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ABSTRACT

Software a ects every aspect of our lives, and software devetrg write tests to check soft-
ware correctness. Software also rapidly evolves due to nevediag requirement changes,
and software developers practice regression testing { runningste against the latest project
revision to check that project changes did not break any functiatity. While regression test-
ing is important, it is also time-consuming due to the number of both s and revisions.

Regression test selection (RTS) speeds up regression testing élgating to run only tests
that are a ected by project changes. RTS is e cient if the time to slect tests is smaller than
the time to run unselected tests; RTS is safe if it guarantees thangelected tests cannot be
a ected by the changes; and RTS is precise if tests that are not acted are also unselected.
Although many RTS techniques have been proposed in researchesle techniques have not
been adopted in practice because they do not provide e ciency arghfety at once.

This dissertation presents three main bodies of research to motiga introduce, and
improve a novel, e cient, and safe RTS technique, calledEkstazi . Ekstazi is the rst
RTS technique being adopted by popular open-source projects.

First, this dissertation reports on the rst eld study of test selection. The study of logs,
recorded in real time from a diverse group of developers, nds thalmost all developers
perform manual RTS, i.e., manually select to run a subset of tests atch revision, and they
select these tests in mostly ad hoc ways. Speci cally, the study mdthat manual RTS is
not safe 74% of the time and not precise 73% of the time. These ndjs showed the urgent
need for a better automated RTS techniques that could be adomten practice.

Second, this dissertation introduce€kstazi , a novel RTS technique that is e cient
and safe. Ekstazi tracks dynamic dependencies of tests on les, and unlike most prior

RTS techniques,Ekstazi requires no integration with version-control systems.Ekstazi



computes for each test what les it depends on; the les can be eih executable code
or external resources. A test need not be run in the new projecevision if none of its
dependent les changed. This dissertation also describes an implertaion of Ekstazi for
the Java programming language and the JUnit testing framework,na presents an extensive
evaluation of Ekstazi on 615 revisions of 32 open-source projects (totaling almost 5M kne
of code) with shorter- and longer-running test suites. The resglshow thatEkstazi reduced
the testing time by 32% on average (and by 54% for longer-runningdt suites) compared to
executing all tests.Ekstazi also yields lower testing time than the existing RTS techniques,
despite the fact that Ekstazi may select more testsEkstazi is the rst RTS tool adopted
by several popular open-source projects, including Apache Cdm&pache Commons Math,
and Apache CXF.

Third, this dissertation presents a novel approach that improveprecision of any RTS
technique for projects with distributed software histories. The pproach considers multiple
old revisions, unlike all prior RTS techniques that reasoned about ahges between two
revisions { an old revision and a new revision { when selecting tests, extively assuming a
development process where changes occur in a linear sequencevéasscommon for CVS and
SVN). However, most projects nowadays follow a development mess that uses distributed
version-control systems (such as Git). Software histories arermgrally modeled as directed
graphs; in addition to changes occurring linearly, multiple revisions nae related by other
commands such as branch, merge, rebase, cherry-pick, revestc. The novel approach
reasons about commands that create each revision and selectstddfor a new revision by
considering multiple old revisions. This dissertation also proves thefety of the approach
and presents evaluation on several open-source projects. Thsults show that the approach

can reduce the number of selected tests over an order of magdiufor merge revisions.
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CHAPTER 1

Introduction

Software controls every aspect of our lives, e.g., ranging from cenmication to social net-
works to entertainment to business to transportation to health.Therefore, software correct-
ness is of utmost importance. Correctness issues { bugs { in sadt@ may lead to signi cant
nancial losses and casualties. We have witnessed the high cost afjb far too many times.
Prior studies estimate that bugs cost global economy more th&300 billion per year [10,46].

Despite the risk of introducing new bugs while making changes, softie constantly
evolves due to never-ending requirements. Thus, software deyeers have to check, at each
project revision, not only correctness of newly added functionafitbut also that the recent
project changes did not break any previously working functionality

Software testing is the most common approach in industry to cheaorrectness of soft-
ware. Software developers usually write tests for newly implemedtdéunctionality and in-
clude these tests in a test suite (i.e., a set of tests for the entireqect). To check that
project changes did not break previously working functionality, deslopers practicaegression
testing { running test suite at each project revision.

Although regression testing is important, it is costly because it fregntly runs a large
number of tests. Some studies [38,48,67,109,117] estimatat tlegression testing can take
up to 80% of the testing budget and up to 50% of the software magrmance cost. The cost
of regression testing increases as software grows. For exam@epgle reported that their
regression-testing system, TAP [65,146,149], has had a linearrgase in both the number of
project changes per day and the average test-suite executiameé per change, leading to a
guadratic increase in the total test-suite execution time per dayAs a result, the increase is
challenging to keep up with even for a company with an abundance afroputing resources.

Other companies and open-source projects also reported longression testing time [47,94].



Regression test selectiofRTS) is a promising approach to speed up regression testing.
Researchers have proposed many RTS techniques (e.g., [69, 8®8438, 161]); Engstmm
et al. [68] present a survey of RTS, and Yoo and Harman [157] presan extensive survey
of regression testing including RTS. A traditional RTS technique tads four inputs|two
project revisions (new and old), test suite at the new revision, and dependency infoation
from the test runs on the old revision|and produces, as output, asubset of the test suite for
the new revision. The subset includes the tests that can be a ectdy the changes; viewed
dually, the subset excludes the tests that cannot be a ected byhe changes and thus need
not be rerun on the new revision. RTS ig cient if selecting tests takes less time than total
running time of unselected testsprecise if tests that are not a ected are also unselected,
and safe if it guarantees that selected tests exclude only tests whose betwat cannot be
a ected by the changes.

While RTS was proposed over three decades ago [68, 71, 157], it hat meen widely
adopted in practice, except for the substantial success of the@gle TAP system [65,146,149]
and the Microsoft Echelon system [92,93,144]. Unfortunately, FAperforms RTS onlyacross
projects e.g., the YouTube project depends on the Guava project, sdl YouTube and all
Guava tests are run if anything in Guava changes, buall YouTube and no Guava tests
are run if anything in YouTube changes. In other words, TAP provids no bene t within
a project. However, most developers work on one isolated project at a timather than on
a project from a huge codebase as done at Google. Such smallejgmts would require a
ner-grained technique for more precise RTS. On the other sidejthough Echelon is more
precise (as it tracks basic blocks), it only prioritizes [66,139] butogs not select tests to run.

The lack of practical RTS tools leaves two options for developersitreer automatically
rerun all the tests or manually perform test selection. Rerunningllathe tests is safe by
de nition, but it can be quite imprecise and, therefore, ine cient. In contrast, manual test
selection, which we will refer to agnanual RTS can be unsafe and imprecise: developers
can select too few tests and thus miss to run some tests whose d&br di ers due to code
changes, or developers can select too many tests and thus waiste. In sum, a large number

of developers would bene t from an automated RTS technique thaworks in practice.

1We use commit and revision interchangeably to refer to a single node im software history graph.
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The key requirement for an RTS technique to be adopted is that thend-to-end timeis
shorter than the time to run all tests in the testing framework [110113], while guaranteeing
safety. A typical RTS technique has three phases: thanalysis (A) phase selects tests to
run, the execution E) phaseruns the selected tests, and theollection (C) phase collects
information from the current revision to enable the analysis for thaext revision. Most
research has evaluated RTS techniques based on the number ¢dced tests, i.e., implicitly
based on the time only for theE phase; a few papers that do report time (e.g., [124, 154])
measure onlyA and E phases, ignoring theC phase. To properly compare speed up (or slow
down) of RTS techniques, we believe it is important to consider thend-to-end time (A +
E + O that the developer observes, from initiating the test-suite exetion for a new code

revision until all test outcomes become available.

1.1 Thesis Statement

Our thesis is three-pronged:

(1) There is a need for an automated RTS technique that works practice.

(2) It is possible to design and develop safeand e cient RTS technique that can be
adopted in practice.

(3) It is possible to improve precision of RTS techniques for projects with distributed

software histories.

1.2 Contributions

To con rm the thesis statement, this dissertation makes the folloimg contributions:

" The dissertation presents the rst study of RTS in practice. The &idy shows that most
developers manually select to run only a subset of tests, and theglect these tests in
mostly ad hoc ways. Manual test selection is both unsafe and impiee: developers

select too few tests and thus miss to run some tests whose behndicers due to code

3



changes, or developers select too many tests and thus waste tindditionally, the
study shows that existing automated RTS techniques are ine ciens they take sub-
stantial time for analysis and collection phases. In sum, a large numbof developers

would bene t from an automated RTS technique that works in pradte.

The dissertation introduces a novel technique for RTS, namdgkstazi , which is safe
and e cient. Ekstazi computes for each test what les it depends on. A test need
not be run in the new project revision if none of its dependent les emnged. Ekstazi
takes a radically di erent view from the existing RTS techniques: whilghe existing
RTS techniques sacri ce e ciency for precision by keeping ne-grmed dependencies
(e.g., method),Ekstazi sacri ce the precision for e ciency by keeping coarse-grained
dependencies (i.e., les). In addition toEkstazi being safer than the existing tech-
niques, our evaluation on 32 projects, totaling almost 5M LOC, sha@ithat Ekstazi is
e cient: it reduced the end-to-end time 32% on average (and 54%wff longer-running
test suites) compared to executing all testsEkstazi also has lower end-to-end time
than the state-of-the-research RTS technique [158], despitket fact that Ekstazi se-
lects more tests.Ekstazi is the rst RTS tool adopted by several popular open-source

projects, including Apache Camel, Apache Commons Math, and Apae CXF.

The dissertation presents a novel approach to improve precisiohRTS techniques for
projects with distributed software histories. All prior RTS techniqes reason about
changes only between two revisions { an old revision and a new revisipe ectively

assuming a development process where changes occur in a lineanesstg. However,
most projects nowadays use distributed version-control systs. Software histories
are generally modeled as directed graphs; in addition to changes wrcing linearly,

multiple revisions can be related by other commands, e.g., branch, e, rebase,
cherry-pick, revert, etc. Unlike any prior RTS technique, our no#l approach reasons
about commands that create each revision to select tests for ameevision by consid-
ering multiple old revisions. We also prove the safety of the approaeimd present an
evaluation on several open-source projects. The results shdwat the approach can

reduce the number of selected tests over an order of magnituade merge revisions.
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The rest of this chapter describes in more detail these three boslief research.

1.3 Study of Manual RTS

Despite the importance of RTS, there was no prior research thatuslied if and how devel-
opers actually perform manual RTS, and how manual and automateRTS compare. Our
anecdotal experience shows that many developers select to rurtyosome of their tests, but
we do not know how many developers do so, how many tests they stlavhy they select
those tests, what automated support they use for manual RTS itheir Integrated Develop-
ment Environment (IDE), etc. Also, it is unknown how developers' ranual RTS practices
compare with any automated RTS technique proposed in the literata: how does develop-
ers' reasoning about a ected tests compare to the analysis of afe and precise automated
RTS technique? The potential need for adoptable automated RT®0ls makes it critical to
study current manual RTS practice and its e ects on safety and fgcision.

This dissertation presents the results of the rst study of manuaRTS and a rst com-
parison (in terms of safety, precision, and performance) of maasuand automated RTS.

Speci cally, we address the following research questions:
RQ1. How often do developers perform manual RTS?

RQ2. What is the relationship between manual RTS and size of testiges or amount

of code changes?
RQ3. What are some common scenarios in which developers performnmal RTS?
RQ4. How do developers commonly perform manual RTS?
RQ5. How good is current IDE support in terms of common scenarié@ manual RTS?

RQ6. How does manual RTS compare with automated RTS, in terms pfecision, safety,

and performance?

To address the rst set of questions about manual RTS (RQ1-RQ5we extensively

analyzed logs of IDE interactions recorded from a diverse group b4 developers (working

5



on 17 projects, i.e., some developers worked on multiple projectsidg our study), including
several experts from industry [120]. These logs cover a total ai®hours of development,
with 5,757 test sessions and a total of 264,562 executed teststest sessiorrefers to a run of
at least one test between two sets of code changes. We referdsttsessions with a single test
assingle-test sessionsand test sessions with more than one test asultiple-test sessionsTo
address RQ6, we compared the safety, precision, and perforrarf manual and automated
RTS for 450 test sessions of one representative project, usiig test available, at the time
of the study, automated RTS research prototype [158].

Several of our ndings are surprising. Regardless of the projeptoperties (open-source
vs. closed-source, small vs. large, few tests vs. many tests;. etalmost all developerger-
formed manual RTS. 62% of all test sessions executed a single testd of the multiple-test
sessions, on average, 59% had some test selection. The pervassge of manual RTS es-
tablishes the need to study manual RTS in more depth and compare With automated
RTS. Moreover, our comparison of manual and automated RTS [8prevealed that manual
RTS can be imprecise (in 73% of the test sessions considered, maRI& selects more tests
than automated RTS) and unsafe (in 27% of the test sessions cumesed, manual RTS selects
fewer tests than automated RTS). Finally, our experiments showhat current state-of-the-
research automated RTS may provide little time savings: the time tan by an automated
RTS tool?, per session, to select tests was 130.98.77 sec (MeanSD) and the (estimated)
time saved (by not executing unselected tests) was 219.88.88 sec. These results show a

strong need for better automated RTS techniques and tools.

1.4 Novel RTS Technique for Two Code Revisions

Lightweight Technique: We proposeEkstazi (pronounced \Ecstasy"f, a novel RTS
technique based onle dependencies Ekstazi is motivated by recent advances in build
systems [2, 3, 7{9, 50, 70, 115] and prior work on RTS based on slaependencies [67{69,

2This measures only the analysis time to identify the a ected tests @) but not the collection time (C).

3The word \ekstazi" in the Serbian language has the same meaning ase word \ecstasy" in the English
language: a feeling or state of intensely beautiful blissHttp://en.wiktionary.org/wiki/ecstasy ); the
name evolved over time: eXtreme Test Selection eXtreme Test seleCtion Ecstasy Ekstazi .


http://en.wiktionary.org/wiki/ecstasy

97,108,124,142] and external resources [54,88,117, 1544lismissed further in Chapter 5.
Unlike most prior RTS techniques based on ner-grained dependeas (e.g., methods)Ek-
stazi doesnot require integration with version-control systemsEkstazi does not explicitly
compare the old and new code revisions€Ekstazi computes for eachtest entity (be it a
test method or a test class) what les it depends on; the les can beither executable code
(e.q., .class les in Java) or external resources (e.g., con guration les). A tst need not
be rerun in the new revision if none of its dependent les changed.

Adoption Approach:  We note that testing frameworks, such as JUnit, are widely adopde
and well integrated with many popular build systems, such as Ant or Bven. For example,
our analysis of 666 most active, Maven-bastédava projects from GitHub showed that at
least 520 (78%) use JUnit (and 59 more use TestNG, another tesgiframework). In addition,
at least 101 projects (15%) use a code coverage tool, and 2 pctgeeven use a mutation
testing tool (PIT [127]). Yet, no project used automated RTS. Webelieve that integrating
a lightweight RTS technique with an existing testing framework would ligly increase RTS
adoption. Ideally, a project that already uses the testing framewvk could adopt RTS with
just a minimal change to its build script, such asuild.xml or pom.xml.

Implementation: We implement the Ekstazi technique in a tool integrated with the
JUnit testing framework. Our tool handles many features of Javarojects/language, such
as packing ofclass lesin .jar archives, comparison ofclass les using smart checksums
(e.g., ignoring debug information), instrumentation to collect depettencies using class load-
ers or Java agents, re ection, etc. Our tool can work out-offie-box on any project that uses
JUnit. The Ekstazi tool is available fromhttp://www.ekstazi.org

Extensive Evaluation: = We evaluateEkstazi on 615 revisions of 32 Java projects, ranging
from 7,389 to 920,208 LOC and from 83 to 641,534 test methods thiake from 8 seconds to
2,565 seconds to execute in the base case, calRetestAll (that runs all the tests) [110]. To
the best of our knowledge, this is the largest evaluation in any RTSwaly, and the rst to
report the end-to-end RTS time, including theCphase. The experiments show thaEkstazi

reduces the end-to-end time 32% on average (54% for longersiing test suites) compared

4We cloned 2000 most active Java projects but Itered those that dd not use Maven, because our
automated analysis considers only pom.xml les.
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Figure 1.1: Part of software history of the Linux Kernel

to RetestAll. Further, Ekstazi reduces the time 47% on average (66% for longer-running
test suites) when theC phase is performed in a separate, o -line run [48,63].

We also compareEkstazi with FaultTracer [158], a state-of-the-research RTS tool
based on ne-grained dependencies, on a few projects thadultTracer can work on. Not
only is Ekstazi faster than FaultTracer , but FaultTracer is, on average, even slower than
RetestAll. We discuss, in Section 3.5, why the main result[that Ekstazi is better than
FaultTracer in terms of the end-to-end timel|is not simply due to FaultTracer being a
research prototype but a likely general result. In sunkkstazi tracks dependencies at our
proposed le granularity, whereasFaultTracer tracks dependencies at a ner granularity.
While Ekstazi does select more tests thaRaultTracer and has a slightly slowerE phase,
Ekstazi has much fasterA and C phases and thus has a lower end-to-end time.

Ekstazi has already been integrated in the main repositories of several opsource
projects where it is used on a regular basis, including in Apache Canj#6], Apache Com-
mons Math [23], and Apache CXF [26].

1.5 Novel RTS Approach for Distributed Software Histories

Previous RTS techniques, which we will catraditional RTS techniques, viewed software his-
tory as a linear sequence of commits to a centralized version-caitsystem (as was common
for CVS or SVN). However, modern software development proses that use distributed

version-control systems (DVCSs) do not match this simplistic viewSoftware version histo-



ries that use DVCSs, such as Git and Mercurial, are complex graphs lwranches, merges,
and rebases of the code that mirror more complex sharing pattermmong developers. For
example, Figure 1.1 shows a part of the Linux Kernel Git repository 1]: this software

history is a complex graph, with multiple branches being merged. (Theis a case in Linux

where 30 branches are merged at once.) We empirically nd that sucdomplexities are not

isolated to the Linux Kernel development: most open-source cdueses perform frequent
merges. Section 4.4 reports detailed results for a number of opsurce projects; we nd

about third of the commits to be merge-related.

We consider the problem of RTS for codebases that use DVCS commds. One possible
baseline approachs to apply traditional RTS by picking an arbitrary linearization of the
software history. While this technique is safe (recall that a safe¢bnique does not miss tests
whose outcome may be a ected by the change), we empirically denstrate that this tech-
nique can be very imprecise (recall that an imprecise technique caglext many tests whose
outcome cannot be a ected by the change). Instead, we propoghe rst approach that ex-
plicitly takes into account the history graph of software revisions\We have implemented our
approach and show, through an evaluation on several open-soeicode repositories, that our
approach selects on average an order of magnitude fewer testart the baseline technique,
while still retaining safety.

We evaluate our approach both on real open-source code reposéds that use DVCS
and on distributed repositories that we systematically generatedm projects that use a
linear sequence of commits. As part of our approach, we proposelaompare twooptions
for selecting tests at each merge revision of such repositories.e$h options have di erent
trade-o s in terms of cost (how many traditional RTS analysis, i.e.A, need to be performed
to compute the selected tests) and precision (how many tests aelected to be run, while
maintaining safety). (Note that the saving in the number of testse ects in time saving forE
and Cphases.) In particular, we describe a fast option for code mergést doesnot require
any traditional RTS analysis between two revisions but still achieves adection in terms of
the number of tests, 10.89 better than a baseline technique that performs one traditional
RTS for a merge point. Another option, which performs one traditioal RTS analysis for

each branch being merged, achieves additional reduction of 2.78 the number of tests,
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but potentially requires many RTS analysis runs. We propose a heuiisto choose one of
the options based on the shape of the software history. We alscope safety of the options,

assuming that the traditional RTS analysis is safe.

1.6 Dissertation Organization
The rest of this dissertation is organized as follows.

Chapter 2: Manual Regression Test Selection
This chapter presents our study of manual RTS in practice; the salts of this study

were a part of the motivation for RTS techniques presented in chégrs 3 and 4.

Chapter 3: Regression Test Selection with Dynamic File Depe ndencies
This chapter presents the contributions of theEkstazi RTS technique for two code
revisions, which substantially speeds up end-to-end regressiostieg time compared

to RetestAll technique.

