
Ekstazi: Lightweight Test Selection

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov
University of Illinois at Urbana-Champaign

{gliga,eloussi2,marinov}@illinois.edu

Abstract—Regression testing is a crucial, but potentially time-
consuming, part of software development. Regression test selec-
tion (RTS), which runs only a subset of tests, was proposed over
three decades ago as a promising way to speed up regression test-
ing. However, RTS has not been widely adopted in practice. We
propose EKSTAZI, a lightweight RTS tool, that can integrate well
with testing frameworks and build systems, increasing the chance
for adoption. EKSTAZI tracks dynamic dependencies of tests on
files and requires no integration with version-control systems. We
implemented EKSTAZI for Java+JUnit and Scala+ScalaTest, and
evaluated it on 615 revisions of 32 open-source projects (totaling
almost 5M LOC). The results show that EKSTAZI reduced the
end-to-end testing time by 32% on average compared to executing
all tests. EKSTAZI has been adopted for day-to-day use by several
Apache developers. The demo video for EKSTAZI can be found
at http://www.youtube.com/watch?v=jE8K5 UCP28.

I. INTRODUCTION

Regression test selection (RTS) is a promising approach to

speed up regression testing. Engström et al. [5] and Yoo and

Harman [20] present surveys of RTS techniques. The inputs

to a traditional RTS technique are two software revisions (new

and old), and the dependency information from the test runs

on the old revision. The output is a subset of the test suite that

can be affected by the changes, and should be re-run in the

new revision. RTS is orthogonal to several other techniques

used to speed up regression testing (e.g., parallel execution)

and can be combined with them for added savings.
While RTS was proposed over three decades ago [5, 20],

it has not been widely adopted in practice, except for the

Google TAP system [18]. Unfortunately, TAP performs RTS

only across projects and provides no benefit within a project.

However, most developers work on one isolated project at a

time rather than on a project from a huge codebase as done

at Google. Moreover, our recent empirical study [8] shows

that developers who work on such isolated projects frequently

perform manual RTS.
We propose EKSTAZI, a novel RTS tool based on file

dependencies. EKSTAZI is motivated by recent advances in

build systems [1, 7] and prior work on RTS based on class

dependencies [4–6, 12, 13, 16, 17] and external resources [10,

11, 15, 19]. Unlike most prior RTS techniques based on

finer-grained dependencies (e.g., methods or basic blocks),

EKSTAZI does not require integration with version-control

systems: EKSTAZI does not explicitly compare the old and

new revisions. Instead, EKSTAZI computes for each test class

what files it depends on; the files can be executable code (e.g.,

.class files in Java) or external resources (e.g., configuration

files). A test class need not be run in the new revision if none

of its dependent files changed.

We implemented our EKSTAZI tool in Java and integrated

it with two popular testing frameworks (JUnit and ScalaTest)

and two popular build systems (Maven and Ant). Our tool has

many features to support (Java and Scala) projects running

on JVMs (e.g., packing of .class files in .jar archives,

instrumentation to collect dependencies using class loaders or

Java agents, reflection, etc.).

II. USAGE

Before describing in more detail how EKSTAZI works, we

describe in this section how users can integrate EKSTAZI

with projects that use Maven or Ant. We also describe

programmatic invocation of EKSTAZI that could be used

to integrate EKSTAZI with other testing frameworks (e.g.,

TestNG). EKSTAZI is currently available as a binary [2], and

we are preparing sources for release.

A. Integration with Maven

EKSTAZI distribution includes a Maven plugin [2], avail-

able from Maven central. Only a single step is required to

integrate EKSTAZI with existing build configuration files (i.e.,

pom.xml); include EKSTAZI in the list of plugins:

<plugin>
<groupId>org.ekstazi</groupId>
<artifactId>ekstazi−maven−plugin</artifactId>
<version>${ekstazi.version}</version>

</plugin>

where ${ekstazi.version} denotes the version of EKSTAZI.
EKSTAZI offers three optional parameters: (1) forceall

to force the execution of all tests (even if not affected by

changes) and recollect dependencies, (2) forcefailing to

force the execution of the tests that failed in the previous run

(even if not affected by changes), and (3) skipme to have all

tests run without EKSTAZI.
The same step can be used to integrate EKSTAZI with a

Scala project that uses Maven+ScalaTest.

