. O’Connor, Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun
Liu, Janice Patricia, Benedict Paten, Lincoln Stein, and Vincent Ferretti. 2017.
The Dockstore: enabling modular, community-focused sharing of Docker-based
genomics tools and workflows. F1000Research 6 (Jan. 2017), 52. https://doi.org/
10.12688/f1000research.10137.1

Jodo Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter
Notebooks. In Proceedings of the 16th International Conference on Mining Soft-
ware Repositories (MSR °19). IEEE Press, Montreal, Quebec, Canada, 507-517.
https://doi.org/10.1109/MSR.2019.00077 ISSN: 2574-3864.

Line Pouchard, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju,
Eric Stephan, Li Tang, and Kerstin Kleese Van Dam. 2019. Computational
reproducibility of scientific workflows at extreme scales. International Jour-
nal of High Performance Computing Applications 33, 5 (April 2019), 763-776.
https://doi.org/10.1177/1094342019839124 Institution: Brookhaven National Lab.
(BNL), Upton, NY, Number: BNL-211854-2019-JAAM Publisher: SAGE.

Reid Priedhorsky and Tim Randles. 2017. Charliecloud: unprivileged containers
for user-defined software stacks in HPC. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. ACM,
Denver Colorado, 1-10. https://doi.org/10.1145/3126908.3126925

Nicolas P. Rougier and Konrad Hinsen. 2019. ReScience C: A Journal for Repro-
ducible Replications in Computational Science. In Reproducible Research in Pat-
tern Recognition (Lecture Notes in Computer Science), Bertrand Kerautret, Miguel


https://doi.org/10.5194/gmd-6-1233-2013
https://doi.org/10.5194/gmd-6-1233-2013
https://www.stigviewer.com/stig/red_hat_enterprise_linux_8/2020-11-25/
https://www.stigviewer.com/stig/red_hat_enterprise_linux_8/2020-11-25/
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1038/nbt.3780
https://doi.org/10.1007/978-3-030-62008-0_30
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.1007/978-3-319-27308-2_47
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14386
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14386
https://doi.org/10.1177/1094342017704893
https://www.man7.org/linux/man-pages/man7/user_namespaces.7.html
https://www.man7.org/linux/man-pages/man7/user_namespaces.7.html
https://docs.sylabs.io/guides/latest/admin-guide/security.html
https://docs.sylabs.io/guides/latest/admin-guide/security.html
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.48550/arXiv.2208.12106
https://doi.org/10.48550/arXiv.2208.12106
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.2172/1842590
https://doi.org/10.2172/1842590
https://doi.org/10.1109/WORKS51914.2020.00012
https://doi.org/10.1109/WORKS51914.2020.00012
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1007/978-3-642-41338-4_6
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.5334/jors.by
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1098/rsta.2020.0069
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1016/j.procs.2017.05.116
https://doi.org/10.12688/f1000research.10137.1
https://doi.org/10.12688/f1000research.10137.1
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1177/1094342019839124
https://doi.org/10.1145/3126908.3126925

Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries

[36]

[37]

[38]

[39]

Colom, Daniel Lopresti, Pascal Monasse, and Hugues Talbot (Eds.). Springer
International Publishing, Cham, 150-156. https://doi.org/10.1007/978-3-030-
23987-9_14

ACM Inc. staff. 2020. Artifact Review and Badging.  https://www.acm.org/
publications/policies/artifact-review-and-badging-current

Victoria Stodden and Sheila Miguez. 2014. Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Ex-
tensible Research. Journal of Open Research Software 2, 1 (July 2014), e21.
https://doi.org/10.5334/jors.ay Number: 1 Publisher: Ubiquity Press.

The Snakemake Team. 2023. https://snakemake.github.io/snakemake-workflow-
catalog.

Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercé Crosas. 2022. A
large-scale study on research code quality and execution. Scientific Data 9, 1
(Feb. 2022), 60. https://doi.org/10.1038/s41597-022-01143-6 Number: 1 Publisher:
Nature Publishing Group.

ACM REP 23, June 27-29, 2023, Santa Cruz, CA, USA

[40] Nicolas Vallet, David Michonneau, and Simon Tournier. 2022. Toward practical

transparent verifiable and long-term reproducible research using Guix. Scientific
Data 9, 1 (Oct. 2022), 597. https://doi.org/10.1038/s41597-022-01720-9 interest:
99 Number: 1 Publisher: Nature Publishing Group.

[41] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2021. Assessing and restor-

ing reproducibility of Jupyter notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE "20). Associa-
tion for Computing Machinery, New York, NY, USA, 138-149. https://doi.org/
10.1145/3324884.3416585

[42] Jun Zhao, Jose-Manuel Gomez-Perez, Khalid Belhajjame, Graham Klyne, Esteban

Garcia-cuesta, Aleix Garrido, Kristina Hettne, Marco Roos, David De Roure, and
Carole Goble. 2012. Why workflows break — understanding and combating decay
in Taverna workflows. In 2012 IEEE 8th International Conference on E-Science
(e-Science). IEEE, Chicago, IL, 9. https://doi.org/10.1109/eScience.2012.6404482

[43] Thomas H. Zurbuchen. 2022. SMD Policy Document SPD-41a.


https://doi.org/10.1007/978-3-030-23987-9_14
https://doi.org/10.1007/978-3-030-23987-9_14
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.5334/jors.ay
https://snakemake.github.io/snakemake-workflow-catalog
https://snakemake.github.io/snakemake-workflow-catalog
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.1038/s41597-022-01720-9
https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1109/eScience.2012.6404482

	Abstract
	1 Introduction
	2 Preliminaries
	3 Prior Work
	4 Methodology
	5 Results
	6 Discussion
	6.1 Lessons learned for reproducers
	6.2 Recommendations for workflow engine designers
	6.3 Threats to Validity

	7 Conclusion
	A Code & data availability
	Acknowledgments
	References