Chapter 4: Regression Test Selection for Distributed Softw are Histories
This chapter presents the contributions of a novel RTS approacfor projects with
distributed software histories, which improves e ciency of any RTSechnique at many

code revisions.

Chapter 5: Related Work
This chapter overviews the various bodies of work that are related the contributions

of this dissertation.

Chapter 6: Conclusion and Future Work
This chapter concludes the dissertation and presents various ditens for future work

building upon the contributions of this dissertation.
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CHAPTER 2

Manual Regression Test Selection

This chapter presents the rst study of manual RTS in practice; he results of the study
were a part of the motivation for our work presented in chapters and 4. This chapter is
organized as follows. Section 2.1 rst describes our research nalblogy and experimental
setup, and then discusses how developers actually perform mang&S. Section 2.2 presents
our comparison of manual and automated RTS. Section 2.3 descsljgotential improvements

for manual and automated RTS. Section 2.4 presents threats t@ahdity.

2.1 Evaluating Manual RTS

We rst present our methodology for analyzing manual RTS data tcanswer the research

guestions RQ1-RQ5 (listed in Section 1.3), and we then summarize ondings.

2.1.1 Methodology

We analyzed the data collected during a previous eld study [120], inhich the authors of the
study unobtrusively monitored developers' IDEs and recorded #ir programming activities
over three months. The collected data has been used in severabpresearch studies [118,
120, 150] on refactoring and version control; the work presedtén this dissertation is the
rst to focus on the (regression) testing aspects.

To collect data, the study participants were asked to install a reecd-and-replay tool,
CodingTracker [51], in their Eclipse [60] (Indigo) IDEs. Throughout the studyCodingTracker
recorded detailed code evolution data, ranging from individual codalits, start of each test,

and test outcome (e.g., pass/fail) up to high-level events like autcaed refactoring invoca-
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A

Project Test Sessions Test [methods] Selected Tests Selective
total single-test debug min max avg min  max avg sum time™"  Sessions

P1 41 20 8 1 7 4.68 1 7 2.59 106 89 28.57%
P> 218 152 68 1 886 43.70 1 886 9.71 2,116 203 77.27%
P3 41 28 9 1 530 19.46 1 530 15.61 640 2 38.46%
Pa 94 33 22 170 182 176.23 1 173 103.16 9,697 26 59.02%
Ps 1,231 883 852 1 172 83.00 1 141 13.01 16,019 374 99.71%
Pe 18 7 5 1 13 6.00 1 13 4.11 74 0 18.18%
P7 55 54 43 1 8 6.47 1 8 1.13 62 34 0.00%
Pg 612 446 306 1 59 34.29 1 44 2.56 1,565 89 92.77%
Pg 443 362 117 1 132 85.86 1 124 5.66 2,508 246 81.48%
P10 178 108 29 1 126 48.54 1 124  14.48 2,577 139 64.29%
P11 129 108 27 1 19 15.29 1 9 1.64 211 53 95.24%
P12 176 121 74 1 121 105.53 1 120 19.39 3,413 153 94.55%
P13 51 36 22 1 18 12.86 1 18 5.53 282 3 0.00%
P14 450 146 103 72 1,012 889.32 1 1,010 113.40 51,031 242 98.36%
Pis 156 78 60 1 1,663 13.40 1 1663 12.98 2,025 9 28.21%
P16 1,666 855 462 1 1,606 1,416.10 1 1,462 103.24 171,990 420 098.4
P17 198 157 50 1 6 1.83 1 4 1.24 246 23 31.71%
P 5,757 3,594 2,258 - - - - - - 264,562 2,113 -
Ari Mean 338.65 211.41 132.76 - - 174.27 - - - 15,562.47 124.31 59.19%

Table 2.1: Statistics for projects used in the study of manual RTS



tions and test session executionsodingTracker uploaded the collected data to a centralized
repository using existing infrastructure [150].

In this study, we only consider data from participants who had morghan ten test
sessions. Overall, the data encompasses 918 hours of code dewednt activities by 14 de-
velopers, of whom ve are professional programmers and nine atedents. The professional
programmers worked in software companies on projects spanniveyious domains such as
marketing, banking, business management, and database managet. The students were
Computer Science graduate students and senior undergraduatemmer interns, who worked
on a variety of research projects from six research labs at the Wersity of Illinois. The
programming experience of our study participants varied: one deleper had less than 5
years, eight developers had between 5{10 years, and ve devedop had more than 10 years.
None of the study participants knew how we would analyze the collext data; in fact, we
ourselves did not know all the analyses we would do at the time the datvas collected.

In the rest of this section, we discuss the tool used, the projscanalyzed, the challenges

faced, and the answers we found to the questions RQ1-RQ5.

CodingTracker

CodingTracker integrates well with one of the most popular IDEs, Eclipse [99]. Devglers do
not explicitly interact with CodingTracker during their work ow, and thus, the data recorded
by CodingTracker is as close as possible to what developers normally dGodingTracker
collects information about all test sessions. Because test-selectdata is available at every
test session, we were able to capture developers' manual RTSidiens. Each test session
includes a list of executed tests, their execution time, and their dizgs on completion (e.g.,
pass or fail). Further, CodingTracker collects information aboutcode changeshat happen
between test sessions.

Moreover, because test-selection data is available at every tesssion, we were able to
capture developers' manual RTS decisions more realistically and atreer granularity than
one could attempt to infer otherwise, e.g., based only on di erencégetween commits in a
version control system (VCS) [13,57,58, 79, 153].
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While CodingTracker logs provide a treasure trove of data, they have limitations. First,
CodingTracker logs cannot fully con rm that developers performed manual RTS.n theory,
developers could have installed some Eclipse plugin that would performutomated RTS
for them. However, we are not aware of any automated RTS toohat works in Eclipse.
Moreover, we have noticed signi cant time delays between code citges and the start of test
sessions, which likely correspond to developerslection times(i.e., time that developers
spend reasoning about which tests to run) and not automated tbouns. Therefore, we as-
sume that developers manually selected the tests in each test g@ss SecondCodingTracker
collects information aboutcode changes but not entire project state§he original motiva-
tion for CodingTracker was a study of refactorings [120], which needed only code changes,
so a design decision was made f@odingTracker to not collect the entire project states (to
save space/time for storing logs on disk and transferring them tté centralized repository).
However, the lack of entire states creates challenges to exacticonstruct the project as
the developer had it for each test session (e.g., to precisely couhetnumber of tests or to
compile and run tests for automated RTS). Sections 2.1.1 and 2.2.1diss how we address

these challenges.

Projects Under Analysis

As mentioned earlier, we analyzed the data from 14 developers wiogk on 17 research and
industrial projects, e.g., a Struts web application, a library for natral-language processing,
a library for object-relational mapping, and a research prototy for refactoring. Note that
some developers worked on several projects in their Eclipse IDErihg the three-month
study; CodingTracker recorded separate data for each project (more preciseBpdingTracker
tracks each Eclipse workspace) that was imported into Eclipse.

Table 2.1 is a summary of test-related data that we collectéd For each project, we rst
show the number of test sessions. Our analysis showed that a largenber of these sessions
execute only one test. We refer to such test sessions sasgle-test sessions Further, we

found that many of these single-test sessions execute only onsttat had failed in the

1Due to the conditions of Institutional Review Board approval, we cannot disclose the true names of
these projects.
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immediately preceding session. We refer to such sessionglebug test sessionsNext, we
show the number ofavailable testsi.e., the total number of tests in the project at the time of
a test session, discussed in more detail in Section 2.1.1. Then, wenstiee number ofselected
tests i.e., a subset of available tests that the developer selected to exis; including the
total number of selected tests that the developer executed thmghout the study and the total
execution time for all test sessiofds Finally, we show the percentage ofelective sessions
i.e., multiple-test sessionswhere the number of selected tests is smaller than the number
of available tests. In other words, the developer performed maauRTS in each such test
session by selecting to execute only a subset of the tests availabléhiait session; we exclude
single-test sessions as they may not be \true" selective sessiordeveloper knows that not
all a ected tests are selected.

The total test execution time with manual RTS is substantially lower han it would
have been without manual RTS. The sum of the \tim&n " column in Table 2.1 shows that,
when manual RTS is performed, the total test execution time forlledevelopers in our study
was 2,113 minutes. In contrast, had the developers always exeslitall available tests, we
estimate® that it would have resulted in a total test execution time of 23,806 miustes. In
other words, had the developers not performed manual RTS, tindest executions would
have taken about an order of magnitude more time.

We point out some interesting observations about single-test sesss. First, the projects
used in our study span many domains and vary in the number of availiband selected tests,
but they all have some single-test sessions and some multiple-tesssons. Second, single-
test sessions include both debug and non-debug sessions. Ndmudesingle-test sessions
usually happen when introducing a new class/feature, because ttieveloper focuses on the
new code. By default, in the rest of the paper, we exclude all singlest sessions from
our analyses and only mention them explicitly when some of the subseqt plots or other

numbers that we report include single-test sessions.

2The reported execution time is extracted from the timestamps reorded on developers' computers. It is
likely that developers used machines with di erent con gurations, but we do not have such information.

3Note that CodingTracker does/can not record the execution time for the unselected testshat were
not executed; we estimate the time from the averages of the saéess in which the tests were executed.
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/I Inputs: Session info extracted from CodingTracker logs
List' TestSessioasessions;
Map TestSession, SéPair ClassName, MethodNaneeeexecuted;

/I Output: Available tests for each test session
Map TestSession, SéPair ClassName, MethodNaneeeavailable;

0 ~NO O~ WDNPR

/I Compute available tests for each test session

ComputeAvailable()

10 Sef Pair ClassName, MethodNaneeA = ~« // Current available tests
11 available ="

12

13 foreachs: sessions

©

14 Set Pair ClassName, MethodNaneee = executed(s)
15 if @SA1

16 A A T cime>ASEC;M® >ee

17 A AS8e

18 availablése A

Figure 2.1: Algorithm for computing a set of available test methods aach test session

Challenges

CodingTracker was initially designed to study how code evolves over time [120], anduth
it recorded only code changes and various le activities but not thendéire state of the

developers' projects. As a consequence, we could not easily astithe number of available
tests for each test session: whileodingTracker did record the information about tests that

are executedselected, it had no explicit information about tests that werenot executed.
Therefore, we developed an algorithm to estimate the number ofalable tests (reported
in Table 2.1). We designed our algorithm to be conservative and likelynder-estimatethe

number of available tests. In other words, developers likely perfoed even more manual
RTS than we report.

Figure 2.1 shows the algorithm. The input is a list of test sessions eatted from the
CodingTracker logs; each session is mapped to a set of executed tests, and easch i
represented as a pair of a test class and test method name. Thepui is a mapping from
test sessions to the set of available tests. Although we extract meoinformation for each
test session, e.g., execution time, that information is not relevanof this algorithm.

The algorithm keeps track of the current set of available test, initialized to the empty

set (line 10). For each test session, the algorithm adds #othe tests executed in that session
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(line 17); those tests are de nitely available. The algorithm also att@pts to nd which tests
may have been removed and are not available any more. For each nplé-test session, the
algorithm removes fromA all the tests whose class matches one of the tests executed in the
current sessiors (line 16). The assumption is that executing one test from some clas§in a
session that has more than one test) likely means thatl tests from that class are executed
in the session. Thus, any test from the same class that was exesmlifpreviously but not in
the current session was likely removed from the project. This asaption is supported by
the fact that Eclipse provides rather limited support for selection fomultiple tests from the
same class as discussed in Section 2.1.2. For single-test sessiomsaltforithm only adds
the executed test toA; the assumption is that the same tests remain available as in the
previous session, but the developer decided to run only one of thests. Finally, A becomes
the available set of tests for the current session (line 18). Noteahour algorithm does not
account for removed test classes, but these are very rare in alata set. For example, we

inspected in detail projectP 14, one of the largest projects, and no test class was deleted.

2.1.2 Investigating Manual RTS

In sum, the results showed that almost all developers in our studyegformed some manual
RTS. They did so regardless of the size of their test suites and pegfs, showing that manual
RTS is widely practiced. Next, we provide details of our ndings regaling research questions
RQ1-RQ5.

RQ1: How often do developers perform manual RTS?

Developers performed manual RTS in 59.185.16% (mean SD) of the test sessions we
studied (column \Selective Sessions" in Table 2.1). Note that we rstompute selective
session ratio for each developer, and then we took anweightedarithmetic mean of those
ratios (rather than weighting by the number of test sessions), lbause we do not want
developers with the most test sessions to bias the results.

Across all 2,163 multiple-test sessions in our study, the averagdioaof selected tests

(tests that the developer executed) to available tests (tests & could have been executed),
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Figure 2.2: Distribution of test selection ratio with and without singletest sessions

i.e., averagetest selection ratig was only 35.07%. Note that this number is calculated from
all test sessions as if they were obtained from a single developer. St®w the distribution
of test selection ratios for all test sessions for all the developassing violin plots [95] in
Figure 2.2. A violin plot is similar to a boxplot but additionally shows probalility density of
the data at di erent values. The left part of Figure 2.2 shows the disibution of test selection
ratios when single-test sessions are included, while the right partasiss the distribution when
single-test sessions are excluded. We show only one half of each viplot; the missing
halves are symmetric. It can be observed from the violin plots that amual RTS happens
very frequently, and, most of the time, the test selection ratio is s than 20%.

We note here that our nding constitutes the rst empirical evidernce concerning manual
RTS in practice. More importantly, we think that this fact should result in a call-to-arms by
the automated RTS community, because poor manual RTS could benpering developer

productivity and impacting negatively on software quality.

RQ2: Does manual RTS depend on size of test suites or amount of code
changes?

Developers performed manual RTS regardless of the size of thasstt suites. We draw this

conclusion because almost all developers in our study performedmaal RTS, and they had
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a wide range of test-suite sizes. The average test-suite size in all @rojects we studied
was 174.27 tests (column \Test [methods]" in Table 2.1); the minimum wga6 tests, and
the maximum was 1,663 tests. Considering that these projects aveésmall to medium size,
and because they exhibit manual RTS, we expect that developerglarger projects would
perform even more manual RTS.

We also consider the relationship between the size of recent codarges and the number
of tests that developers select in each test session. One may expleat developers run more
tests after large code changes. We correlate the test selecti@tio with the code change
ratio for all test sessions. The code change ratio is calculated as theqgaestage of AST node
changes [120] since the previous test session over the total ASdde changes during the
entire study for a particular project. To assess correlation, we easure the Spearman's and
Pearson's correlation coe cient$. The Spearman's and Pearson's coe cients are 0.28 (0.25
when single-test sessions are included) and 0.16 (0.16 when singéégessions are included),
respectively. In all cases, the p-value was below 0°QWhich con rms that some correlation
exists. However, the low values of coe cients imply a low correlation étween the amount
of code changes immediately before a test session and the numideananually selected tests
in that session. This low correlation was a surprising nding as we hadkgected a higher

correlation between code changes and the number of selectedstes

RQ3: What are common scenarios for manual RTS?

The most common scenario in which developers performed manual&RWwas while debugging
a single test that failed in the previous session. Recall that we refer such test sessions as
debug test sessiongAs seen in Table 2.1 (column \debug"), debug test sessions accbtor
2,258 out of the 5,757 total test sessions considered. One comrpattern that we found in
the data was that, after one or more tests fail, developers usuabyart making code changes
to x those failing tests and keep rerunning only those failing testsntil they pass. After

all the failing tests pass, the developers then run most or all of thevailable tests to check

4Although the data is not normally distributed, and the relationship is n ot linear, we report the Pearson's
coe cient for completeness.
SA low p-value indicates that Spearman's or Pearson's coe cient is unlikely 0.
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for regressions. Another pattern is when a developer xes testee after another, rerunning
only a single failing test until it passes. Therefore, even if the develers had a \perfect”
automated RTS tool to run after each change, such a tool couldrqve distracting when
running many debug test sessions in sequence. Speci cally, everoihe code changes a ect
a larger number of tests, developers may prefer to temporarily mwonly the single test that
they are currently debugging. The existence of other reasons feTS, besides e ciency
improvements, shows a need for a di erent class of tools and teéhues that can meet these
actual developer needs; we discuss this further in Section 2.3.

It is also interesting to mention that the sequences of single-test sessiofi®., single-test
sessions without other test sessions in between) were much lontfem we expected. The
mean SD of the length of single-test session sequences was 63830. The longest single-
test session sequence contains 99 test sessions, which may indithat developers avoid

running all tests when focusing on new features and debugging.

RQ4: How do developers commonly perform manual RTS?

We found that developers use a number of ad hoc ways for manual® These include:
(1) commenting out tests that should not be run, (2) selecting indidual nodes of hierarchy
by which we refer to the way tests are hierarchically organized in a k& IDE, from test
methods to test classes to test packages to entire projects,da(B) creating test scripts,
which specify runs of several nodes of hierarchy.

Manual RTS by Commenting: One approach used by the developers was to comment
out unit tests they did not want to run. We observed that developes performed this type of
selection at di erent levels of granularity. Some developers commnted out individual test
methods within a test class, while others commented out entire tesfasses from JUnit
annotations that specify test suites. In both cases, the time odeead incurred by the
developer in deciding which tests to run and in commenting out the tes i.e., selection
time, is likely to be non-negligible. In other words, selection time is an estiteaof the time
spent by developers to manually \analyze" and select which tests mae a ected. Using the

available CodingTracker data, we estimate selection time to be the time elapsed from the last
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Figure 2.3: Relationship between time to execute unselected testsdaselection time

code change that immediately preceded a test session and the sta#rthe test session. We
exclude selection time values greater than 10 minutes, as develgperay rerun tests after
taking a break from work. Our experiments with break times of 5 mirtes and 20 minutes
did not signi cantly change any of the outcomes of our study. In Figre 2.3, we show the
correlation between selection time and (estimated) time to executeselected tests (which
is the time saved by not executing unselected tests). While the oadirtime savings due to
manual RTS is signi cant, we found that in 31% of the cases (pointsb@ve the identity line
in Figure 2.3) developers could have saved more time by simply runnintj the tests.

Manual RTS by Selecting Various Nodes of HierarchyDevelopers also perform test
selection by selecting a node of hierarchy in their IDE, e.g., they cousglect to run only a
single test or all the tests from a single class or package. This is a icdl RTS limitation
in Eclipselit restricts the developer to select to run only one node ofhierarchy (in the
limit this node represents the entire project such that the entiredst suite for that project
is run). In other words, the developer is not able to select to run aarbitrary set of tests
or test suites. Related but di erent, in several projects, by bravsing through the changes
collected byCodingTracker , we noticed that developers were writing scripts (\.launch” les
in Eclipse) to group tests. Using a script has the same limitation as maally selecting a
node of hierarchy. These limitations of Eclipse are shared by sevepapular IDEs as shown
in Table 2.2 [98,121,151].
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RQ5: How good is IDE support for manual RTS?

IDEs provide varying levels of support for performing manual RTSI'he IDEs we investigated
are: Eclipsé, IntelliJ IDEA 7, NetBean$, and Visual Studio 2016.

Support for Arbitrary Manual RTS: Recall from the answer to RQ4 that, in several
cases, the developers selected among tests by commenting ot tiasts within test classes
or commenting out test classes within test suites. This likely meansdhdevelopers would
prefer to arbitrarily select tests within nodes of hierarchy. Also,ur experience with running
the automated RTS tool (as discussed in Section 2.2) shows that alected tests may not
reside in the same node of hierarchy. Thus, it is also important to bebke to arbitrarily
select tests across these nodes.

Table 2.2 is a summary of available IDE support for selecting tests at erent levels of
granularity within and across nodes of hierarchy. All the IDEs allow evelopers to select
to run a single test. Moreover, several IDEs o er support for dnitrary selection. IntelliJ
allows to arbitrarily select tests by marking (in the GUI) each test tobe run subsequently.
This may be tedious for selecting among very many tests and is onlya#table for arbitrarily
selecting test classes across test packages or test methods iwithe same class. Visual
Studio allows arbitrary selection by specifying regular expressionsr test names which may
match across multiple nodes of hierarchy. However, not all devekens are familiar with
regular expressions, and knowledge of all test names in the prdjés required to write
them e ectively. Still, based on our study, having this type of supp seems very valuable,
given that it is needed by the developers. More importantly, Eclipse ¢&s support for such
arbitrary test selection.