B. Integration with Ant

EKSTAZI distribution also includes an Ant task [2] that

can be easily integrated with existing build definitions (i.e.,

build.xml). The following three steps are required:
1) add namespace definitions to the project element:
<project ... xmlns:ekstazi=”antlib:org.ekstazi.ant”>

2) add EKSTAZI task definition:
<taskdef uri=”antlib:org.ekstazi.ant” resource=”org/ekstazi/ant/antlib.xml”>
<classpath path=”org.ekstazi.core−${ekstazi.version}.jar”/>
<classpath path=”org.ekstazi.ant−${ekstazi.version}.jar”/>

</taskdef>

3) wrap existing JUnit target elements with EKSTAZI select:
<ekstazi:select><junit fork=”true” ...> ... </junit></ekstazi:select>

http://www.youtube.com/watch?v=jE8K5_UCP28


C. Programmatic Invocation

Programmatic invocation provides an extension point to in-

tegrate EKSTAZI with other testing frameworks (e.g., TestNG).

EKSTAZI offers three API calls to check if any dependency

is modified, to start collecting dependencies, and to finish

collecting dependencies:

org.ekstazi.Ekstazi.inst().checkIfAffected(”name”)
org.ekstazi.Ekstazi.inst().startCollectingDependencies(”name”)
org.ekstazi.Ekstazi.inst().finishCollectingDependencies(”name”)

where “name” is an id to refer to the collected dependencies

for a segment of code (e.g., a fully qualified test class name).

These primitives can be invoked from any JVM code. For

example, to integrate EKSTAZI with JUnit, we implement a

listener that invokes startCollectingDependencies be-

fore JUnit executes the first test method in a class and invokes

finishCollectingDependencies after JUnit executes the

last test method in a class.

III. TECHNIQUE AND IMPLEMENTATION

A typical RTS technique has three phases: the analysis (A)

phase selects what tests to run in the current revision, the

execution (E) phase runs the selected tests, and the collection

(C) phase collects information for the next revision. EKSTAZI

collects dependencies at the level of files. We first describe

the format in which EKSTAZI stores the dependencies. We

next provide more details on each phase and their integration

with a testing framework. We finally describe an important

optimization to make EKSTAZI practical.

A. Dependency Format

EKSTAZI stores dependencies in a simple format similar to

the dependency format of build tools such as Fabricate [7].

For each test class, EKSTAZI stores the names and check-

sums of the files that the class uses during execution. The

checksum hashes the content of the files. These checksums

allow EKSTAZI to check changes with no explicit access to the

old revision. EKSTAZI stores all the information in a separate

dependency file1 for each test class.

B. Analysis (A) Phase

The analysis phase in EKSTAZI is quite simple (and thus

fast). For each test class, EKSTAZI checks if the checksums

of all dependent files are still the same. If so, the test class is

not selected. This check requires no sophisticated comparisons

of the old and new revisions (which prior RTS research

techniques usually perform on the source), and in fact it does

not even need to analyze the old revision (much like a build

system can incrementally compile code just by knowing which

source files changed).

EKSTAZI naturally handles newly added test classes: if

there is no dependency information for some class, it is

selected. Initially, on the very first run of EKSTAZI, there is no

dependency information for any class, so they are all selected.

1Note that a “dependency file”, which stores dependencies, should not be
confused with “dependent files”, which are the dependencies themselves.

C. Execution (E) Phase

We integrated EKSTAZI with JUnit because it is a widely

used framework for executing unit tests in Java. Although one

can initiate test execution directly from JUnit, large projects

typically initiate test execution from a build system (e.g.,

Maven or Ant). We describe integration of Ekstazi in this

typical scenario.

EKSTAZI first determines what test classes not to run.

This avoids the unnecessary overhead (e.g., loading classes or

spawning a new JVM) of preparing to run a class and finding

it should not run. The A phase makes an excludes list of

test classes that should not run, and the build system ignores

them before executing the tests.

There are two possible approaches to integrate the E and

C phases. The first and simplest way is to do it in one pass.