Support for RTS across multiple test sessionde showed in the answer to RQ3 that the
most common pattern of manual RTS occurred during debug tesessions. It is likely that

the changes made between debug test sessions a ect more tékstmn the test being xed.

SKepler Service Release 1, build id: 20130919-08109.

"Version 12.1.6, build id: 1C-129.1359.

8Version 7.4, build id: 201310111528.

SWe selected Visual Studio 2010 rather than the latest version beasse Visual Studio 2010 was the only
IDE that has ever supported automated RTS; interestingly enoudh, this automated RTS support has been
removed from the IDE in subsequent releases.
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RTS Capability Eclipse NetBeans IntelliJ VS 2010

Select single test + + + +
Run all available tests + + + +
Arbitrary selection in a node of hierarchy - - +
Arbitrary selection across nodes of hierarchy - - +
Rerun only previously failing tests + + + +
Select one from many failing tests - - + +
Arbitrary selection among failing tests - - + +

Table 2.2: RTS capabilities of popular IDEs

Indeed, we found this to be the case for projed® 4. It is possible that the developers do
not select other tests a ected by the changes due to additionatasoning required to identify
such tests. Thus, their test selections during debug test sessaare likely to be unsafe and
may lead to extra debug steps at a latter stage. Although Visual 8tlio provides some level
of RTS automation, it has some shortcomings that we discuss in Siect 2.3.

One observation from our comparison of IDEs is that they di er in tleir level of support
for the di erent patterns of manual RTS, but even if we combined lhe best RTS features
from all IDEs investigated, it would still not be su cient for safe and precise RTS that

developers need.

2.2 Manual vs. Automated RTS

We next discuss the results of our comparison of manual and autatad RTS, by which
we address question RQ6. We compare both approaches in termssafety, precision, and
performance using one of the largest project from our study. A® industry-strength tool
for automated RTS was available, we useBaultTracer [158], a recently developed state-of-

the-research RTS prototype.

2.2.1 Methodology

We investigated in detail the data collected from one of our study pacipants, with the

goal of comparing manual and automated RTS. We cho$®, from Table 2.1 (for reasons
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described later in this section). First, we reconstructed the statofP 14 at every test session.
Recall that CodingTracker doesnot capture the entire state of the project for any test
session. We had to perform a substantial amount of work to nd acde revision that (likely)
matched the point where the developer use@odingTracker . We acknowledge the help of
the P14 developer who helped with this information, especially that the code owed from
an internal repository to an external repository. It took seval email exchanges to identify
the potential revision on top of which we could replay th&€odingTracker changes while still
being able to compile the project and execute the tests. Seconal; €ach test session, we ran
FaultTracer [158] on the project and compared the tests selected by the tawith the tests
selected by the developer. BecausaultTracer is a research prototype, it did not support
projects (in the general sense of the term \software proje¢jsthat are distributed across
multiple Eclipse projects (in the speci ¢ terminology of what Eclipse dés \projects") even
in the same Eclipse workspace. We worked around this limitation by aomatically merging
all Eclipse projects fromP 14 into one project that FaultTracer could analyze.

Upon replaying the CodingTracker logs and analyzing the data, we discovered that the
developer often ran multiple test sessions which had no code chamdgetween them. The
developer had organized the tests in separate test suites and a/aelected to run these
test suites one at a time, thereby potentially running multiple test s&sions in parallel.

To compare manual and automated RTS fairly and consistently, wecaounted for the
occurrence of multiple test sessions without intervening changeghis is becausé-aultTracer
would only select to run tests after detecting code changes beewmeconsecutive revisions of
the software. Our solution was to merge consecutive test sessiamhich had no intervening
changes. Consider two consecutive test sessioXs,and Y , with no intervening changes.
Suppose that the tests and their outcomes fot are [testl:OK, test4:0K] , and forY are
[testl:OK, test2:Failure, test3:0K] . Our merge would produce a union of the tests
in X and Y, and if a test happens to have di erent outcome, the merge wouldekp the
result from X ; however, because the test runs happened without interveningpanges, it
is reasonable to expect that if some tests are rerun, their outces should be the same.
We checked that, in our entire study, the test runs are largely detministic and found

a tiny percentage of non-deterministic tests (0.6%). The e ect ohon-deterministic tests
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on RTS is a worthwhile research topic on its own [112]. For the sessioksand Y shown
above, the merged session would contain the tetest1:OK, test2:Failure, test3:0K,
test4:0K] .

Having merged the manual test sessions as described above, thminer of test sessions
for comparing manual and automated RTS we obtained was 683. Warther limited our
comparison to the rst 450 of these 683 test sessions, due to dudties in automating the
setup of P14 to useFaultTracer to perform RTS between successive revisions. As we studied
a very large project, which evolved very quickly and had dependees on environment and
many third-party libraries, we could not easily automate the setup @oss all 683 merged
test sessions. The 450 test sessions used constitute the largestsecutive sequence of test
sessions which had the same setup. (We discuss other challengesddn Section 2.2.1.)
Across all 450 test sessions considerd?l,, has, on average, 83,980 lines of code and 889.32

available tests.

FaultTracer

The inputs to FaultTracer are two program revisions (that include test suites)|old revision
P and new revisionP %and the execution dependencies of tests at revisior® (i.e., a mapping
from test to nodes of extended control- ow graph [158] coverday the test). Let A be the
set of tests inP. FaultTracer produces, as output, a set of testS b A that are a ected
by the code changes betwedh and P® The unselected tests irA  Ssg cannot change their
behavior. Note that one also has to run new tests that are added *®

We choseFaultTracer because it represents the state-of-the-research in RTS and im-
plements a mostly safe RTS technique. AlsdraultTracer works at a ne-granularity level
(which improves its precision), because it tracks dependencies &eetlevel of an extended
control- ow graph [158]. To identify code changesFaultTracer implements an enhanced
change-impact analysis. In additionFaultTracer targets projects written in Java, the same
programming language used i 14, So, there was a natural t.

However, note that we chosé&aultTracer from a very limited pool. To the best of our

knowledge, there exists no other publicly available tool that perfars RTS at such ne gran-
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ularity level (e.g., statement, control- ow edge, basic block, etc.)Systems such as Google's
TAP system [146, 149] and Microsoft's Echelon system [92, 93, 144 proprietary. More-

over, TAP implements a coarse-grained analysis technique based dependencies between
modules, which would be overly imprecise fd? 14 that has only few modules and even the
largest project in the CodingTracker study consists of only a few modules. On the other

hand, Echelon only prioritizes tests but does not select tests foxexution.

Project under Analysis

We choseP 14 for the following major reasons. First, it was one of the projectsith the
largest recorded data (in terms of the number of test sessiond)al 17. Hence there was
a higher chance of observing a greater variety of test selectiontfgans. This also means
that we had more data points over which to compare manual and aamated RTS for the
same developer. Second, the developer worked on creating a lamgd industrially used
library, presenting the opportunity to study test selection in a relstic setting. Finally, with
the help of the original developer of the project, we were able toigaaccess to the exact
VCS commits of the project which matched the recorded data. Athe time of this writing,
developers of other projects have either been unable to provide access to their repositories,
or we are unable to reconstruct the revisions of their projects & matched the exact period

in the CodingTracker recording.

Challenges

BecauseCodingTracker did not capture entire project state, we had to reconstruct thé 14's
developer's workspace to be able to build and run tests for our anaily. Using timestamps
from the CodingTracker logs, we looked for a commit in the developer's VCS which satis ed
the following conditions: (1) the time of the commit matches the VCSammit timestamp
recorded in theCodingTracker logs and (2) the code compiles after checking it out of the
VCS and adding required dependencies. Finally, this checked-outvigon was imported
into Eclipse [60] and used as a basis for replaying tl&odingTracker logs. By replaying

the changes captured byCodingTracker on top of this initial state, we obtained the state
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Figure 2.4: The number of tests selected by manual and automat&I'S for P4

of the entire project in every succeeding test session. Note th@bdingTracker captures
changes to both the project under test and the testing code, drthus, the reconstructed
developer's workspace contained all the tests available at any givesst session. We assume
that the ability to replay the CodingTracker logs from the initial VCS commit till the end of
the logs without any error means that it was a likely valid starting point Thus, the recon-
structed workspace is as close to the developer's workspace asisgted while CodingTracker
monitored the developer's programming activity.

To mitigate these challenges in future studies focusing on RTSpdingTracker would need
to be modi ed to capture the complete initial state of the project & well as any dependencies

on external libraries.

2.2.2 Comparing Manual and Automated RTS

The number of selected tests:  We plot, in Figure 2.4, the number of tests selected by
manual RTS against the number of tests selected by automated BT(i.e., FaultTracer ) for
each test session. A quick look may reveal that there is a substaitdi erence between
manual and automated RTS, which we further analyze.

Figure 2.5 shows the distribution, across test sessions, of the ruen of tests selected
by manual and automated RTS. We show the distribution for two cass: with (\w/") and
without (\w/0") single-test sessions. It can be seen that the medn is much lower for the

automated tool in both cases. This implies that the developer is impese (i.e., selects
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Figure 2.5: Distribution of selected tests foP 14, with and without single-test sessions

more than necessary). Further, if single-test sessions are inahald we can observe that
the arithmetic mean (shown as a star) is lower for manual than autcated RTS. However,
when single-test sessions are excluded, we can see the opposités ihdicates, as expected,
that developer focuses on very few tests while debugging and ige®rthe other a ected
tests. Finally, when single-test sessions are excluded from the malty selected tests, we
found that many test sessions contain the number of tests equal the median. Our closer
inspection shows this to be due to the lack of support for arbitrargelection in Eclipse,
which forced the developer to run all tests from one test class in ade of hierarchy.
Safety and precision:  One major consideration in comparing manual and automated RTS
is the safety of these approaches relative to one another. In ethwords, if we assume that
the automated tool always selects all the tests a ected by a codbhange, does the developer
always select a superset of these? If the answer is in the a rmatiy¢hen the developer is
practicing safe RTS. On the contrary, if the set of tests selectday the developer does not
include all the tests selected by the tool, it means that manual RTS isnsafe (or the tool is
imprecise). To compare safety between manual and automated KTfor every test session,
we compare both the number of tests selected and the relationshiptween the sets of tests
selected using both approaches.

Figure 2.4 shows the relationship between the numbers of tests sédel by both ap-
proaches. The Spearman's and Pearson's correlation coe cientsea0.18 (p-value below

0.01) and 0.00 (p-value is 0.98), respectively. These values indicateasher low, almost
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non-existent, correlation.

We compared the relation between the sets of tests selected usingnual and automated
RTS. In 74% of the test sessions, the developer missed to selecieatst one of the tests
selected byFaultTracer . Assuming that FaultTracer is safe, we consider these cases to be
unsafe. In the remaining 26% of the test sessions, the developellested a superset of tests
selected byFaultTracer . Moreover, in 73% of the test sessions, the developer selectedano
tests than FaultTracer . Assuming that FaultTracer is precise, we consider these cases to be
imprecise. Note that a developer can be both unsafe and imprecisdatie same test session if
the developer selects some non-a ected tests and does not dedtdeast one of the a ected
tests. Thus, the sum of the percentages reported here (74% 8%) is greater than 100%.
Correlation with code changes: In Section 2.1.2, we found that forall projects in our
study there is low correlation between code change ratio and mamRrI'S. We revisit that
correlation in more detail for theP 14 project. To further compare manual and automated
RTS, we evaluate whether either of these selection approachesrelates better with code
changes. E ectively, we re-check our intuition that the developeis more likely to select fewer
tests after smaller code changes. We measured the Pearson's &pearman's correlation
coe cients for both manual and automated RTS. The values for Sparman's coe cients
are 0.22 (p-value below 0.01) and 0.01 (p-value is 0.93) for manual amgtomated RTS,
respectively. The values for Pearson's coe cients are 0.08 (p-vaus 0.10) and -0.02 (p-

value is 0.77) for manual and automated RTS, respectively. While theorrelation is low in
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all cases, the slightly higher values of correlation coe cients for mmaial RTS may indicate
that (compared to automated RTS) the developer indeed selectevier tests after smaller
changes and more tests after larger changes, as it becomes batd reason which tests are
a ected by larger changes. The plot in Figure 2.6 visualizes the relatiship, for each test
session, between code change ratio and the number of selecteddstéor both manual and
automated RTS. We can observe that manual RTS is less likely to sel@sany tests for small
changes (e.g., fewer red dots than blue dots are close to the x-aaisund the 600 mark). In
the end, the size of semantic e ect of a change (as measured bg tlumber of a ected tests)
is not easy to predict from the size of the syntactic change (as nsemed by the number of
AST nodes changed).

Performance: We nally compare manual and automated RTS based on the time take
to select the tests (i.e.,A phase). Figure 2.7 shows the distribution of selection time
(rst boxplot), as de ned in Section 2.1.1, and analysis time (secondboxplot) incurred
by FaultTracer . We can observe that the developer is faster than the automatdRir'S tool
in selecting which tests to run (the p-value for the Mann-Whitney U ést is below 0.01).
For comparison, we also show the distribution of estimated executidime for tests that
are unselected byFaultTracer (third boxplot) and actual execution time for tests selected
by FaultTracer (fourth boxplot). We ran all our experiments on a 3.40 GHz Intel Xen
E3-1240 V2 machine with 16GB of RAM, running Ubuntu Linux 12.04.4 L'$ and Oracle
Java 64-Bit Server version 1.6.@5.

One can observe thatrFaultTracer analysis (A) took substantial time. Although the
analysis time (130.9413.77 seconds) is, on average, less than the time saved by not ingn
unselected tests (219.868.88 seconds), it is important to note that one may also want
to take into account time to collect necessary dependency infortien to enable change
impact analysis ©); if time taken for analysis plus overhead for collecting dependensiplus
running selected tests is longer than time taken for running all theests, then test selection
provides no benet. This raises the question whether a ne-graimketechnique, such as the
one implemented inFaultTracer [158], can be optimized to bring bene ts to smaller projects.
We believe that research studies on automated RTS should provideora information about

their complexity (e.g., time to implement the technique) and e ciency €.g., analysis time,
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collection time, etc.). Previous research focused mostly on the nher of selected tests
(i.e., safety and precision) rather than on end-to-end time, which isot su cient for proper

comparison and discovering an RTS technique that works in practice

2.3 Discussion

We brie y discuss test-selection granularity, our experience withralDE-integrated auto-

mated RTS tool, and propose a potential improvement to automateRTS in IDESs.

Test Selection Granularity: We mentioned earlier that systems such as Google TAP [146,
149] and Microsoft Echelon [92,93,144] are successfully usedtést selection/priori-
tization. However, these systems are used as part of the gatdebck-in [72] infrastruc-
ture (i.e., all a ected regression tests are executed before a amihis accepted into
the repository). In other words, they are not used (and are nadpplicable) on devel-
opers' machines where developers commonly work on few modules d&itne (and run
tests locally). Even developers at either of these companies, letradomany developers
who do not develop code at the scale of Google or Microsoft, wouldnleg from an
improved ne-grained test selection. This provides motivation foresearch on nding
the best balance between analysis time, implementation complexityné bene ts ob-

tained from test selection. Improved ne-grained test selection auld be more widely
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applicable and could be used in addition to coarse-grained test seientsystems.

Experience with IDE-integrated automated RTS: We experimented with Visual Stu-
dio 2010, the only tool (to the best of our knowledge) that integtas automated RTS
with an IDE. We did this to see if such a tool would perform better tha manual RTS
in terms of safety and precision. Speci cally, the Test Impact Analsis (TIA) tool
in Visual Studio 2010 [145] was designed to help reduce testing e doy focusing on
tests that are likely a ected by code changes made since the prewsorun of the tests.
We think this is an excellent step towards improved RTS in developer @inonments
and that similar tools should be developed for other IDEs. We sucséglly installed
TIA and ran it on several simple examples we wrote and on an actuapen-source
project. However, we found a number of shortcomings with TIA. list importantly,
the tool is unsafe any change not related to a method body is ignored (e.g., eld
values, annotations, etc.). Also, changes like adding a method, rewing a method, or
overriding a method remain undetected [129]. Furthermore, TIAa@es not address any
of the issues commonly faced by selection techniques [37,44,589,01,138,154,156],
such as library updates, re ection, external resources, etc. ubopinion is that a safe

but imprecise tool would be more appreciated by developers.

Potential improvement of IDES: Across all projects, we observed that developers com-
monly select tests during debugging. Thus, one common way by whiah IDE might
help is to o er two separate modes of running tests, egular mode(without selection)
and atest-selection mode In the regular mode, the developer may choose to rerun,
after a series of code changes, one or more previously failing téatsile ignoring other
a ected tests). Once the test passes, the developer may run ihe test-selection mode
to check for regressions. Notice that the test-selection runs wid be separated by a
series of regular runs. Consider two test-selection rung, and B (Figure 2.8). In A,
some tests were selected to be run and failed. Developer then perfs (regular) runs
a;, ap, ... a,, until the previously failing test passes. The test selection ruB is then
executed to ensure that there are no regressions due to codarges, sincéA. Note

that the analysis performed before runnind@ should consider the di erence sincé
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Figure 2.8: Example of a pattern when developer alternates selectiand regular runs

and not just the di erence betweena, and B; otherwise, tests a ected by the changes
betweenA and a, would not be accounted for. As a simple optimization step, the
tool could exclude the tests a ected betweei and B that were already run after the

change that was a ecting them.

2.4 Threats to Validity

External: Developers, Projects, and Tools: The results of our study may not gener-
alize to projects outside of the scope of our study. To mitigate thigreat, we used
17 projects that cover various domains and 14 developers with drent levels of pro-
gramming experience. Further, these projects vary signi cantlyn size, number of
developers, and number of tests. Regarding the comparison ofmaal and automated
RTS, we used the largest project for which we could reconstruche entire state for

many test sessions.

We usedFaultTracer , aresearch prototype, to perform automated RTS. Other tool87,
44,55,67,89,91,138,154, 156] that implement di erent RTS tegiques could have led
to di erent results. We choseFaultTracer because it implements a mostly safe and
precise RTS technique (with respect to the analyzed changesi,). To the best of
our knowledge, no other publicly available tool for RTS exists (excethe proprietary
tools that work at coarse-granularity level, which would not be applable to any of
the projects used in our study). Our experience with Visual Studidemonstrated that

the implemented approach is unsafe, thus inappropriate for ouristy.

Finally, the patterns of test selection could dier in other languages We leave the
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investigation of how manual RTS is performed in other languages farture work.

Internal: Implementation Correctness: We extracted data relevant to manual RTS
from the study participants' recordings. To extract the data, ve wrote analyzers on
top of the infrastructure that was used in prior research studiesn refactorings [118,
120,150]. Further, new analyzers were tested and reviewed byledast two authors of

our ASE 2014 paper [78].

Construct: IDEs and Metrics: BecauseCodingTracker is implemented as an Eclipse
plugin, all developers in our study used Eclipse IDE. Therefore, owtudy results
may not hold for other IDEs. However, because Eclipse is the mospvgular IDE for
Java [99], our results hold for a signi cant portion of Java developsr We leave the
replication of our study using other popular IDEs (both for Java ad other languages)

for future work.

2.5 Summary

This chapter motivated the need for an automated RTS techniqueThe analysis of logs
obtained in real time from a diverse group of developers showed tr@most all developers
practice manual RTS, but they select tests in mostly ad hoc ways. sfa result, manual RTS
is unsafe and imprecise: developers select too few tests and thussnto run some tests
whose behavior di ers due to code changes, or developers selex many tests and thus
waste time. A large number of developers would bene t from an e ciet automated RTS

technique.
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CHAPTER 3

Regression Test Selection with Dynamic File
Dependencies

This chapter presents theEkstazi technique that was developed with the aim to enable
safe and e cient regression test selection betwedwo code revisions The lack of a practical
RTS technique (after three decades of research) and our study manual RTS (presented
in Chapter 2) were the main motivation points for the work present here. This chapter
is organized as follows. Section 3.1 introduces the key terms and ilhagses several RTS
techniques. Section 3.2 describes our RTS technique that trackgnémic le dependencies.
Section 3.3 presents our extensive evaluation. Section 3.4 desibeveral common patterns
to integrate our tool in projects that could bene t from RTS. Setion 3.5 discusses surprising

results and handling of various tests. Section 3.6 presents thredb validity.

3.1 Example

We use a synthetic example to introduce the key terms and illustrateveral RTS techniques
and their trade-o s. Figure 3.1 shows sample code that represeran old revision of a project:
two test classes| TestM and TestP!|contain four test methods| t1, t2, t3, and t4 [for two
classes under test|Cand D.

Executing the tests on this revision can obtain dependency matrixthat relates eachtest
entity to a set ofdependent elementsWe refer to the granularity of test entities asselection
granularity [this is the level at which tests are tracked and selected (as test rathods or test
classes), and we refer to the granularity of dependent elementscaverage granularitythis

is the level at which changes are determined. The dependent elefsecan be of various

1Test classes more commonly match the classes (rather than metks) under test, but this example allows
to succinctly present our main points.
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class TestMf class Cf

void t1() f assert new C().m() == 1;9 int m() f /* no method calls*/ g

void t2() f assert new D().m() == 1; ¢ int p() f /* no method calls*/ g
g g
class TestPf class D extends €

void t3() f assert new C().p() == 0;g @Override

void t4() f assert new D().p() == 4; ¢ int p() f /* no method calls*/ g
g g

Figure 3.1: Example test code (left) and code under test (right)

t1: C#C, C#m tl: TestM, C

t2: D#D, C#C, C#m t2: TestM, D, C TestM: TestM, C, D
t3: C#C, C#p t3: TestP, C TestP: TestP, C, D
t4: D#D, C#C, D#p t4: TestP, D, C (c) class-class
(a) method-method (b) method-class

Figure 3.2: Dependency matrices collected for code in Figure 3.1

granularity; for our example, we use methods and classes (but Bveer elements can be
used, e.g., basic blocks in Microsoft's Echelon [92,93,144], or coaedements can be used,
e.g., projects in Google's TAP [65, 146,149]).

A traditional RTS technique, e.g., FaultTracer [158], using methods for both the se-
lection granularity and the coverage granularity would obtain the deendency matrix as in
Figure 3.2a, where one dependent element is denoted as ClassNamethodName. Note
that we list the dependent elements for each test entity/row but d not show all the de-
pendent elements as columns, because the matrices are fairly spaEkstazi always uses
classes (more generally, it uses les) for the coverage granularépd can use either methods
or classes for the selection granularity. Using methods or classégains the dependency
matrices as in Figure 3.2b or Figure 3.2c, respectively. (In principlene could use methods
for the coverage granularity and classes for the selection gramitig but this was not done
traditionally, and we do not consider it.)

In Ekstazi , whenever a test entity depends oD, it also depends orC (in general, on all
superclasses ab). Each test entity also depends on its test class, e.gl, depends orTestM.
Finally, this simple example does not show the test code or the codedam test accessing
any les, but Ekstazi also tracks les.

Assume that a new code revision changes only the body of the methD.p and thus
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only the classD. FaultTracer would select to run only one testt4. In contrast, Ekstazi at
the method granularity would select two testsi2 and t4, because they both depend on the
changed clas®. Moreover, Ekstazi at the class granularity would select both test classes,
TestM and TestP, and thus all four test methods, because both test classes degeon the
changed clas®.

At a glance, it seems thatEkstazi cannot be better than the traditional techniques,
becauseEkstazi never selects fewer tests. However, our goal is to optimize thedein-end
time for RTS. Although Ekstazi selects some more tests and thus has a longer execution
phase, its use of much coarser dependencies shortens both thalysis and collection. As a
result, Ekstazi has a much lower end-to-end time.

Safely using methods as the coverage granularity is expensive. ARSRtechnique that
just intersects methods that are in the set of dependencies withé changes, as we discussed
in our simpli ed description, is unsafe i.e., it could miss to select some test that is a ected
by the changes. For example, the new revision could add a methaah classD (that overrides
C.n); a naive intersection would not select any test, but the outcomef @2 could change: the
execution of this test on the old revision does depend on (the abserof) D.m although the
test could not execute that (non-existent) method [89, 129]. Fanother example, the new
revision could change some eld accessed from the existing methodi again, it would be
necessary to reason about the change to determine which testeusld be selected [129, 158].

As a consequence, an RTS technique that uses methods as theecage granularity could
be safer by collecting more dependencies than just covered meathohence making the
collection expensive and later selecting more tests, making the exion more expensive),
and, more critically, it also needs sophisticated, expensive companmsof the old and new
revisions to reason about the changes (hence making the analysisage expensive). In
contrast, an RTS technigue that uses classes as the coveragangtarity can be safer by
simply collecting all accessed classes (hence speeding up the collegtaimd more critically,
it can use a rather fast check of the new revision that does not eveequire the old revision let
alone extensively comparing it with the new revision (hence speeding the analysis phase).
However, when tests depend not only on the code under test busa on external les [50,117],

collecting only the classes is not safe, and henE&stazi uses les as dependencies.
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Figure 3.3: Integration of an RTS technique in a typical build with a teng framework

3.2 Technique and Implementation

A typical RTS technique has three phases: thanalysis (A) phaseselects what tests to run
in the current revision, the execution E) phaseruns the selected tests, and theollection
(O phasecollects dependencies from the current revision to enable the arg/for the next
revision. Ekstazi collects dependencies at the level of les. For each test entitifkstazi
saves (in the corresponding row of the dependency matrix) the mas and checksums of the
les that the entity accesses during execution.

In the rest of the section, we rst describe the RTS phases in mometail. We then
brie y discuss safety, describe the format in whiclEkstazi saves the dependencies in the
Cphase and uses it in theA phase, and describe an optimization that is important to make

Ekstazi practical. We nally describe Ekstazi integration with a testing framework.
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3.2.1 Analysis A) Phase

The analysis phase irEkstazi is quite simple (and thus fast). For each test entityEkstazi
checks if the checksums of all accessed les are still the same (ie thew revision) as they
were (in the old revision). If so, the test entity is not selected to beun; otherwise, if
any checksum di ers, the test entity is selected to be run. Note @t an executable le can
remain the same even when its source le changes (e.g., renaming al@ariable); dually, the
executable le can change even when its source le remains the safeqy., due to a change
in compilation options). Comparing the checksums requires no sopiiated comparisons
of the old and new revisions (which prior RTS research techniquesuadly perform on the
source), and in fact, it does not even need to analyze the old revisiémuch like a build
system can incrementally compile code just by knowing which sourcées changed). The
only check is if the les remained the same.

Ekstazi naturally handles newly added test entities: if the dependency matrhas no
information for some entity, then the entity is selected to be run.itially, on the very rst
run of Ekstazi , there is no dependency matrix, and hence, it has no informationrfany
entity, so all entities are selected to be run.Ekstazi also naturally handles deleted test
entities becauseEkstazi does not discover what entities to run, but it only Iters what
existing non-a ected entities not to run among all the entities thatare discovered by a

testing framework or a build system (which does not discover deletentities).

3.2.2 Execution E) Phase

Although one can initiate test execution directly from a testing framawork, large projects
typically initiate test execution from a build system that invokes the esting framework.
Popular build systems (e.g., Ant or Maven) allow the user to specify aincludes list of all
test classes to execute (often speci ed as regular expressionbuiid con guration les such
asbuild.xml  or pom.xml) and con guration options to guide the test execution.

Figure 3.3 shows two approaches to integrate an RTS technique inypical Java project.
Ekstazi can work with testing frameworks in both approaches. When tightlyntegrating

the A and E phases (Figure 3.3a), the build system nds all test classes and iké&s a testing
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framework on these classes as if all test entities will ruikstazi then checks for each entity
if it should be actually run or not.

Loosely integrating theA and E phases (Figure 3.3b) can improve performance in some
cases. It rst determines what test entitiesnot to run. This avoids the unnecessary overhead
(e.g., loading classes or spawning a new JVM when the build spawns a J¥di each test
entity) of preparing to run an entity and nding it should not run. Th e A phase makes
an excludes list of test classesthat should not run, and the build system ignores them
before executing the tests. Without re-implementing the discowgrof all tests, the A phase
cannot make a list of all test classes to run (aincludes list) because it could miss new
tests (for which it has no rows in the dependency matrix)Ekstazi makes anexcludes list
from previously collected dependencies and excludes tetdssesrather than test methods
because most build systems support aexcludes list of classes. In case of the method
selection granularity, the tests methods that are not a ected a excluded at the beginning
of the E phase.

Figure 3.3 also shows two approaches to integrate tlieand C phases. First, the depen-
dencies for the test entities that were not selected cannot chaeigthese entities are not run
and their corresponding rows in the dependency matrix do not chga. But the test entities
that were selected need to be run to determine if they still pass aaif, and thus to inform
the user who initiated the test session. Because the dependendsthese entities change,
the simplest way to update their rows in the dependency matrix is witlone passthat both
determines the test outcome and updates the rows. However lleoting dependencies has
an overhead [152]. Therefore, some settings may prefer to tse passes one pass without
collecting dependencies, just to determine the test outcome andonm the user, and another
pass to also collect the dependencies. The second pass can beaestan parallel with the

rst pass or can be performed sequentially later.

3.2.3 Collection C) Phase

The collection phase creates the dependency matrix for the exesa test entities. Ekstazi

monitors the execution of the tests and the code under test to lbect the set of les accessed
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during execution of each entity, computes the checksum for theesles, and saves them in
(the corresponding rows of) the dependency matrixEkstazi currently collectsall les that
are either read or written, but it could be even more precise by distjuishing writes that
do not create a dependency [86]. Moreovdtkstazi tracks even les that were attempted
to be accessed but did not exist; if those les are added later, thesbavior can change.

In principle, we could collect le dependencies by adapting a tool sua@s Fabricate [70]
or Memoize [115]: these tools can monitor any OS process to collect iesdependencies,
and thus they could be used to monitor a JVM that runs tests. Hower, these tools would
be rather imprecise for at least two reasons. First, they would not collect dependencig@er
entity when multiple entities run in one JVM. Second, they would not clbect dependencies
at the level of .class les archived in .jar les. Moreover, these tools are not portable from
one OS to another, and also cannot be easily integrated in a testimgrihework such as JUnit
or a build system such as Maven.

We implemented theC phase inEkstazi as a pure Java library that is called from a
testing framework and addresses both reasons of imprecision tmmed above. To collect
dependencies per test entityEkstazi needs to be informed when an entity starts and ends.
Ekstazi o0 ers APl methods startCollectingDependencies(String name) , Which clears all
previously collected dependencies, afidishCollectingDependencies(String name) , Which
saves all the collected dependencies to an appropriate row in thepdadency matrix.

When using method selection granularity, due to common designs efting frameworks,
additional steps are needed to properly collect dependencies. Nayn many testing frame-
works invoke a constructor of a test class only once, and then irkeosetUp method(s) before
each test method is invoked. Thereforekstazi appends dependencies collected during
constructor invocation andsetUp methods(s) to the dependencies collected during the exe-
cution of each test method.

To precisely collect accessed le€kkstazi dynamically instruments the bytecode and
monitors the execution to collect both explicitly accessed les (thnagh the java.io pack-
age) and implicitly accessed les (i.e., theclass les that contain the executed bytecode).
Ekstazi collects explicitly accessed les by monitoring all standard Java librgrmethods

that may open a le (e.g., FilelnputStream ). In contrast, les that contain bytecode for
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Java classes are not explicitly accessed during execution; insteadslass loader accesses a
class le when needed. IEkstazi monitored only class loading, and two test entities access
the same classkEkstazi would collect the dependency on that class only for the test entities
that accesses the class rst, which would be unsafe. Our instrumtation collects a set of
objects of the typejava.lang.Class that a test depends on;Ekstazi then nds for each
class where it was loaded from. If a class is not loaded from disk butrdymically created
during execution, then it need not be tracked as a dependency,dagise it cannot change
unless the code that generates it changes.

Instrumented Code Points: More precisely, Ekstazi instruments the following code
points: (1) start of a constructor, (2) start of a static initializer, (3) start of a static method,
(4) access to a static eld, (5) use of a class literal, (6) re ection wocations, and (7) invoca-
tion through invokeinterface  (bytecode instruction). Ekstazi needs no special instrumen-
tation for the test class: it gets captured as a dependency whers itonstructor is invoked.
Ekstazi also does not instrument the start of instance methods: if a metdoof classCis
invoked, then an object of clas< is already constructed, which captured the dependency
on C. An alternative to instrumentation is to use debug interface, hower recent work on

tracing [105] showed that such an approach does not scale.

3.2.4 Safety

Ekstazi technique is safe forany code change andany change to the le system. The
safety of Ekstazi intuitively follows from the proved safety of RTS based on class depe
dencies [142] and partial builds based on le dependencies [50]. Wevéer as a future work
to formally prove that Ekstazi is safe in above mentioned cases. Note thBkstazi is un-
safe if tests execute unmanaged code or access network. Ineotwords, Ekstazi does not
collect dependencies outside of a JVM procedskstazi with method selection granularity
is also unsafe when there are enforced test-order dependenf3€s87,159]. Regarding non-
deterministic tests (e.g., thread scheduling)Ekstazi collects dependencies for single run
and guarantees that the test will be selected if any of its dependgas changes. However, if

a dependency changes for another run that was not observetigttest will not be selected.
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This is the common approach in RTS [138] because collecting depamdes for all runs (e.g.,
using software model checking) would be costly. Also, prior studig&l] showed that changes

in the test outcome are rare. After all, developers in practice, ruaach test only once.

3.2.5 Dependency Format

Ekstazi saves dependencies in a simple format similar to the dependency fatrof build
tools such as Fabricate [70]. For each test entity (be it a test metklar a test class) Ekstazi
saves the dependencies (i.e., one row from the dependency matiixa separate |le? whose
name corresponds to the entity name. For example in Figure 3.2Bkstazi creates four
les TestM.tl, TestM.t2 , TestP.t3 , and TestP.t4 . Saving dependencies from all test entities
together in one le would save space and could save time for smalleopects, but it would
increase time for large projects that often run several test dties in parallel (e.g., spawn
multiple JVMs for sets of test classes) so using one le would requirestly synchronization
on that le. In the future, we plan to explore other ways to persistthe dependency matrix,
e.g., in a database.

The le, which stores the dependencies, includes the names anddtsims of the les that
the test entity accesses during execution. These les are the exéable les (e.g., standalone
.class les or .class les packed in .jar les) or external resources (e.g., con guration
les). The checksum e ectively hashes the content of the les. Foexample, consider that
some test clasSTestP for a test t4 is in a jar le called tjar , the code for classe€ and
D are in a jar le called c.jar , and the test also depends on a le calledonfig.xml . If
the (hexcode) checksums for those four les are, saya2b, 0864, dead, and beef, then the
le with dependencies fort4 would have contentt.jar!TestP.class 1a2b, c.jar!C.class
0864, c.jar!D.class dead, config.xml beef . These checksums alloviekstazi to check

changes with no explicit access to the old code revision.

’Note that a le that stores dependencies should not be confused ith \dependent les", which are the
dependencies themselves.
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3.2.6 Smart Checksums

Ekstazi 's use of le checksums o ers several advantages, most notabll) (the old revision
need not be available for théA phase, and (2) hashing to compute checksums is fast. On top
of collecting the executable les (lass ) from the archives (jar ) rather than collecting the
entire archives,Ekstazi can compute thesmart checksumfor the .class les. Computing
the checksum from the bytecodes already ignores some changethénsource code (e.gi++
and i+=1 could be compiled the same way). The baseline approach computes tthecksum
from the entire content of a.class le, including all the bytecodes.

However, two somewhat di erent executable les may still have thesame semantics in
most contexts. For example, adding an empty line in gava le would change the debug info
in the correspondingclass le, but almost all test executions would still be the same (unless
they explicitly observe the debug info, e.g., through exceptions th&heck line numbers).
Ekstazi can ignore certain le parts, such as compile-time annotations andtrer debug
info, when computing the checksum. The trade-o is that the smarchecksum makes theA
and C phases slower (rather than quickly applying a checksum on the emtirle, Ekstazi
needs to parse parts of the le and run the checksum on a part ofi¢ le), but it makes
the E phase faster (a€kstazi selects fewer tests because some dependent les match even

after they change).

3.2.7 Integrating Ekstazi with JUnit

We implemented theEkstazi technique in a robust tool for Java and JUnit. We integrated
Ekstazi with JUnit because it is a widely used framework for executing unit t¢s in Java.
Regarding the implementation Ekstazi has to change (dynamically) a part of the JUnit core
itself to allow skipping a test method that should not be run. While JUnitprovides listeners
that can monitor start and end of tests, currently the listeners @nnot change the control-
ow of tests. Ekstazi supports both JUnit 3 and JUnit 4, each with some limitation. For
JUnit 3, Ekstazi supports only methods (not classes) as selection granularity. FdUnit 4,

if a project uses a custom runnerkstazi supports only classes (not methods); otherwise,

if no custom runner is usedEkstazi supports both classes and methods. Project developers
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could hook their custom runner toEkstazi by adding proper calls at the start and end of
each test entity, and allowingEkstazi to determine if a test should be run (Section 3.4).
It is important to note that when Ekstazi does not support some case, it simply o ers no

test selection and runs all the tests, as RetestAll.

3.3 Evaluation

This section describes an experimental evaluation &kstazi . We (1) describe the projects
used in the evaluation, (2) describe the experimental setup, (3gport the RTS results in
terms of both the number of selected test entities and the end-&nd time, (4) measure ben-
e ts of the smart checksum, (5) evaluate the importance of selgan granularity, (6) evaluate
the importance of coverage granularity by comparingkstazi with FaultTracer [158], and
(7) describe a case study oEkstazi integration with a popular open-source project.

We ran all the experiments on a 4-core 1.6 GHz Intel i7 CPU with 4GB &AM, running
Ubuntu Linux 12.04 LTS. We used three versions of Oracle Java 64tBserver: 1.6.045,
1.7.045, and 1.8.005. Di erent versions were necessary as several projects reguspeci c
older or newer Java version. For each project, we used the latesrsion of Java that

successfully compiled and executed all tests.

3.3.1 Projects

Table 3.1 lists the projects used in the evaluation; all 32 projects e@ropen source. The
set of projects was created by three undergraduate studentgho were not familiar with
our study. We suggested starting places that may contain opewtgce projects: Apache
Projects [1], GitHub [4], and GoogleCode [5]. We also asked that eaclojarct satis es
several requirements: (1) has the latest available revision (obt&d at the time of the rst
download) build without errors (using one of three Java versions meoned above), (2) has
at least 100 JUnit tests, (3) uses Ant or Maven to build code and egete tests, and (4) uses
SVN or Git version-control systems. The rst two requirements ®wre necessary to consider

compilable, non-trivial projects, but the last two requirements we set to simplify our
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automation of the experiments.

Note that Ekstazi itself doesnot require any integration with VCS, but our experiments
do require to automate checking out of various project revision§o support both Ant and
Maven across many project revisions, we do not modify theml con guration les but
replace the appropriatejunit.jar  (in the lib for Ant-based projects or in the Maven.m2
download repo) with ourekstazi.jar . Note that this is not how one would useEkstazi
in practice but it is only done for the sake of the experiments; we dathed in Section 3.4
how users can integrateEkstazi with their projects. From about 100 projects initially
considered from the three source-code repositories, two-thsravere excluded because they
did not build (e.g., due to syntax errors or missing dependencies),aasa di erent build
systems (e.g., Gradle), or had too few tests. The students comed that they were able to
execute JUnit tests in all selected projects.

Table 3.1 tabulates for each project its name, revision (that was ¢hlatest available
revision of the project at the time of our rst download), the numter of revisions that could
build (out of 20 revisionsbeforethe speci ed revision), and the total number of lines of code
(as reported by SLOCCount [143]). Table 3.2 tabulates the numbeif dUnit test methods
and classes (averaged across all buildable revisions), and the ager @vg) and total (P)
time to execute the entire test suite across all buildable revisions.h& remaining columns
are discussed in the following sections. Table 3.3 describes symbokdu®r column titles in
several other tables.

The row labeledP at the bottom of tables 3.1 and 3.2 shows the cumulative numbers
across all projects. In sum, we performed our evaluation on 618visions of 32 projects
totaling 4,937,189 LOC and 773,565 test methods. To the best of durowledge, this is the
largest dataset used in any RTS study.