The dependencies for the test classes that were not selected

cannot change. However, the test classes that were selected

need to be run to determine if they still pass or fail, and

thus to inform the user who initiated the test session. Because

the dependencies for these classes changed, the simplest way

to update their dependency files is with one pass that both

determines the test outcome and updates the dependency files.

However, collecting dependencies has an overhead. Therefore,

some settings may prefer to use two passes: one without

collecting dependencies, just to determine the test outcome

and inform the user as fast as possible, and another to also

collect the dependencies. The second pass can be started in

parallel with the first or can be performed sequentially later.

D. Collection (C) Phase

The collection phase creates the dependency files for the

executed test classes. EKSTAZI monitors the execution of the

tests and the code under test to collect the set of files accessed

during execution of each class, computes the checksum for

these files, and stores them in the corresponding dependency

file. EKSTAZI currently collects all files that are either read or

written, but it could be even more precise to distinguish writes

that do not create a dependency [9]. Moreover, EKSTAZI tracks

even files that were attempted to be accessed but did not exist;

if those files are added later, the behavior can change.
In principle, we could collect file dependencies by adapting

a tool such as Fabricate [7] or Memoize [14]: these tools

can monitor any OS process to collect its file dependencies,

and thus could be used to monitor a JVM that runs tests.

However, these tools would be imprecise for two reasons.

First, they would not collect dependencies per test class when

multiple test classes run in one JVM. Second, they would not

collect dependencies at the level of .class files archived in

.jar files. Moreover, these tools are not portable from one

OS to another, and cannot be easily integrated with testing

frameworks (e.g., JUnit) and build systems (e.g., Maven).

To precisely collect accessed files, EKSTAZI dynamically

instruments the bytecode and monitors the execution to collect

both explicitly accessed files (through the java.io package)

and implicitly accessed files (i.e., the .class files that contain

the executed bytecode). EKSTAZI collects explicitly used files



by monitoring all standard Java library methods that may open

a file (e.g., FileInputStream). Files that contain bytecode

for Java classes are not explicitly accessed during execution;

instead, a class loader accesses a classfile when a class is

used for the first time. Our instrumentation collects a set

of objects of the type java.lang.Class that a test covers

during execution; EKSTAZI then finds for each class where

it was loaded from. If a class is not loaded from disk but

dynamically created during execution, it need not be tracked

as a dependency.

More precisely, EKSTAZI instruments the following code

points: (1) start of a constructor, (2) start of a static initializer,

(3) start of a static method, (4) access to a static field, (5) use

of a class literal, (6) reflection invocations, and (7) invocation

through invokeinterface (bytecode instruction). EKSTAZI

needs no special instrumentation for test classes: they get

captured as dependencies when their constructor is invoked

by JUnit. EKSTAZI also does not instrument the start of

instance methods: if a method of class C is invoked, then an

object of class C is already constructed, which captured the

dependencies on C.

E. Non-debug Checksums

EKSTAZI’s use of file checksums offers several advantages,

most notably (1) the old revision need not be available for the

A phase, and (2) hashing to compute checksums is fast. On top

of collecting the executable files (.class) from the archives

(.jar), EKSTAZI can compute the non-debug checksum for

the .class files. Computing the checksum from bytecodes

already ignores some changes in the source code (e.g., i++ and

i+=1 could be compiled the same way). The base approach

computes the checksum from the entire file content, including

all the bytecodes. However, two somewhat different executable

files may still have the same semantics in most contexts.

For example, adding an empty line in a .java file would

change the debug info in the corresponding .class file, but

almost all test executions would still be the same (unless they

explicitly observe the debug info). EKSTAZI can ignore certain

file parts, such as compile-time annotations and other debug

info, when computing the checksum. The trade-off is that the

non-debug checksum makes the A and C phases slower (rather

than quickly applying a hashing function on the entire file,

EKSTAZI needs to parse the file and run the hashing function

on parts of it), but it makes the E phase faster (as EKSTAZI

selects fewer tests).

IV. EVALUATION

This section (1) describes the projects used in our experi-

mental evaluation of EKSTAZI, (2) describes the experimental

setup, and (3) reports the RTS results in terms of the number

of selected test classes and the end-to-end time.

A. Projects

We used 32 open-source projects (totaling 4,937,189 LOC)

to evaluate EKSTAZI. The set of projects was chosen by three

undergraduate students who were not familiar with our study.