We visually separate projects withshort running and long running test suites. While no
strict rule de nes the boundary between the two, we classi ed th@rojects whose test suites
execute in less than one minute as short running. The following sect® mostly present
results forall projects together, but in several cases we contrast the resufor projects with

short- and long-running test suites.
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Project Repository Location Revisions LOC
SHA Buildable
Cucumber [52] 5df09f85 20 19,939
JodaTimeV [104] f17223a4 20 82,996
Retro t [130] 810bb53e 20 7,389
CommonsValidator™ [35] 1610469 20 12,171
BVal [15] 1598345 20 17,202
CommonsJXPath" [31] 1564371 13 24,518
g GraphHopper [81] OeOe31llc 20 33,254
S EmpireDB [27] 1562914 20 43,980
= River [34] 1520131 19 297,565
2 Functor [28] 1541713 20 21,688
JFreeChart [102] 3070 20 140,575
CommonsColl4 [18] 1567759 20 52,040
CommonsLang3 [22] 1568639 20 63,425
CommonsCon g [19] 1571738 16 55,187
PdfBox [33] 1582785 20 109,951
GSCollections [84] 6270110e 20 920,208
ClosureCompiler [80] 65401150 20 211,951
CommonsNet [24] 1584216 19 25,698
CommonsDBCP [20] 1573792 16 18,759
Log4jM [32] 1567108 19 30,287
JGitM [103] bf33a6ee 20 124,436
CommonsIO [21] 1603493 20 25,981
2 wM [30] 1558740 18 72,179
§ Jenkins (light) [100] c826a014 20 112,511
; CommonsMath [23] 1573523 20 186,796
S AntM [14] 1570454 20 131,864
Continuum™ [25] 1534878 20 91,113
GuavaV [85] af2232f5 16 257,198
Camel (core) [17] f6114d52 20 604,301
Jetty [101] 0f70f288 20 282,041
Hadoop (core) [29] f3043f97 20 787,327
ZooKeepeM [36] 1605517 19 72,659
P - - - 615 4,937,189

Table 3.1: Statistics for projects used in the evaluation dEkstazi
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Project Test [ avq] Time [sec] Test Selection [%)]
classes methods avg P e% tEC tAE
Cucumber 49 296 8 169 12 99 76
JodaTimeV 124 4,039 10 214 21 107 75
Retro t 15 162 10 217 16 104 90
CommonsValidatorV 61 416 11 230 6 88 78
BVval 21 231 13 267 13 138 97
CommonsJXPath 33 386 15 205 20 94 81
g GraphHopper 80 677 15 303 16 8 59
S EmpireDB 23 113 27 546 18 112 99
E River 14 83 17 335 6 35 18
% Functor 164 1,134 21 439 13 112 90
JFreeChart 359 2,205 30 618 5 80 64
CommonsColl4 145 13,684 32 644 9 66 55
CommonsLang3 121 2,492 36 728 11 60 53
CommonsCon g 141 2,266 39 633 20 72 58
PdfBox 94 892 40 813 12 80 63
GSCollections 1,106 64,614 51 1,036 29 107 90
ClosureCompiler 233 8,864 71 1,429 17 62 50
CommonsNet 37 215 68 1,300 10 21 21
CommonsDBCP 27 480 76 1,229 21 46 39
Log4M 38 440 79 1,508 6 62 43
JGitM 229 2,223 83 1,663 22 65 50
CommonsIO 84 976 98 1,969 12 30 24
2 jwyM 121 1,005 170 3,077 38 53 44
€ Jenkins (light) 86 3,314 171 3,428 7 74 71
= CommonsMath 461 5859 249 4,996 6 77 16
5 AntM 234 1,667 380 7,613 13 24 21
Continuum™ 68 361 453 9,064 10 32 26
GuavaM 348 641,534 469 7,518 13 45 17
Camel (core) 2,015 4,975 1,296 25,938 5 9 7
Jetty 504 4,879 1,363 27,275 26 57 49
Hadoop (core) 317 2,551 1,415 28,316 7 38 22
ZooKeepeM 127 532 2,565 48,737 20 43 37
P 7,479 773,565 9,400 182,475 - - -
avgalle 14 68 53

avg for short running < Savg for long running e

1435 9086 7234

Table 3.2: Test selection results usingkstazi
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c% Percentage of test classes selected

e% Percentage of test entities selected

m%  Percentage of test methods selected

tAEC  Time for AEC normalized by time for RetestAll
tAE  Time for AE normalized by time for RetestAll

Table 3.3: Legend for symbols used in tables

3.3.2 Experimental Setup

We brie y describe our experimental setup. The goal is to evaluateow Ekstazi performs
if RTS is run for each committed project revision. In general, devgders may run RTS
even between commits (see Chapter 2), but there is no such daa#or the selected projects
that would allow executingtests the same way that developers executed them in between
commits. For each project, our experimental script checks outhé revision that is 20 revisions
beforethe revision speci ed in Table 3.1. If any revision cannot build, it is ignad from the
experiment. If it can build, the script executes the tests in threecenarios: (1) RetestAll
executes all tests (withoutEkstazi integration), (2) AECexecutes the tests withEkstazi
while collecting dependencies in all three phases (as a developer waigd the tool), and
(3) AE executes the tests withEkstazi but without collecting dependencies, i.e., only the
rst two phases (for experiments and comparison with prior work) The script then repeats
these steps for all revisions until reaching the latest available reios listed in Table 3.1.

In each step, the script measures the number of executed teg#dl tests for JUnit or
selected tests foEkstazi ) and the testing time (the execution of all tests for JUnit, the end
to-end time for all AECphases ofEkstazi , or just the times for the AE phases ofEkstazi ).
The script measures the time t@xecute the build commanthat the developers use to execute
the tests (e.g.,ant junit-tests  or mvn test). Finding the appropriate command took a bit
of e ort because di erent projects use di erent build target nanes, or the entire test suites
for the largest projects run too long to perform our experimenten multiple revisions in
reasonable time. We sometimes limited the tests to a part of the ergirproject (e.g., the

core tests for Hadoopin RetestAll take almost 8 hours across 20 revisions, and the fullste
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Figure 3.4. Number of available and selected tests (a,c) and enddnd time (b,d)

suite takes over 17 hours for just one revision). We did not modifyngthing in the build
con guration for running the tests, e.g., whether it uses multiple c@s or spawns JVMs. By
measuring the time for the build command, we evaluate the speed upat the developers
would have observed had they usedkstazi . Note that the speed up thatEkstazi provides
over RetestAll is evenbigger for the testing itself than for the build command, because the

build command has some xed cost before initiating the testing. Buttte developer observes
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the build command, and hence, we do not measure just the testingnie.

Ekstazi has two main options: selection granularity can be class or methodydasmart
checksum can be on or o. The default con guration uses the clasglection granularity
with smart checksum. As discussed earlier, due to idiosyncrasieslomit 3, Ekstazi does
not run the class selection granularity for all projects; those thause the method selection

granularity have the superscriptM in tables 3.1 and 3.2.

3.3.3 Main RTS Results

The testing time is the key metric to compare RetestAllEkstazi AEC and Ekstazi AE
runs; as an additional metric, we use the number of executed testigure 3.4 visualizes these
metrics for two of the projects,GraphHopperand CommonsLang3lots for other projects look
similar; the two shown projects include several revisions that areteresting to highlight.
For each of the 20 revisions, we plot the total number of test metlls (close to 700 in
GraphHopperand 2,500 inCommonsLang3the number of test methodsEkstazi selects at
the method level (blue line), the number of test method&kstazi selects at the class level
(yellow line), the time for RetestAll (orange line), the time for allAEC phases ofEkstazi

at the method level (purple line), and the time for onlyAE phases at the method level
(green line). For example, revision 12 for CommonsLangBas about 400 and 1,200 test
methods selected at the method and class level, respectively. Wanpaite the selection
ratio for each revision, in this case 400/2500 and 1200/2500, and then average the ratios
over all revisions by computing their arithmetic mean; folCommonsLang3he average ratio
is about 8% of methods and 11% of classes (Table 3.5). Likewise forasnwe compute the
ratio of the Ekstazi time over the RetestAll time for each revision and then average tke
ratios. In many revisions,Ekstazi is faster than RetestAll, but in some cases, it is slower,
e.g., revisions 1, 8, and 14 for GraphHopper In all starting revisions, 20, we expect
the Ekstazi AECto be slower than RetestAll, asEkstazi runs all the tests and collects
dependencies. We also expeEBikstazi AE runs to be faster thanEkstazi AECruns, but
there are some cases where the background processes ip tleag,., revisions 5 and 6 for

GraphHopper The background noise also makes the time for RetestAll to uctue, but over
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a large number of revisions we expect the noise to cancel out and walla fair comparison of
times for RetestAll, Ekstazi AEC and Ekstazi AE. The noise has smaller e ect on long
running test suites.

For each revision, we compute for both thECand AE runs: (1) the ratio of selected
tests over all available tests and (2) the ratio of testing time overhie time for RetestAll. We
next compute the average (arithmetic mean) values for ratios avall revisions. The last
three columns in Table 3.2 show the average selection per projeat%" shows the ratio of
test entities (methods or classes) selected, and the times #&EC and AE are normalized
to the JUnit run without Ekstazi (i.e., RetestAll). For example, for Cucumbey Ekstazi
selects on average 12% of test entities, but the time th&kstazi takes is 99% of RetestAll
(or 76% if the C phase is ignored), so it provides almost no bene t. In fact, for scgnother
projects with short-running test suites,Ekstazi is slower than RetestAll; we highlight such
cases, e.g., fododaTimein Table 3.2.

Overall, the selection ratio of test entities varies between 5% and %8 the time for AEC
varies between 9% anc138 % (slowdown), and the time forAE varies between 7% and
99%. On average, across all the projects, theECtime is 68%, and theAE time is 53%.
More importantly, all slowdowns are for projects with short-runing test suites. Considering
only the projects with long-running test suites,Ekstazi reduces theAECtime to 46% of
RetestAll, and reduces theAE time to 34%. In sum,Ekstazi appears useful for projects

whose test suites take over a minuteEkstazi on average roughly halves their testing time.

3.3.4 Smart Checksums

Recall that smart checksum performs a more expensive compansaf .class les to reduce
the number of selected test entities (Section 3.2.6). Table 3.4 shoavsomparison ofEkstazi
runs with smart checksum being o and on, for a diverse subset ofqjects. While smart
checksum improves both the number of selected entities and thedeto-end testing time (on
average and in most cases), there are several cases where &selts are the same, or the
reduction in the testing time is even slightly lower, e.g., both times fodenkins or the AE

time for CommonsMathThis happens if projects have no revision (in the last 20 revisions)
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Project All Smart

m% tAEC  tAE  mop tAEC  {AE
Camel (core) 5 9 7 5 9 7
CommonsDBCP 40 60 47 23 43 37
CommonslO 21 42 32 14 30 24
CommonsMath 6 85 16 6 75 17
CommonsNet 11 28 28 9 26 22
CommonsValidator 7 93 79 6 88 78
Ivy 47 63 52 38 53 44
Jenkins (light) 14 72 69 7 74 71
JFreeChart 6 87 70 5 84 67
avgalle 17 60 45 13 54 41

Table 3.4: Ekstazi without and with smart checksum

that modi es only debug info; using smart checksum then leads to dosvdown as it never
selects fewer tests but increases the cost of checking and coitecidependencies. We also
manually inspected the results for several projects and foundahsmart checksum can be
further improved: some.class les di er only in the order of annotations on methods, but
Java speci cation does not attach semantics to this order, so duchanges can be safely

ignored. In sum, smart checksum reduces the overall testing time

3.3.5 Selection Granularity

Ekstazi provides two levels of selection granularity: methods (which seled&swer tests for
the E phase but makes theA and C phases slower) and classes (which makes tAeand

C phases faster but selects more tests for tHe phase). Table 3.5 shows a comparison of
Ekstazi runs for these two levels, on several randomly selected projecBecauseEkstazi
does not support method selection granularity for projects thatise a custom JUnit runner,
we do not compare for such projects. Also, we do not compare fGuavg it has a huge
number of test methods, and with method selection granularity, audefault format for
saving dependencies (Section 3.2.5) would create a huge number les that may exceed

limits set by the le system. The class selection granularity improvesdih AEC and AE
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Project Method Class

m% tAEC  tAE o (REC  {AE
BVal 16 138 94 13 138 97
ClosureCompiler 20 96 53 17 62 50
CommonsColl4 7 81 60 9 66 55

CommonsCon g 19 76 57 20 72 58
CommonsDBCP 23 43 37 21 46 39

CommonsIO 14 30 24 12 30 24
CommonsLang3 8 63 51 11 60 53
CommonsMath 6 75 17 6 77 16
CommonsNet 9 26 22 10 21 21
Cucumber 13 105 78 12 99 76
EmpireDB 13 117 100 18 112 99
Functor 15 111 100 13 112 90
GraphHopper 19 84 54 16 85 59
GSCollections 16 198 101 29 107 90
JFreeChart 5 84 67 5 80 64
PdfBox 8 85 70 12 80 63
Retro t 19 113 93 16 104 90
River 6 34 17 6 35 18
avg-alle 13 87 61 14 77 59

Table 3.5: Ekstazi with method and class selection granularity

times on average and in most cases, especially @8Collections . In some cases where the
class selection granularity is not faster, it is only slightly slower. In sn, the class selection
granularity reduces the overall testing time compared to the metid selection granularity,

and the class selection granularity should be the default value.

3.3.6 Coverage Granularity

The results so far show that a coarser level of capturing depemiees is not necessarily
worse: although it selects more tests, it can lower the overall timaq fact, the classselection
granularity does have a lower overall time than the methodelection granularity We next
evaluate a similar question foircoverage granularity

We compareEkstazi , which uses the le coverage granularity, withFaultTracer [158],

which tracks dependencies on the edges of an extended contralv graph (ECFG). To the
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Project FaultTracer Ekstazi
m% tAEC m% tAEC

CommonsCon g 8 223 19 76

CommonsJXPath 14 294 20 94

CommonsLang3 1 183 8 63

CommonsNet 2 57 9 26

CommonsValidator 1 255 6 88

JodaTime 3 663 21 107
5

avg alle 279 14 76

Table 3.6: Test selection withFaultTracer and Ekstazi

best of our knowledgeFaultTracer was the only available tool for RTS FaultTracer collects
the set of ECFG edges covered during the execution of eagst method For comparison
purposes, we also usekstazi with the method selection granularity. FaultTracer imple-
ments a sophisticated change-impact analysis using the Eclipse [60fastructure to parse
and traverse Java sources of two revisions. Although robustaultTracer has several lim-
itations: (1) it requires that the project be an Eclipse project, (2 the project has to have
only a single module, (3) it does not track dependencies on externigls, (4) it requires that
both source revisions be available, (5) it does not track re ectionadls, (6) it does not select
newly added tests, (7) it does not detect any changes in the tesbae, and (8) it cannot
ignore changes in annotations thaEkstazi ignores via smart checksum [6]. Due to these
limitations, we had to discard most of the projects from the compé&on, e.g., 15 projects
had multiple modules, and forCommonslCFaultTracer was unable to instrument the code.

Table 3.6 shows a comparison dfaultTracer and Ekstazi , with the values, as earlier,
rst normalized to the savings compared to RetestAll for one revisn, and then averaged
across revisions. Theekstazi results are the same as in Table 3.2 and repeated for eas-
ier comparison. The results show thaEkstazi has a much lower end-to-end time than
FaultTracer , even thoughEkstazi does select more tests to run. Moreover, the results
show that FaultTracer is even slower than RetestAll.

To gain con dence in the implementation, we compared the sets ofds selected by

Ekstazi and FaultTracer . Our check con rmed that the Ekstazi results were correct.
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Project Link at  https://github.com/

Apache Camel apache/camel

Apache Commons Math  apache/commons-math

Apache CXF apache/cxf

Camel File Loadbalancer garethahealy/camel- le-loadbalancer
JBoss Fuse Examples garethahealy/jboss-fuse-examples
Jon Plugins garethahealy/jon-plugins

Zed hekonsek/zed

Table 3.7: Current Ekstazi users

In most cases,Ekstazi selected a superset of tests selected BwultTracer . (Note that
FaultTracer could have incorrectly selected a smaller number of tests th&kstazi because
FaultTracer is unsafe for some code changes. However, we have not encoadtéhose cases
in our experiments, most likely because we could ruraultTracer only with small projects
due to issues described above.) In a few casEkstazi (correctly) selected fewer tests than
FaultTracer for two reasons. First,Ekstazi can select fewer tests due to smart checksum
(Section 3.2.6). Secondikstazi ignores changes in source code that are not visible at the

bytecode level, e.g., local variable rename (Section 3.2.1).

3.3.7 Apache CXF Case Study

Several (Apache) projects (Table 3.7) integrate@kstazi into their main repositories. Note
that Ekstazi was integrated in these projects after we selected the projedts the evalua-
tion, as explained in Section 3.3.2. We evaluated hoktkstazi performed on one of these
projects (Apache CXF) over 80 selected recent revisions, aftékstazi was included in the
project. Figure 3.5 shows hoviekstazi compares with RetestAll in terms of the end-to-end

time. The plot shows that Ekstazi brought substantial savings to Apache CXF.

56


https://github.com/
https://github.com/apache/camel
https://github.com/apache/commons-math
https://github.com/apache/cxf
https://github.com/garethahealy/camel-file-loadbalancer
https://github.com/garethahealy/jboss-fuse-examples
https://github.com/garethahealy/jon-plugins
https://github.com/hekonsek/zed

Figure 3.5: End-to-endmvn test time for Apache CXF

3.4 Usage

We describe in this section how users can integraikstazi with projects that use Maven or
Ant. We also describe programmatic invocation oEkstazi that could be used to integrate
Ekstazi with other testing frameworks (e.g., TestNG). Finally, we describeeseral options

to tune behavior of Ekstazi . Ekstazi is currently distributed as a binary [62].

3.4.1 Integration with Maven

Ekstazi distribution includes a Maven plugin [62], available from Maven central. Qy a
single step is required to integratdkstazi with the existing build con guration les (i.e.,
pom.xml): include Ekstazi in the list of plugins. The plugin should be included in the same

list of plugins as Maven Sure re plugin.

<plugin >
<groupld >org.ekstazk/groupld >
<artifactld >ekstazi maven plugin</ artifactld >
<version >$f ekstazi.versiong/ version >

</ plugin >

where $f ekstazi.versioy denotes the version oEkstazi .
One can also setup a Maven pro le to enable test runs withkstazi only when explicitly

requested, e.g.mvn test -Pekstazi . Developers may use Ekstazi on their machines but still
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prefer to run all the tests on gated check-in. Using a Maven pro les a common approach

for integrating third-party tools, e.g., code coverage tools, into project.

<profile >
<id>ekstazk/id>
<gcj[|i(\j/ation > property > name>ekstazk/name> / property >/ activation >
< puUl >
<plugins >
<plugin >
<groupld >org.ekstazk/groupld >
<artifactld >ekstazi maven plugin</ artifactld >

<version >$f ekstazi.versiong</ version >
<executions >
<execution >

<id>ekstazk/id>
<goals>x< goal>seleck/ goal>=/ goals>
</ execution >
</ executions >
</ plugin >
</ plugins >
</ build >
</ profile >

3.4.2 Integration with Ant

The Ekstazi distribution also includes an Ant task [62] that can be easily integratewith
the existing build de nitions (i.e., build.xml ). The Ekstazi Ant task follows the common
integration approach; the following three steps are required:

(1) add namespace de nitions to the project element:

<project ... xmlns:ekstazi="antlib:org.ekstazi.ant">

(2) add the Ekstazi task de nition:

<taskdef wuri="antlib:org.ekstazi.ant" resource='org/ekstazi/ant/antlib.xml" >
<classpath path="org.ekstazi.core $f ekstazi.versiong.jar"/>
<classpath path="org.ekstazi.ant $f ekstazi.versiong.jar"/>

</ taskdef >

(3) wrap the existing JUnit target elements withEkstazi select:

<ekstazi:select >= junit fork="true" ...> ... </junit </ ekstazi:select >

3.4.3 Programmatic Invocation

Programmatic invocation provides an extension point to integrat&kstazi with other test-

ing frameworks (e.g., TestNG).Ekstazi o ers three API calls to check if any dependency
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is modi ed, to start collecting dependencies, and to nish collecting gpendencies:

org.ekstazi.Ekstazi.inst().checklfAffected ("name")
org.ekstazi.Ekstazi.inst().startCollectingDependendes ("name")

org.ekstazi.Ekstazi.inst().finishCollectingDependercies ("name")

where \name" is used as an id to refer to the collected dependencies a segment of
code (e.g., a fully quali ed test class name). These primitives can be oked from any JVM
code. For example, to integrateEkstazi  with JUnit, we implement a listener that invokes
startCollectingDependencies  before JUnit executes the rst test method in a class and

invokesfinishCollectingDependencies  after JUnit executes the last test method in a class.

3.4.4 Options

Ekstazi provides several options to customize its behavior: (I9rceall (boolean) can be
used to force the execution of all tests (even if they are not a &&d by recent changes) and
recollect dependencies, (Xprcefailing (boolean) can be used to force the execution of
the tests that failed in the previous run (even if they are not a ectd by recent changes),
(3) skipme (boolean) can be set to true to have all tests run withoutEkstazi , (4) root.dir
(File ) can be used to specify a directory where the dependencies foche#est entity are
stored, (5) dependencies.append (boolean) can be set to true to indicate that newly col-
lected dependencies should be appended to the existing dependEndor the same test
entity, (6) hash.algorithm (f Adler,CRC32,MD%) can be used to specify the algorithm to be
used to compute the checksums of collected dependencies, and@éh.without.debuginfo
(boolean) can be set to false to indicate that debug Java information shouldebincluded
when computing the checksum. Thedekstazi options can be speci ed in.ekstazirc le
(saved either in home directory or the current working directory) which is loaded when

Ekstazi is started.
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3.5 Discussion

In this section we brie y discuss our results and the implications of usy Ekstazi with

various tests.

Coarser Dependencies Can Be Faster: We argue that the cost ofFaultTracer is due
to its approachand not just due to its implementation being aresearch tool The cost
of FaultTracer stems from collecting ne-grained dependencies, which a ects bothe
A and Cphases. In particular, theA phase needs to parse both old and new revisions
and compare them. While Orso et al. [124] show how some of that caah be lowered
by Itering classes that did not change, their results show that theverhead of parsing
and comparison still ranges from a few seconds up to 4min [124]. Mover, collecting
ne-grained dependencies is also costly. For example, we had to stBaultTracer
from collecting ECFG dependencies o€ommonsMatafter one hour; it is interesting
to note that CommonsMatalso has the most expensiv€ phase forEkstazi ( 8X for
the initial run when there is no prior dependency information). Lasbut not least, in
terms of adoption, FaultTracer and similar approaches are also more challenging than
Ekstazi because they require access to the old revision through some inégigpn with
version-control systems. In contrastEkstazi only needs the checksums of dependent

les from the old revision.

Sparse Collection: Although Ekstazi collects dependencies at each revision by default,
one can envision collecting dependencies at everyh revision. Note that this approach
is safe as long as the analysis phase checks the changes betweertuhrent revision
and the latest revision for which dependencies were collected. Thigpaoach avoids

the cost of frequent collection but leads to less precise selection, B&.

Duplicate Tests: In a few cases, we observed th&kstazi did not run some tests during
the rst run, which initially seemed like a bug in Ekstazi . However, inspecting these
cases showed that some test classes were (ine ciently) included Hiple times in the
same test suite by the original developers. When JUnit (withouEkstazi ) runs these

classes, they are indeed executed multiple times. But whé&ikstazi runs these test
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suites, after it executes a test for the rst time, it saves the ta%s dependencies, so
when the test is encountered again for the same test suite, all it®pendencies are
the same, and the test is ignored. E ectively, the developers of ése projects could
speed up their test suites by rewriting the build con gurations or tke test suites to not
run the same tests multiple times. More precisely, if the same test thed name is
encounteredconsecutivelymultiple times, Ekstazi does not ignore the non- rst runs
but instead unions the dependencies for those invocations, to gupt parameterized

unit tests [148].

Parameterized Tests: Recent versions of JUnit support parameterized unit tests [148]. A
parameterized test de nes a set of input data and invokes a testethod with each
input from the set; each input may contain multiple values. This apprach is used in
data-driven scenarios where only the test input changes, but thest method remains
the same. Currently,Ekstazi considers a parameterized unit test as a single test and
unions the dependencies collected when executing the test metheith each element
from the input data set. In the future, we could explore tracking idividual invocations

of parameterized tests.

Flaky Tests: Tests can have non-deterministic executions for multiple reasonsch as
multi-threaded code, asynchronous calls, time dependencies,.€elfica test passes and
fails for the same code revision, it is often called a \ aky test" [112]. #&n if a test
has the same outcome, it can have di erent dependencies in di efieruns. Ekstazi
collects dependencies for single run and guarantees that the test will be selected if
any of its dependencies from that run changes. However, if a depgency changes for
another run that was not observed, the test will not be selectedConsidering only one
run is the common approach in RTS [138] because collecting deperdes for all runs

(e.g., using software model checking) would be costly.

Dependent Tests: Some test suite have (order) dependencies among tests [39,89]1le.g.,
if atesttl executes before tes2, then t2 passes, but otherwise it failsEkstazi does

not detect such dependencies among the tests. This ignoring ofpdadencies could
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lead to test failures if Ekstazi selects a test (e.g.t2) that depends on an unselected
test (e.g., t1). In case when developers intentionally create dependencies (efqr,

performance reasons), RTS would have to be dependency-aware

Parallel Execution vs. RTS: It may be (incorrectly) assumed that RTS is not needed in
the presence of parallel execution. However, even companies wail abundance of
resources cannot keep up with running all tests for every revisi¢5, 146, 149]. Ad-
ditionally, parallel test execution is orthogonal to RTS. Namely, RTSan signi cantly
speed up test execution even if the tests are run in parallel. For ewple, tests for
four projects used in our evaluation ClosureCompiler , Hadoop Jenkins , and JGit )
execute by default on all available cores; in our case, tests wer@ming on four cores.
Still, we can observe a substantial speedup in testing time whé&kstazi is integrated
even in these projects. Moreover, RTS itself can be parallelized. lmose integration
(Section 3.2.2), we can rurA of all tests in parallel and then runECof all tests in

parallel. In tight integration, we can run AECof all tests in parallel.

Unpredictable Time:  One criticism that we heard about RTS is that the time to execute
the test suite is not known by the developer in advance and is highly plendent on
the changes made since the previous test session. If theand E phases are together,
Ekstazi indeed cannot easily estimate the execution time (or the number ogdts),
because it checks the dependencies for a test entity just befahat entity starts the
execution. On the other hand, if theA and E phases are separatezkstazi can
estimate the execution time as soon as th& phase is done, based on the time for each

test entity recorded during the previous runs.

3.6 Threats to Validity
In this section we describe several threats to the validity of our eluation of Ekstazi .

External: The set of projects that we used in the evaluation may not be rementative.

To mitigate this threat, we performed our experiments on a large mober of projects
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that vary in size of code and tests, number of developers, numbef revisions, and
application domain. The set of evaluated projects is by far the largeset of projects

used in any RTS study.

We performed experiments on 20 revisions per project; the resuitould di er if we
selected more revisions or di erent segments from the softwaréstory. We consid-
ered only 20 revisions to limit the machine time needed for experimentBurther, we
consider each segment right before the latest available revision the time when we

started the experiments on the project).

The reported results for each project were obtained on a single dmne. The results
may di er based on the con guration (e.g., available memory). We alstried a small
subset of experiments on another machine and observed similarules in terms of
speed up, although the absolute times di ered due to machine corugations. Because
our goal is to compare real time, we did not want to merge experim@h results from

di erent machines.

Internal: Ekstazi implementation may contain bugs that may impact our conclusions. To
increase the con dence in our implementation, we reviewed the cqdested it on a
number of (small) examples, and manually inspected several resuis both small and

large projects.

Construct:  Although many RTS techniques have been proposed in the past, wentpared
Ekstazi only with FaultTracer . To the best of our knowledgeFaultTracer was the
only other available RTS tool. Our focus in comparison is not only on theumber of
selected tests but primarily on the end-to-end time taken for testg. We believe that
the time that the developer observes, from initiating the test-sué execution for the
new code revision until all the test outcomes become available, is theost relevant
metric for RTS.

63



3.7 Summary

This chapter introduced a novel, e cient RTS technique, calledEkstazi , that is being
adopted in practice. Ekstazi substantially speeds up regression testing (by reasoning about
two project revisions). Ekstazi 's use of coarse-grain dependencies, coupled with a few
optimizations, provides a \sweet-spot" betwee\C phases andce phase, which results in the

lowest end-to-end time.
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CHAPTER 4

Regression Test Selection for Distributed Software
Histories

This chapter presents the contributions of theEkstazi approach that was developed with
the aim to improve e ciency of any RTS technique for software thatusesdistributed version
control systems This chapter is organized as follows. Section 4.1 presents our rumn
example that illustrates three options for our approach. Section.2 formalizes our RTS
options for distributed software histories. Section 4.3 presenthé correctness proofs of the

options. Section 4.4 presents our evaluation and discusses the imgdiiens of the results.

4.1 Example

We motivate RTS for distributed software histories through an exaple session using Git, a
popular distributed version control system (DVCS).

Distributed software histories: Figure 4.1a visualizes a software history obtained by
performing the sequence of Git commands from Figure 4.1c. Firstewnitialize the software
history!, add two les and make a commitn; with these les (lines 1-4). Figure 4.1b
shows the abstract representation of the committed le€ and T; le C (\ Codé€’) de nes
three methodsm p, and q that are checked by four tests 4, t,, t3, andt, dened in le

T (\ Test"). Second, we create a new branch, (line 5), and make and commit changes to
methodsm(lines 6{7) and p (lines 8{9). Third, we create another branchb, (lines 10{11)
and perform a similar sequence of commands as on the rst brandmnés 12{15). Finally,
we switch to the master branch (line 16) and perform a similar sequence of commands
(lines 17{20). Although the sequence of commands is similar for ealslanch, we assume

non-con icting changes on di erent branches.

Lgitinit  creates the initial node not shown in Figure 4.1a.
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“tyitoitaitye

git init // initialize the repository

git add C// add C to the repository
gitadd T // add T to the repository
git commit -m "C and T'// commit nj

git checkout -bby // create branch by

1(m) /I modify method m in branchiy
git commit -am "Modi ed m' // commit n;
2(p) // modify method p in branchby

git commit -am "Modi ed p' // commit nj
git checkoutmaster // go to master branch
11 git checkout -bb, // create branch b,

12 3(m) // modify method m in branchb,

13 git commit -am "Modi ed m' // commit ng4
14 4(p) // modify method p in branchb,

0 ~NOO UL WNPRE

(a) Example software history

Code Methods in C 15 g!t commit -am "Modi ed p' // commit ns

m 16 git checkoutmaster // go to master branch

P 4 17 s(p) // modify method p in master branch

t, Mo ;o 7 7 18 git commit -am "Modi ed p' // commit ng

- t, peie ; 19 ¢(q) // modify method q in master branch

5 ts "o ; . 20 git commit -am "Modi edq' // commit n;
ke ts  “meipe;e 7 (c) Sequence of commands that creates

- the history on the left
(b) Methods and testsin Cand T

Figure 4.1: Example of a distributed software history

Figure 4.1b further shows which test executes which method; wesase that we have
available such a dependency matrix for every revision in the softvamistory. When a
method changes, the tests that executed that method are calledodi cation-traversing
tests. We focus on modi cations at a method level for simplicity of msentation; one can
track dependencies of other program elements as well [157]. lctfaour implementation
tracks dependencies on les, as presented in Chapter 3.

Traditional test selection: Traditional test selection takes as input an old and new
revision (together with their test suites), and a dependency mai for the old revision, and

returns a set of tests from the new revision such that each test ihe set either is new
or traverses at least one of the changes made between the old dhe new revision. We
have illustrated RTS between two code revisions in Section 3.1, and ¥ggmally de ne it

in Section 4.2. Tests that traverse a change can be found from tdependency matrix by
taking all the tests that have a checkmark (' ') for any changed method (corresponding to

the appropriate column in Figure 4.1b).

In our running example, all tests are new ah,, thus all tests are selected. Figure 4.1a
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indicates above each node the set of selected tests. At revisioy) after modifying method
m test selection would take as inputn; and n,, and would return all tests that traverse
the changed method. Based on our dependency matrix (Figure 4)llwve can identify that
testst, and t4 should be selected. Following the same reasoning, we can obtain a @fet
selected tests for each revision in the graph. For simplicity of exptien, we assume that
the dependency matrix remains the same for all the revisions. Howee, the matrix may
change if a modi cation of any method leads to modi cation in the call gaph. In case of a
change, the matrix would be recomputed; however, note that feach test that isnot selected
(because it does not execute any changed method), the row in ttiependency matrix would
not change.

Test selection for distributed software histories: Test selection for distributed soft-
ware histories has not been studied previously, to the best of oundwledge. We illustrate
what the traditional test selection would select when a software h@y (Figure 4.1a) is ex-
tended by executing some of the commands available in DVCSs. Speaily, we show that
a naive application of the traditional test selection leads to safe buiprecise results (i.e.,
selects too much), or requires several runs of traditional testlection techniques, which in-
troduces additional overhead and therefore reduces the beteof test selection. We consider

four commands: merge rebase cherry-pick, and revert.

Ttqitge “tostge

Ttiitaitgitge “tae Ttiitaitge

Figure 4.2: Extension of a software history (Figure 4.1) witlgit merge b, b,

Command: Merge. The merge command joins two or more development branches
together. A merge without conicts and any additional edits is calledauto-merge and is
the most common case in practice. Auto-merge has a property théne changes between

the merge point and its parents are a subset of the changes betwethe parents and the
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lowest common ancestors [40, 59] of the parents; we exploit thisoperty in our technique
and discuss it further in Section 4.2. If we executgit merge b ; b, after the sequence shown
in Figure 4.1c, while we are still on themaster branch, we will merge branche®, and b,
into a new revisionng on the master branch; this revisionng will have three parents: nz,
ns, and n;. Figure 4.2 visualizes the software history after the example mergemmand.
The guestion is what tests to select to run at revisiomg.

We propose three options (and Section 4.4 summarizes how to autdioally choose
between these options). First, we can use traditional test seleémh between the new revision
(ng) and its immediate dominator (n;) [11]. In our example, the changes between these
two revisions modify all the methods, so test selection would selecl four tests. The
advantage of this option is that it runs traditional test selection ofy once, but there can
be many changes, and therefore many tests are selected. Sdcare can run the traditional
test selection between the new revision and each of its parents asadte the intersection of
the selected tests. In our example, we would run the traditional & selection between the
following pairs: "n3; nge, "ns; Nge, “n7; nge; the results for each pair would beTt ;t,;t3;t 4,
Ttojtotaitae, and Tttt t,e, respectively. The intersection of these sets gives the nal
result: “tq;t,;t4. The intuition is that the tests not in the intersection ("tz*) need not
be run because their result for the new revisiom§) can be copied from at least one parent
(from n7 in this case). Although the second option selects fewer tests, itgquires running
traditional test selection three times, which can lead to substantiaverhead. Third, we can
collect tests that were modi cation-traversing on at least two braches (from the branching
revision at n, to the parents that get merged). In our example, we would seleCt ;;t ,;t 4.
As opposed to the two previous options, this third option requiregero runsof the traditional
test-selection techniques. However, this option is only safe fauto mergeand requires that
the test selection results be stored for previous revisions.

Command: Rebase. Rebase is an alternative way to integrate changes from one branch
into another. If we executegit rebase b ; after the sequence shown in Figure 4.1c, we will
rewind changes done omaster branch (5 and ), replay changes from branchy onto
master ( ; and ;), and replay the changes fronmaster ( s and ). Figure 4.3 visualizes the

software history after the example command is executed. Notedhthe resulting revision (o)
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~t1;t2;t3;t4- “toitge

Figure 4.3: Extension of a software history (Figure 4.1) witlyit rebase b

is the same as if a merge command was executedroaster branch (git merge master b ;).
The question is the same as for the merge command, what should leéested atng.

We propose three options, which are equivalent to the options fon¢ merge command of
two branches. First, we can use traditional test selection betwed¢he immediate dominator
of the new revision and the latest revision on the branch being relsas (n,), and the new
revision (ng). In our example, the changes between these two revisions moddl the
methods, so test selection would select all four tests. Second, @an use traditional test
selection between the new revisiomg) and the latest revisions on branches to/from which
we are rebasingrfz and ng) and take the intersection of the selected tests. In our example,
we would run the traditional test selection between the following past "ns;nge, "n;; Nge;
the results for each pair would beft,;ts;t4e and "t q;t,;t4*, respectively. The intersection
of these sets gives the nal result™t,;t 4. Note that we use revisiong1z and n; that are
available before rebase rewrites the software history on tmeaster branch. Third, we can
collect tests that were modi cation-traversing on both brancheshat are used in rebase. As
for the second option, we use the software history before it gaigerridden. In our example,
we would select’t,;t4e. As for the merge command, the third option works only if there
are no con icts during rebase.

Command: Cherry-pick.  Cherry-pick copies the changes introduced by some existing
commit, typically from one branch to another branch. If we execat git cherry -pickn,
after the sequence shown in Figure 4.1c, we will apply changeg)(made between revisions
n, and n, on top of revisionn; in master branch; the master branch will be extended with

a new revisionng. Figure 4.4 visualizes the software history after the command meoihed
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”t1;t2;t3;t4-

Figure 4.4: Extension of a software history (Figure 4.1) withlyit cherry -pick n,

above. The question is the same as for the merge command, whabg be selected ans.
Naively applying the traditional test selection on revisions; and ng would select the same
tests as at revisionn,, i.e., “tq;t4*. However, testt,; does not need to be selected atg,
as this test is not a ected by changes on thenaster branch (on which the cherry-picked

commit is applied). Therefore, the outcome of; at ng will be the same as ans.

“tyitge “totge

Ttyitoitaitge

Figure 4.5: Extension of a software history (Figure 4.1) withlyit revertn ¢

Command: Revert. This command reverts some existing commits. If we execute
gitrevertn ¢ after the sequence shown in Figure 4.1c, we will revert changes radxetween
revisionsn; and ng. Figure 4.5 visualizes the software history after the example comnuh
is executed. To visualize a change that is reverting a prior changeg wse the sign and the
same symbol as for the change being reverted. Theaster branch will be extended with a
new revisionng. Naively applying traditional test-selection techniques between vesions n;
and ng would select the same set of tests as at revisiog. Instead, if we consider the revert
command being executed and changes being made, we can reusadhalts of a test from
revision n, as long as the test is not modi cation-traversing for any other chage after the

revision being reverted g). In our example, we can see that the result of all tests obtained
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at n; can be reused ahg, and therefore no test has to be selected.

To conclude, naively applying traditional test selection may lead to immecise results
and/or spend too much time on analysis. We believe that our technigy which reasons
about the history and commands being executed, leads to a goodarece between reduction

(in terms of the number of tests being executed) and time spent @nalysis.

4.2 Test Selection Technique

4.2.1 Modeling Distributed Software Histories

We model a distributed software history as a directed acyclic grap® ~ N;Ee with a
unique root ng >N corresponding to the initial revision. Each noden >N corresponds to
a revision, and each edge corresponds to the parent-child relatiamong revisions. Each
node is created by applying one of the DVCS commands to a set of ear nodes; we
assume the command is known. (While the command that creates ad®is de nitely
known at the point of creation, it is not usually kept in the DVCS and canot always be
uniquely determined from the history.) The functionspredne ~ n®>N S n®ne >E-
and sucéne “ n®>N S n;n%® >E+ denote the set of parents and children of revision,
respectively. We writen j n®if there exists a directed path fromn to n®or the two nodes
are the same. We writen j ¥ n®to denote the set of all nodes between revisiomsand n
nj*n® ~ n®=Snj n®and n®f n®. Similarly, we write n j ¢ n®to denote the set of all
edges between revisions and n® n jen® 7 nERHEEBE SnNERERH | n%: The function
sdonine “ Nn®Sngjen®n%en ngjenandnxn® denotes the set of nodes that strictly
dominaten. For n X ng, the function imd ne denotes the unique immediate dominator [11] of
n, i.e.,imd ne n®such that n®>sdonine and “n®%sdonmne such that n®sdomn®® The
function donin;n® denotes the lowest common dominator ai and n% i.e., for a revision
n®%uch that predn®=c “n;n®, donin;n® imd n®® The function lca’ n;n® denotes
the lowest common ancestors [40, 53, 59] (also known as \mel@gses" or \best common
ancestors" in Git terminology [73,96]) for two revisions, i.elca n;n® ~ n®®Sn®® n and

N®¥ n®and "n®een*Buch that n®4*n and n®*9g®n®and n®§ n®e*® (We illustrate the
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di erence betweenlcaand domin Section 4.3.) The following property holds for all nodes:

dontn;n%j lca n;n% (4.1)

4.2.2 Test Selection for Two Revisions

We formalize test selection following earlier work in the area [136, 15&hd also model
changes and modi cation-traversing tests used later in our teclgue. This section focuses
on test selection betweenwo software revisions. The next sections present our technique
for distributed software histories.