We suggested starting places with larger open-source projects:

Apache Projects, GitHub, and GoogleCode. We also asked

that each project satisfies several requirements: (1) has the

latest available revision build without errors, (2) has at least

100 JUnit tests, (3) uses Maven or Ant, and (4) uses SVN

or Git. The first two requirements were necessary to consider

compilable, non-trivial projects, but the last two requirements

were set to simplify automation of the experiments.

From about 100 projects initially considered, two-thirds

were excluded because they did not build (e.g., due to syntax

errors or missing dependencies), used a different build system

(e.g., Gradle), or had too few tests. The students confirmed that

they were able to execute JUnit tests in all selected projects.

We performed our evaluation on 615 revisions of 32

projects. To the best of our knowledge, this is the largest

dataset used in any RTS evaluation outside of Google [3].

B. Experimental Setup

The goal is to evaluate how EKSTAZI performs if RTS is run

for each committed project revision. (In general, developers

may run RTS even between commits [8], but there is no dataset

that would allow executing tests the same way that developers

executed them in between commits.) For each project, our

script checks out the revision that is 20 revisions before the

latest revision available at the time of the first download. If any

revision cannot build, it is ignored. If it can build, the script

executes the tests in three scenarios: (1) RetestAll executes all

tests in JUnit (without EKSTAZI), (2) executes the tests with

EKSTAZI while collecting dependencies in all AEC phases (the

way that a developer would use the tool), and (3) executes the

tests with EKSTAZI but without collecting dependencies, only

the AE phases (for the sake of experiments). The script then

repeats these steps for all revisions until reaching the latest

available revision.

In each step, the script measures the number of executed

tests—(1) all tests for JUnit or (2&3) selected tests for

EKSTAZI—and the testing time—(1) the execution time of all

tests for JUnit, (2) the end-to-end time for all AEC phases of

EKSTAZI, or (3) just the time for the AE phases of EKSTAZI.

The script measures the times to execute the build command

that the developers use to execute the tests (e.g., mvn test

or ant junit-tests). Finding the appropriate command

took a bit of effort because different projects use different

build target names, or the entire test suites for the largest

projects run too long to perform our experiments on multiple

revisions in reasonable time. We sometimes limited the tests

to a part of the entire project (e.g., the core tests for Hadoop

in RetestAll take almost 8 hours across 20 revisions, and the

full test suite takes over 17 hours for just one revision). By

measuring the time for the build command, we evaluate the

speedup that the developers would have observed had they

used EKSTAZI. Note that the speedup that EKSTAZI provides

over RetestAll is even bigger for the testing itself than for

the build command, because the build command has fixed

overhead before initiating the testing.



Project Link at https://github.com/

Apache Camel apache/camel
Apache Commons Math apache/commons-math
Apache CXF apache/cxf
Camel File Loadbalancer garethahealy/camel-file-loadbalancer
JBoss Fuse Examples garethahealy/jboss-fuse-examples
Jon Plugins garethahealy/jon-plugins
Zed hekonsek/zed

Fig. 1: Current EKSTAZI users

C. Summary of Results

We ran all experiments on a 4-core 1.6 GHz Intel i7 CPU

with 4GB of RAM, running Ubuntu Linux 12.04 LTS. We

used three versions of Oracle Java 64-Bit Server: 1.6.0 45,

1.7.0 45, and 1.8.0 05 because different versions were nec-

essary as several projects require specific older or newer

Java version. The testing time is the key metric to compare

RetestAll, EKSTAZI AEC, and EKSTAZI AE runs; as an

additional metric, we use the number of executed tests.

Overall, the selection ratio of test classes varies between

5% and 38% of RetestAll, the time for AEC varies between

9% and 138% (where over 100% is slowdown), and the time

for AE varies between 7% and 99%. On average, across all

the projects, the AEC time is 68%, and the AE time is 53%.

More importantly, all slowdowns are for projects with short-

running test suites (i.e., less than one minute). Considering

only projects with long-running test suites, the AEC time is

46%, and the AE time is 34%.

D. Case Study: Apache CXF

EKSTAZI has already been adopted by several open-source

projects listed in figure 1. We evaluated how EKSTAZI per-

formed on one of these projects (Apache CXF) over 80

selected recent revisions, after EKSTAZI was included in

the project. Figure 2 shows how EKSTAZI compares with

RetestAll in terms of end-to-end time. The plot shows that

EKSTAZI brought substantial savings to Apache CXF.

V. CONCLUSIONS

We described EKSTAZI, a tool for regression test selection.

EKSTAZI collects file dependencies for each test class, and

detects affected tests by checking if their dependent files

changed. EKSTAZI is easy to use and integrates with popular

build systems. Moreover, our evaluation shows promising re-

sults that can increase the chance of RTS adoption in practice.

Several open-source projects have already adopted EKSTAZI.

ACKNOWLEDGMENTS

We thank Alex Gyori, Farah Hariri, Owolabi Legunsen,

Yu Lin, Qingzhou Luo, Aleksandar Milicevic, and August

Shi for feedback on this work, and Dan Schweikert, Rohan

Sehgal, Nikhil Unni, and Andrey Zaytsev for helping with

the experiments in the evaluation. This material is based

upon work partially supported by the NSF Grant Nos. CNS-

0958199, CCF-1012759, CCF-1421503, and CCF-1439957.

11
/1

3/
14

12
/1

2/
14

10

15

20

25

30

35

40

45

50

Ti
m

e
 (

m
in

)

RetestAll Ekstazi

Fig. 2: End-to-end mvn test time for Apache CXF

REFERENCES

[1] Build in the cloud. http://google-engtools.blogspot.com/2011/
08/build-in-cloud-how-build-system-works.html.

[2] Ekstazi. http://ekstazi.org/.
[3] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improv-

ing regression testing in continuous integration development
environments. In FSE, 2014.

[4] E. Engström and P. Runeson. A qualitative survey of regression
testing practices. In PROFES. 2010.

[5] E. Engström, P. Runeson, and M. Skoglund. A systematic
review on regression test selection techniques. I&ST-J, 52(1),
2010.

[6] E. Engström, M. Skoglund, and P. Runeson. Empirical evalua-
tions of regression test selection techniques: a systematic review.
In ESEM, 2008.

[7] Fabricate. https://code.google.com/p/fabricate/.
[8] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov. An

empirical evaluation and comparison of manual and automated
test selection. In ASE, 2014.

[9] P. J. Guo and D. Engler. Using automatic persistent memoiza-
tion to facilitate data analysis scripting. In ISSTA, 2011.

[10] R. A. Haraty, N. Mansour, and B. Daou. Regression testing of
database applications. In SAM, 2001.

[11] R. A. Haraty, N. Mansour, and B. Daou. Regression test
selection for database applications. ATDR, 3, 2004.

[12] P. Hsia, X. Li, D. Chenho Kung, C.-T. Hsu, L. Li, Y. Toyoshima,
and C. Chen. A technique for the selective revalidation of OO
software. JSM, 9(4), 1997.

[13] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Class
firewall, test order, and regression testing of object-oriented
programs. JOOP, 8(2), 1995.

[14] Memoize. https://github.com/kgaughan/memoize.py.
[15] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso.

Regression testing in the presence of non-code changes. In
ICST, 2011.

[16] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing
to large software systems. In FSE, 2004.

[17] M. Skoglund and P. Runeson. Improving class firewall regres-
sion test selection by removing the class firewall. JOOP, 17(3),
2007.

[18] Testing at the speed and scale of Google, Jun 2011.
http://google-engtools.blogspot.com/2011/06/
testing-at-speed-and-scale-of-google.html.

[19] D. Willmor and S. M. Embury. A safe regression test selection
technique for database-driven applications. In ICSM, 2005.

[20] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: A survey. STVR, 22(2), 2012.

https://github.com/
https://github.com/apache/camel
https://github.com/apache/commons-math
https://github.com/apache/cxf
https://github.com/garethahealy/camel-file-loadbalancer
https://github.com/garethahealy/jboss-fuse-examples
https://github.com/garethahealy/jon-plugins
https://github.com/hekonsek/zed
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
http://ekstazi.org/
https://code.google.com/p/fabricate/
https://github.com/kgaughan/memoize.py
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html