Let G be a distributed software history. For a revisiom, let A"ne denote the set of tests
availableat the revisionn. Let n and n®be two revisions such thainj n® A test selection
technique takes as input the revisions and n®and returns a subsetSs,"n;n® of A" n%.
Note that new tests, i.e,A"n® A" ne are always inSse/ n; N%®. A test-selection technique is
safe[135] if every test iNnA"n® S, "n; n® has the same outcome when run on the revisions
n and n®

A trivially safe test-selection technique returnsA"n%®. However, we are interested in
selection techniques that select as small a subset as possible. Oag t@ obtain a minimal
set is to run each test inA"n%® on the two revisions and keep those that have di erent
outcomes. However, the purpose of the test selection technigseto be more e cient than
running all tests. A compromise between minimality and e ciency is preided by the notion
of modi cation-traversing tests [136], which syntactically over-approximate the set of tests
that may have a di erent outcome.

Let @n;n%® be the set of static code changes between revisiomsaand n®(which need
not be parent-child revisions). Various techniqgues compute theshanges at various levels
of granularity (e.g., basic blocks, statements, methods, or othgrogram elements). By

extension, we denote the set of changes on all edges frorto n®as

@ 'n;n% @n=H=e®
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We use the following property:

@n;n%b @ n;n% (4.2)

It is not an equality because some changes can be reverted on ahpabm n to n® e.g.,
consider a graph with three (consecutive) revisions;, n,, and nz, where all the changes
betweenn; and n, are reverted betweem, and n3: the code atn; is exactly the same as
the code atn,, and therefore@ni;nze o .

A test is called modi cation-traversing if its execution onn executes any code element
that is modi ed in n® For example, in Chapter 3, we introduced a technique where a teist
modi cation-traversing if it depends on at least one le that is modi ed betweenn and n®
(Note that \modi ed" includes all the cases where the existing elenmgs from n are changed
or removedin n®or where new elements araddedin n®) We de ne a predicate&t; @ that
holds if the testt is modi cation-traversing for any change in the given set of change@
The predicate can be computed by tracking code paths during a tesin and intersecting
covered program elements with a syntactic di erence between theo revisions. We de ne
a functionmt"T;@ ~ t>T S&t;, @ that returns every test from the set of testsT that is
modi cation-traversing for any change in the set of change® Two properties that we will

need later are thatmt distributes over changes:

M'T,@8@ mt'T,@*8mt'T, @ 4.3)

and thus mt is monotonic with respect to the set of changes:

@b @impliesmt"T; @b mt"T; @ (4.4)

Traditional test selection selects all modi cation-traversing tes from the old revision that

remain in the new revision and the new tests from the new revision:

tts"N;N% Mt"A"ne9 A'n%; @n;n%e 8 “A'n%  A"nee (4.5)
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As pred n® is often a singleton™ne, we also writetts™ ne;n® tts"n; n%,

4.2.3 Test Selection for Distributed Software Histories

Our technique for test selection takes as inputs (1) the softwahéstory G ~ N; E eoptionally
annotated with tests selected at each revision, (2) a specic reiost h >N that represents
the latest revision (which is usually calledHEADONn DVCS), and (3) optionally the DVCS
command used to create the revisioh. It produces as output a set of selected test " he

at the given software revision. (We assume that the output of ouechnique is intersected
with the set of available tests atHEAD We de ne our technique and prove (in Section 4.3)
that it guarantees safe test selection.

Command: Commit: The h revision has one parent, and the changes between the parent
and h can be arbitrary, with no special knowledge of how they were creat. The set of
selected tests can be computed by applying the traditional test Isetion between theh

revision and its parent:
Scommit e tts"pred he; he (4.6)

Command: Merge: Merge joins two or more revisions and extends the history with a

new revision that become$. We propose two general options to compute the set of selected

tests ath: the rstis fast but possibly imprecise, and the second is slower buhore precise.
Option 1. This option performs the traditional test selection betwen the immediate

dominator of h and h itself:
Sﬁ]ergeAh- tts”imd he: he (4.7)

This option is fast: it computes only one traditional test selection,\en if the merge has many
parents. However, the number of modi cations between the twoewisions being compared
can be large, leading to many tests being selected unnecessarily. r @mpirical evalua-

tion in Section 4.4 shows that this option indeed selects too many testdiscouraging the

straightforward use of this option.
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Option 2: This option performs one traditional test selection betwen each parent of the

merged revision and the merged revisiom itself, and then intersects the resulting sets:

Sﬁ‘nergeAh- tts™n; he (4.8)
n>pred he

This option can be more precise, selecting substantially fewer testdowever, it has to run
k traditional RTS analyses fork parents. Note that we could go to the extreme and, for
a given software history with nodes N (whose number 8l $, de ne Sﬂe?ge that performs
one traditional RTS analysis between each revision in the softwarestory and the merge
revision, and then takes their intersection:sfe?ggh- 9 s tts™n;he. This would be the
most precise option for the given history and the given traditional RS, but it would require

8l Straditional RTS analyses.
Theorem 1. Sk he and Sk, he are safe for every merge revisioh.

We prove this Theorem in Section 4.3.

Note that Sieqe he and Sk he are incomparable in terms of precision; in general
one or the other could be smaller, but in practicé,..4."he is almost always much better
(Section 4.4). A contrived example (Figure 4.6) whergy,. . he is smaller is this: starting
from a nodeny, branch into n, (that changes some methodn to m% and ns (that changes
the samem to m®®and then mergen, and nz into n4 such that m in n4 is the same asn
in ny (note that such a merge requires manually resolving the con ict ofi@rent changes in
m®and m®e we have @ny;nge " while @ny;nss9 @ns;nge = me, and thus Sh]ergeAm-

would select all tests that depend omn, whereasS;,.qe"N4* would not select any test.

Figure 4.6: S,erqe May select more tests tharGlhgge; N1 Ngand ;"mex ;" me
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Command: Automerge: A common special case ahergeis auto merge where revisions
are merged automatically without any manual changes to resolvercicts. (Using the ex-

isting DVCS commands can quickly check if a merge is an auto merge.) gnically (see
Table 4.1), auto merge is very common: on average over 90% of rewns with more than
one parent are auto merges.

The key property of auto merge is that the merged code revision $ia union of all
code changes from all branches but has only those changes (i.e.ptier manual changes).
Formally, given k parents p; p2;:::pc that get merged into a new revisionh, the changes
from each parentp to the merged revisionh re ect the changes on all the branches for

di erent parents:

@p; he @l; p% (4.9)
p®pred he;pXp I>ca’p;p®
The formula useslca because of the way Git auto merges branches [73, 96].

For auto merge, we give a test-selection techniqu&l,,.. that is based entirely on the
software history up to the parents being merged and does not téce running any traditional
test selection between pairs of code revisions at the point of mei@éthough it assumes that
test selection was performed on the revisions up to the parents tbie merge). The set of
selected tests consists of the (1) existing tests (from the lowesbmmon dominator of two
(di erent) parents of h) a ected by changes on at least two di erent branches being meegl

(because the interplay of the changes from various branches cgmthe test outcome):

S, "he h S Nee9” Scel Nee (4.10)
p;pepred he;pxp®d dom™p;p® n>dj p~ de n>dj ¥p= de

and (2) new tests available at the merge point but not available on allrenches:

Swew he  A”he A" p=E (4.11)
p®espred he

Finally, S%,ergeAh- S, "he8 S, he. The advantage of this option is that it runs zero

traditional test selections. One disadvantage is that it could selechore tests thanSf,e .
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Another disadvantage is that it requires storing tests selected &ach revision.
Theorem 2. S} he is safe for everyauto merge revisionh.

Intuitively, S)eqe iS safe because a test that is a ected on only one branch need na b
rerun at the merge point: it has the same result at that point as onhiat one branch. The
proof is in Section 4.3.

Command: Rebase: Rebasereplays the changes from one branch into another and then
reapplies the local changes; the latest reapplied local change bbeesh. We denote the

rom to
ebase and n rebase’

latest revisions on the branch from/to which we rebase ax,{ respectively.
We propose two options to compute the set of selected teststat These options are based
on the observation that the merge and rebase commands are usedchieve the same goal
(but produce di erent shapes of the resulting software history) Note that all the rebase
options, introduced below, perform as we had done a merge rspmpute the set of selected
tests, and then perform rebase that changes the shape of thretware history. Speci cally,
we denotehyege (D) to be the result of a merge command on two branches that are aise
in the rebase command. The partial evaluation o8}, and Sfe.qe, When the number of

branches is equal to two, results in the following options:

SrlebaseAh' tts"imd" hmerge'; hmerge' (4.12)

. R _ ~ from .
Sopase N* 1SN Nmerge® 9 1S™N 0T - Ninerge ® (4.13)

rebase’

Similarly, we can de ne an option for a special case wheabaseis auto rebase

g)ebase’\hmerge' B Ssel N9 Ssel Nee
n>dj i”:;%rgse T ode n>dj tntr(ébase T de
8" A hnerge® A" pee (4.14)
p>~n:;?3[:se ; :ce):base °
Command: Cherry-pick: Cherry-pick reapplies the changes that were performed be-

tween a commitng, and one of its parentsng >predneye (the parent can be implicit for
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non-mergen,), and extends the software history (on the branch where the gomand is ap-
plied) with a new revisionh. We propose two options to determine the set of selected tests
at h. The rst option uses the general selection for a commit (the traitlonal test selection
“he tts"predhe; he.

does not require running traditional test selection, but

between the current node and its parent)Sy,,

The second option, called,,, ,
is safe only forauto cherry-pick This option selects all tests that satisfy one of the following
four conditions: (1) tests selected betweeng and nc,, and also selected between the point
p at which cherry-pick is applied (p» predhe) and d donip;nge; (2) tests selected
betweenng and n¢p, and also selected beforeg, up to d; (3) new tests atng,; and (4) new

tests betweend and p.

Sgherry “he © SSeIAnﬁ); Nep® 9 8 n>dj fp~ de Sie 'Ne* 878 n>dj tn® ~ de Seel Nesee

8"ANge ANZee8” A'pe  A"dee (4.15)

The intuition for (1) is that the combination of changes that a ected tests on both branches,
from d to p and from d to n%, may lead to di erent test outcomes. The intuition for (2) is
that changes beforen,, may not exist in the branch on which the cherry-pick is applied and
so the outcome of these tests may change. If neither (1) nor (2plds, the test result can be
copied fromng,. The formula for cherry pick is similar to that for auto merge but apfies
to only one commit being cherry picked rather than to an entire brach being merged.
Command: Revert:  Revert computes inverse changes of some existing commjt and
extends the software history by applying those inverse changesdreate a new revision that
becomesh. (Reverting a merge creates additional issues that we do not hdadspecially:
one can always run the traditional test selection.) Similar to cherrpick, we propose two
options to determine the set of selected tests. The rst option is naive application of the
traditional test selection betweenh and its parent, i.e., Sk, "he tts"predhe;he.

The second option, called,.,, does not run traditional test selection, but is safe only
for auto revert It selects all tests that satisfy one of the following four conditiost (1) tests
selected betweem,, and its parent (p® predn.*), and also selected before the point to

which the revert is applied {pe predhe) up to the dominator of p and p®(d doni p; p®);
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(2) tests selected betweem, and its parent p% and also selected before the point that is
being reverted % up to d; (3) tests that were deleted at the point being reverted (such #t

in the inverse change tests are added); and (4) new tests betwakand p:

s)evertAh' " Ssel PENe* 978 n>dj ¥p~ de Ssel'N*+ 878 n>dj *p= de Ssel Noeee
8AAApcg AAnre (1] 8’\ AApo AAdoo (416)

Intuitively, revert is an inverse of cherry-pick and safe for the sae reasons: the unselected

tests would have the same outcome at thie revision as at the revision prior ton,e .

4.3 Proofs of Theorems

Proof . (Theorem 1) S}4e " he is safe whenever a safe traditional test selection is used. This
traditional test selection is safe for any pair of revisions and thus safe forimd he and h
that are compared in formula 4.12.

Sherge e is likewise safe becausts™n;he is safe for all nodesh and thus safe for all
parents ofh. Taking the intersection of selected tests is safe because anyt te¢hat is not
in the intersection has the same result in revisioh as it has for at least one of the parents

of that commit, namely the parent(s) whosets™n; he does not containt. |

Proof . (Theorem 2) To prove that S} "he is safe, we will establish thatS .. he b
S?nergeAh- for any auto mergeh.

Let A A"he. We rst prove a lemma for the case with no new tests.

Lemma 1. Sfqqe he b S e he for any auto mergeh if A A™imd hes.

Proof . Consider rst the simplest case when a merge has only two paremsand p®that
have one lowest common ancestdr (In general, lowest common ancestor is not unique.)
Then formula 4.13 for S, becomesmt”A; @p;hee 9 mt"A; @p%hes. Due to the auto
merge property 4.9, this can be rewritten ast”A; @I; p®* 9 mt"A; @I; pee. From formula
4.2 we have that@l;ps b @"l;pe (dually for p%, and from formula 4.1 we further have
@ l;pe b @"d;p (dually for p%, whered dontp;p®. Due to the mt monotonicity (property
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4.4), the latest intersection is a subset aht"A; @"d; p%+9 mt"A; @ d; p-s, where @"d; p

needj #p~ do nspreane @N; N%® (and dually for p%. Due to the mt distributivity (property 4.3)
(and for cases with one parent, w.l.0.g.), the intersection 18 g :p- . M"A; @pred ne; nee9
"8 15 1per o MUA; @pred ne; nes, which is exactly the formula forS},,,. (Section 4.2.3) when
there are no new tests, in which casg"ne mt"A; @pred ne;nee.

Now consider the case wherk parents have many lowest common ancestors. We have

the following:
S'r<r|erge “ne tts"p; ne (by 4.13)
p>pred™ne
mt"A; @p; nee (no new tests)
p>pred™ne
mt"A; @l; p%e (by 4.9)
p>pred™ne p®pred ne;p%p |>ca”p;p®
b mt"A; @d; p%e (by 4.1 and 4.4)
p>pred™ne p%®pred ne;p%p;d dom”p;p=®
mt"A; @d; p%e (by 4.3)
p>pred ne p®pred ne;p%p;d dom™p;p=R
mt"A; @d; pee 9 mt"A; @d; p%e (distribute 9 over 8)
p;p%pred ne;pxp®d dom”p;p®
b mt"A; @ d; p*9 mt"A; @"d; p%e (by 4.4)

p;p®pred ne;pxp®d dom”p;p®
Mt"A; 8,,5qj :p~ ¢ @predne;need mt"A; 8, 54 : pe g @pred ne;nes
p;ppred ne;pxp%d dom”p;p=
(by def.)

"85 tp~ de MUA; @pred ne;neee 978 | ipee . MU"A; @pred ne; nees
p;ppred™ne;pxp%d dom’p;p*

(by 4.3)
"8 sdjtp~ deSsel N**978 5qj tpe de Ssel Ne* (no new tests)

p;p®pred ne;pxp%d dom”p;pR
S, “he (by 4.14)

Continuing with the proof for the main theorem, consider now the geeral case when

new tests can be added. We have the following:
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Sherge "N* tts”p; ne (by 4.13)

p>pred™ne
Mt"A; @p;ne8" A A"pee (by 4.5)
p>pred™ne
mt"A; @p; ne9 A Ap% (distribute 8 over 9)
s>ppred'n« p>s p®pred'ne s
L18 mt"A; @p; nes9 A Ap%
s>2pred n e« sxpred ne P> ppred'ne s
(extract one term, L1 %o pspreqn. MU"A; @p; nee ya)
bL18 A Ap% (subset intersection)
s>2pred ne .sypred ne p®pred'ne s
L18 A A'pe (rename complement)
smppredn g5~ p>s*
bL18 A A'pe (subset intersection)
p>pred ne
L18"A A" pee (De Morgan's law)
p>pred™ne
b A8n>dj¢p" de Ssel N+ 978 n>dj ¥pe de Scel " Nee
p;p%pred ne;pxp®d dom”p;p®
"A A" pee (by Lemma 1)
p>pred ne
S?nerge “ne (by 4.14 and 4.11)

Theorem 3. S, h* would be unsafe if using the lowest common ancestors insteathe
lowest common dominator:
erge© N° ’ Ssei"N** 9" Ssei"Nes
p;p%pred”he;pxp™;l ®ica”p;p® n>lj fp~ e n>F¥p= |®
“A”he A" p=F (4.17)

p®spred”he

Note that p and p®must di er, while | and I®may be the same.

Proof . The formula could seemingly be safe because Git performs auto meelipsed orca
(property 4.9). However, Figure 4.7 shows an example version histavhere this selection

would be unsafe. Suppose that the revision, has a testt that depends on a methodn.
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This method is changed between revisions, and nz, and between revisions; and ns. So
the testt would be selected ah; and n4. But this method is not changed between revisions
n; and n,. At the merge pointsns and ng, t would not be selected because it was selected on
only one branch eachnz and ng4, respectively, rather than on both branches. So far this is
safe. However, when mergings and ng, t would not be selected, becaudea ns;ngs ™~ nye,
and the test was not selected within the subgraph,, ns, and ng. However, this testt should
be selected becausm was modi ed on two di erent paths that reach n;, and thus these

di erent changes could interplay in such a way that fails in n; even if it passes in botns

and ng.

Figure 4.7: Example history to show that usindca (n;) rather than dom(n,) is not safe

To avoid being unsafe, our actual.,."he uses the lowest common dominator rather

than the lowest common ancestors.

4.4 Evaluation

We performed several experiments to evaluate the e ectivenes$ our technique. First,
we demonstrate the importance of having a test-selection techoigl for distributed software
histories by analyzing software histories of large open-source jas and reporting statistics
about these histories. Second, we evaluate the e ectiveness af test-selection technique
by comparing the number of tests selected uSinghege, Sherge: aNd Sherge ON @ NuMber

of software histories (both real and systematically generatedi.e., we consider how much
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Jersey f5a82fa 14.6 28 1320 326 249 12 44.46 35.14 99.07
Jetty 180d9a5 15.5 22 7438 1024 45 999 27.80 6.98 78.62
JGit 7995d87 9.0 83 2801 615 774 24 50.44 33.35 97.48
JUnit 9917bof 3.2 78 1617 250 47 129 26.34 21.33 83.20
LinuxKernel €62063d 484.5 11133 400479 27472 151569 { { 30.12 {
LinuxKVM b796a09 406.2 8542 273639 17483 107768 { { 8.92 {
OkHttp 5538ed2 1.1 26 513 212 1 0 41.52 80.16 100.00
TripPlanner 5e7afab 83.1 60 5168 333 54 131 10.02 5.47 85.88
OrionClient ecl58 11.9 51 6628 902 218 40 17.50 10.31 93.68
Picasso 29e3461 1.3 33 470 174 11 2 39.78 62.26 98.85
Retro t 5bd3cle 0.62 61 631 216 4 2 35.18 58.54 99.07
RxJava ae073dd 1.7 39 1212 267 3 39 25.49 49.74 89.51
Min - 0.31 13 145 50 1 0 9.30 3.64 55.93
Max - 484.5 11133 400479 27472 151569 1973 63.37 93.93 100.00
Median - 5.20 60.50 2175.00 373.00 19.49 34.50 31.77 27.03 9462
Ari. mean - 47.77 945.66 32373.00 2605.29 11379.25 211.95 3176 34.05 90.25
Geo. mean - 5.69 79.04 2275.60 415.71 45.60 21.11 18.91 20.49 51.93
Std. Dev. - 121.71 2717.26 93955.04 6343.27 36281.83 447.38 14.19 26.56 10.30

» We use a heuristic to determine the number of authors and reba ses

Table 4.1: Statistics for several projects that use Git

test selection would have saved had it been run on the revisions in thestory. Third, we
and

herry cherry ON @ NUMber of real cherry-pick commits.

compareS;
We do not evaluate the proposed technique for rebase and revedmmands because
software histories do not keep track of the commands that crest each revision. In partic-
ular, we cannot identify precisely whether a revision in the history vgacreated by actually
running a special command (such as rebase or revert) or by deysos manually editing the

code and using a general commit command. In actual practice [1446], the developers
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Project

Test [methods] Time [sec]

min max min  max
Cucumber (core) 156 308 10 14
GraphHopper (core) 626 692 14 20
JGit 2231 2232 106 116
Retro t 181 184 10 10

Table 4.2: Statistics for projects used in the evaluation @ e e, Sherge: aNd Serge
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Figure 4.8: Percentage of selected tests for real merges usingoiss options

would use our technique when they create a new software revisiamdahe command being

executed is known. Further, note that the proposed techniqueif rebase command is based

on the technique for merge command, so the test selection for #eecommands should on

average have similar savings.

Real software histories are highly non-linear:

We collected statistics for software

histories of several open-source projects that use Git. To ckewhether software histories
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are non-linear across many project types, we chose projectenfr di erent domains (e.g.,
Cucumberis a tool for running acceptance tests)Git is a pure Java implementation of the
Git version-control system, etc.), implemented in di erent languags, of various sizes, having
di erent number of unit tests and developers. Table 4.1 shows theltected statistics for 24
projects. The key column is (M+R+CR)/C that shows the ratio of the number of merges,
rebases, cherry-picks, and reverts over the total number of commits fahe entire software
history. The ratio can be as high as 63.37% and is 31.76% on averagtatesl di erently,
we may be able to improve test selection for about a third of the comts in an average
DVCS history. Additionally, we collected a similar ratio only for themaster branch, because
most development processes run tests for all commits on that Im@h but not necessarily on
other branches (e.g., see the Google process for testing commili46]). While this ratio
included only merges (and not rebases, cherry-picks, or revgrtgs average is even higher
for the master branch than for the entire repository (34.05% vs. 31.76%), whichdreases
the importance of test selection for distributed software historge Finally, to con rm that
the ratio of merges is independent of the DVCS, we collected stattst on three projects
that use Mercurial] OpenJDKMercurial , and NetBeandand the average ratio of merges
was 20%, which is slightly lower than the average number for Git but #itsigni cant.
Implementation:  We implemented a tool in Java to perform test selection proposed in
Section 4.2. The tool is independent of the DVCS being used and ssate large projects.
Because any test-selection technique for distributed historiesgures a traditional test se-
lection between two revisionstts) for linear histories, and because there is no other available
tool for the traditional test selection that scales to the large prcts used in our study, we
used theEkstazi tool described in Chapter 3 asts. Note that our technique for distributed
histories is orthogonal to the RTS technique used to select testetiveen two code revisions.
Real merges: Our rst set of experiments evaluates our technique on the actli@oftware
histories. We used software histories of four large open-soura@jpcts (downloaded from

GitHub): Cucumbey GraphHoppes JGit , and Retrofit . We selected these projects as their

2Note that we approximate the number of rebases by counting comits with di erent author and com-
mitter eld.
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setup was not too comple% and they di er in size, number of authors, number of commits,
and number of merges. Our experimental setup was the following.oFeach project, we
identify the last merge commit in the current software history andhen run our test-selection
tool on all the merge commits whose immediate dominator was in the S0mmits before
the last merge commit.

At every merge commit, we run all three options| Sherges Sherge» aNd Sergeland com-
pare the number of tests they select. Testing literature [43, 6938, 154, 157] commonly
measures the speedup of test selection as the ratio of the numioérselected tests over the
number of available tests $s¢~A). In addition, Table 4.2 reports the min and max number
of available tests across the considered merge commits, and the raimd max total time to
execute these tests. All tests in these projects are unit testactake a similar amount of
time to execute, so computing the ratio of the numbers of tests isdeecent approximation of
the ratio of test execution times. We do not measure the real enid-end time because our
implementation of S}, iS @ prototype that uses a rather unoptimized implementation of
Git operations.

Figure 4.8 plots the results for these four projects. In most cageSege and Shege
achieve substantial saving compared t8,.q.. (Calculated di erently, the average speedup
Of Serge OVET Sherge Was 10.89 and St qe OVEr g Was 2.78.) Although SP,4 achieved
lower saving thanSf,,,. in a few cases (that we discuss below in more detail), it is important
to recall that 4 requiresk runs of traditional test selection, whileS,,,. requires 0 runs.

We inspected in more detail the cases whei® .., ~S)erqe Was low. For GraphHopper
(revisions 2, 10, and 11), two branches have a large number of ethathe same commits
(in particular, one branch has 11 commits and another has 10 of th® 11 commits, which
were created with some cherry-picking); when these branchesrevenerged, the di erences
between the merged revision and parents were rather small, resudf in a few tests being
selected bySf,,e. although the changes between the parents and the dominator ieerather
big, resulting in many tests being selected b§,..4.. For JGit (revision 10) andCucumber

(revision 14), some new tests were added on one branch beforeagimg it with another;

3We have to build and run tests over a large number of commits, and deendencies in many real projects
make running tests from older commits rather non-trivial.

86



70000—{ — Available — Selectet 1400—{ — Available — Selectec#f
6000C¢ 1200
000/ 0 ) —
§50000 §1000
‘540000 S 800
230000 2 600
S S
> S L]
ZZOOOOL 3 400
10000 200
0 : 0 S :
0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 45
Revision Revision
(a) GSCaollections (b) Functor
1200%{— Available  — Selectedﬁ 2500#— Available  — Selecteo*f
0 100 22000
(7] (%]
2 800 2
5 “51500
- 600 —
(] (]
Q 2 10004
€ 400]| E
Z Z
200 500
0 : LJ : 0
0 10 20 30 40 50 0 10 20 30 40 50
Revision Revision
(c) lvy (d) JFreeChart

Figure 4.9: History statistics of projects used for generated $woére histories

Slerge is currently rather conservative in selecting (all) new tests, but me tests are not
added frequently in practice.

Based on this inspection, we propose the following heuristic for ctedag the best option
for test selection at a merge revision:

Smerge N*  if “automerge & selection done at every commit

if “many new testss e e else S ge he
else if “short branches S}ne,g,;h- else S{‘T,erggh-

Systematically generated merges: Our second set of experiments systematically com-
pares the merge selection options on a set of graphs generatedefaresentpotential software

histories. Speci cally, for a given number of nodels, we generate all the graphs where nodes
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Figure 4.10: Sherge Sherge (SPe€dUp) for various numbers of commits in each branch

have the out degree (branching) of at most two, each branch dams between 1 anck~2 2
nodes, all the branches have the same number of nodes, and ¢éhare no linear segments on
the master branch (except the last few nodes that remained aftgenerating the branches).
In other words, the generated graphs are diamonds of di erentiigth. For example fork 7,
we have the following two graphs:@a@ and @= A . The total number of merges for the
given number of nodek is "k 1e~3 "k 15 ::: "k 1~k 1.

In addition to generating history graphs, we need to assign codedtests to each node
of the graph. As random code or tests could produce too unreailstdata, we use the
following approach: (1) we took the latest 50 revisions of four larggpen-source projects
with linear software histories:JFreeChart (SVN: 3021),GSCollections (Git: 28070efd), Ivy
(SVN: 1550956), and-unctor (SVN: 1439120) (Figure 4.9 shows the number of available and
selected tests for all projects), (2) we assigned a revision froimetlinear history to a node
of the graph by preserving the relative ordering of revisions suchat a linear extension of
the generated graph (partial order) matches the given linear histy (total order). Using the
above formula to calculate the number of merges for generatedagh, for 50 revisions, there
are 68 merges (in 24 graphs); as we have four projects, the fatamber of merges is 272.

After the software histories are fully generated, we perform teselection on each of the
graphs for each of the projects and collect the number of testslacted by all three options
at each merge commit. As for the experiments on real software tuges, we calculate the

speedup as the ratio of the number of tests. Figure 4.10 shows tinerage speedup (across
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all four projects) for various number of nodes per branch. As pgcted, with more commits
per branch, the speedup decreases, because the sets of agng each branch become bigger
and thus their intersection (as computed by oulS},,. option) becomes larger. However,
the speedup remains high for quite long branches. In fact, this sgghup is likely an under-
approximation of what can be achieved in real software projectebause the assignment of
changes across branches may not be representative of actudivgare histories: many related
changes may be sprinkled across branches, which leads to a smaleredup. Also, linear
software histories are known to include more changes per commit J12Ve can see from
the comparison of absolute values of the speedups in Figure 4.10 &hdure 4.8 that real
software histories have an even higher speedup than our generhhistories.

and

. ) 1
Real cherry-picks:  We also comparedS cherry

Cherry on 7 cherry-picks identi ed in

the Retrofit project. No other revision from the other three projects in our>@eriments

selected 7 tests more thais: but all

used a cherry-pick command. For 6 caseS] cherry

¢herry
these tests were new. As mentioned earlier, our current techniis rather conservative in
selecting new tests; in future, we plan to improve our technique byusidering dependency
matrices across branches. In the remaining cas®,.,, selected 43% fewer tests (42 vs. 73

tests) than S, -

4.5 Summary

The results show that non-linear revisions are frequent in real $afre repositories, and
that various options we introduced can provide di erent trade-os for test selection (e.g.,
Sherger Sherge» and SH¢4e €ach have their advantages and disadvantages). Carefully design
combinations of these selection techniques (such &gege 0N page 87 that combines,qge
Sherge: and S4e) can provide a substantial speedup for test selection in particulaand

regression testing in general.
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CHAPTER 5

Related Work

This chapter presents an overview of the work related to the catibutions of this dissertation.
There has been a lot of work on regression testing in general, asveyed in two reviews [43,
157], and on regression test selection (RTS) in particular, as fueh surveyed in two more
reviews [68, 69]. Those papers review 3§ears of history of research on RTS, but other
papers also point out that RTS remains an important research topfor the future [123]. This
chapter is organized as follows. Section 5.1 discusses work relatedtr study of manual
RTS. Sections 5.2, 5.3, and 5.4 discuss work that directly inspired obkkstazi technique
between two code revisions, including: recent advances in build sysits, RTS based on class
dependencies, and RTS for external resources. Section 5.5 @nes prior work on collecting
code coverage. Section 5.6 describes several regression testicigniques that use di erent
levels of selection granularity and coverage granularity. Section Spresents other related
work on regression testing between two project revisions. Secti6.8 discusses prior work

on studying and analyzing distributed software histories.

5.1 Manual Regression Test Selection

The closest work to our study of manual RTS are studies of testingractices, studies of
usage pro les, and studies of logs recorded in real time.

Our study is di erent in scope, emphasis, and methodology from theork of Greiler et
al. [83], who recently conducted a study of testing practices amouigvelopers. We did not
limit our scope to a speci ¢ class of software, while they focus on teg component-based
software. Their emphasis is on answering important questions alidhe testing practices

that are (not) adopted by organizations and discovering reasonghy these practices are
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not adopted. On the other hand, we focus ohow developers perform RTS. Finally, their
approach utilizes interviews and surveys, but we analyzed data caited from developers in
real time.

Regarding the empirical study of RTS techniques, the closest wot& ours is the use of
eld study data by Orso et al. [122]. They collected usage pro le datfrom usersof deployed
software for tuning their Gamma approach for RTS and impact anafs. We study data
collected fromdeveloperdo gain insight on improving manual RTS. The data was previously
used for analyzing whether VCS commit data is imprecise and incomptetwvhen studying
software evolution [120], for comparing manual and automated eaftorings [118], and for
mining ne-grained code change patterns [119]. Although our work isased on previously

used data, this is the rst use of the data for studying how develas perform testing.

5.2 Build Systems and Memoization

Our Ekstazi regression test selection, based on le dependencies, is relatebudd systems,
in particular to incremental builds and memoization that also utilize le cependencies.
Memoize [115] is used to speed up builds. Memoize is a Python-basestesy that, given
a command, usestrace on Linux to monitor all les opened (and the mode in which they
are opened, e.g., read/write) while that command executes. Memeigaves all le paths and
le checksums, and ignores subsequent runs of the same commdnub checksum changed.
Fabricate [70] is an improved version of Memoize that also runs on Wiods and supports
parallel builds. Other build systems, such as Vesta [9] and SCons [&pture dependencies
on les that are attempted to be accessed, even if they do not ekisthis is important
because the behavior of the build scripts can change when theses lare added later. For
automatic memoization of Python code, Guo and Engler proposeddRy [86] that memoizes
calls to functions (and static methods). IncPy supports functios that access les, i.e., it
stores the le checksums and re-executes a function if any of itsputs or les changes. Our
insight is to view RTS as memoization: if none of the dependent les f@ome test changed,
then the test need not be run. By capturing le dependencies foaeh test entity, Ekstazi

provides scalable and e cient RTS that integrates well with testing fameworks. As discussed
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throughout the dissertation, Ekstazi di ers from build systems and memoization in several
aspects: capturing dependencies for each test entity even whalhentities are executed in
the same JVM, supporting test entity granularities, smart checken, and capturing les

inside archives.

5.3 Class-based Test Selection

Ekstazi is related to work on class rewall, work that collects class dependeies, and work
that proves safety of RTS and incremental builds.

Hsia et al. [97] were the rst to propose RTS based on class rewall(g], i.e., the statically
computed set of classes that may be a ected by a change. Orsoatt[124] present an RTS
technique that combines class rewall and dangerous edges [138helr approach works in
two phases: it rst nds relations between classes and interfacds identify a subgraph of
the Java Interclass Graph that may be a ected by the changeshd then selects tests via an
edge-level RTS on the identi ed subgraph. Thé&kstazi approach di ers in that it collects
all dependencies dynamically, which is more precise than computingeth statically.

Skoglund and Runeson rst performed a large case study on clasewall [141] and
then [142] proposed an improved technique that removes the classwvall and uses a change-
based RTS technique that selects only tests that execute modi edasses. They give a
paper-and-pencil proof that their improved technique is safe ued certain assumptions.
More recently, Christakis et al. [50] give a machine-veri able proofhtat memoization of
partial builds is safe when capturing dependencies on all les, undtre relaxed assumption
that code behaves deterministically (e.g., there is no network acegs Compared to prior
work, Ekstazi captures all les (including classes), handles addition and changeé test
classes, applies smart checksum, supports re ection, and hagtbolass and method selection
granularities. Moreover, we integratedkstazi with JUnit and evaluated it on a much larger
set of projects, using the end-to-end testing time. Finallygkstazi includes an approach to

improve RTS techniques for software that uses DVCS.
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5.4 External Resources

Ekstazi is also related to prior work on RTS for database programs and wodn RTS in
the presence of con guration changes.

Haraty et al. [88] and Daou [54] proposed RTS techniques for dat® programs that
work in two phases: they rst identify code changes and databas®mponent changes using
the rewall technique, and then select the tests that traversehtese changes. They addition-
ally reduce the selected tests further using two algorithms: one $&d on control ow and
the other based on the rewall technique applied on the inter-preural level. Willmor and
Embury [154] proposed two RTS techniques for database prograpone that captures inter-
action between a database and the application, and the other bakssolely on the database
state. Kim et al. [106] proposed RTS for ontology-driven systemshe technique creates
representations of the old and new ontology and selects tests thae a ected by changes.
Nanda et al. [117] proposed RTS for applications with con guration les and databases.
Compared to prior work, we explored several ways to integrate FTwith the existing test-
ing frameworks, andEkstazi captures all les. At the moment Ekstazi o0 ers no special
support for dependencies other than les (e.g., databases andw&ervices). In other words,
Ekstazi treats an entire database as one le: if any record in the databashanges, then

every test that accesses anything in the database will be selectedbe rerun.

5.5 Code Instrumentation

Collecting dependencies in RTS( phase) is similar to collecting structural code coverage.
In particular, prior work on optimizing code coverage collection is clely related.

Jazz [116] is an approach to reduce the runtime overhead when atileg code coverage;
Jazz dynamically adds and removes instructions that collect coveya information. San-
telices and Harrold [140] presented DUA-Forensics, a fast appobao compute approximate
de nition-use associations from branch coverage. Kumar et al. [IDpresented analyses
to reduce the number of instrumentation points and the cost of c® that saves coverage

information. Unlike existing code coverage techniquekkstazi collects le dependencies/-
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coverage. To reduce the runtime overheakstazi instruments a small number of carefully
selected points (Section 3.2.3). In the future, like Jazz, we plan to@wrsider dynamically re-
moving instrumentation code. It is unclear if this optimization will provde any benet

when multiple test entities are executed in the same process (i.e., inetkame Java Virtual

Machine), as code has to be instrumented at the beginning of eadst entity.

5.6 Granularity Levels

Prior work proposed or evaluated various selection and coverageamularities for several
regression testing techniques, including RTS.

Rothermel et al. [133, 134] showed signi cant impact of test suitergnularity, i.e., size
of tests in a test suite, on the cost and bene ts of several reg®on testing techniques,
including RTS. In our experiments, we do not control for the size dest methods, but we
use the test classes that are manually written by the developers thie projects. However,
we evaluatedEkstazi with method and class selection granularity (which may correspond
to various test suite granularities). Our results show that, althogh ner granularity may
select fewer tests, the coarser granularity provides bigger redion in end-to-end time.

Bible at al. [41], Elbaum et al. [64], and Di Nardo et al. [56] compared dirent coverage
granularity levels (e.g., statement vs. function) for regressiongéng techniques. While some
results were independent of the levels, the general conclusion iedcser granularity coverage
criteria are more likely to scale to very large systems and should b&dared unless signi cant
bene ts can be demonstrated for ner levels" [56].Ekstazi uses a coarse granularity, i.e.,
les, for coverage granularity, and the experiments show bettaesults than for FaultTracer
based on a ner granularity.

Echelon from Microsoft [144] performs test prioritization [157] rdder than RTS. It
tracks ne-grained dependencies based on basic blocks and aeately computes changes
between code revisions by analyzing compiled binaries. Many res&aRT S techniques [157]
also compute ne-grained dependencies like Echelon, but in conttas Echelon, compare
source code of the revisions. Because Echelon is not publicly availaloler evaluation used

FaultTracer [158], a state-of-the-research RTS tool.
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Ren et al. [129] described the Chianti approach for change-impaanhalysis. Chianti
collects method dependencies for each test and analyzes di eres@t the source code level.
Chianti reports the tests that are a ected by changes and deteines for each test the changes
that a ect the behavior. We show that ne-grained coverage graularity can be expensive,
and proposeEkstazi , a novel RTS technique, which tracks dependencies on coarsahged

dependencies { les.

5.7 Other Work on RTS for Two Revisions

Other work related to Ekstazi includes work on a framework for comparing RTS techniques,
RTS techniques that collect dependencies statically, RTS for othproject domains, test suite
evolution, and RTS prediction models.

Rothermel and Harrold [137] proposed four metrics for comparinigTS techniques: ef-
ciency, precision, safety, and generality (i.e., applicability of an RTSechnique to a broad
set of projects). Unlike their work, which de nes e ciency in termsof RTS analysis time,
we de ne e ciency in terms of end-to-end time, which is the time obsaed by develop-
ers. We demonstrateEkstazi 's generality by evaluating it with a large number of projects.
Zheng et al. [160] proposed a fully static RTS technique that does thcollect dependen-
cies but rather constructs a call graph (for each test) and intsects the graph with the
changes. Ekstazi collects dependencies dynamically, and measures the end-to-emdet
Xu and Rountev [155] developed a regression test selection tegue for AspectJ programs.
Although their approach is more precise thafktkstazi , they use ne-grained coverage gran-
ularity and therefore inherit the high cost of other ne-grained tehniques. Pinto et al. [126]
and Marinescu et al. [114] studied test-suite evolution and other ezution metrics over sev-
eral project revisions. While we did not use those same projectsge Marinescu et al.'s
projects are in C), we used 615 revisions of 32 projects. Sevgraddiction models [90, 132]
were proposed to estimate if RTS would be cheaper than RetestAll. dgt models assume
that the C phase is run separately and would need to be adjusted when RTS iseigtated

and the end-to-end time matters. We focugkstazi on the end-to-end time.
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5.8 Distributed Version Control Systems

Others [12,42, 45,125, 131] analyzed distributed software higes to study commits, de-
scribed pitfalls of mining distributed histories (e.g., DVCS commands arnot recorded),
and suggested improvements to DVCS. No prior work related to (@eession) testing or ver-
i cation analyzed or reasoned about distributed software historie We proposed the rst
RTS approach that improves precision of any RTS technique for pjects with distributed
software histories. Our approach fodistributed historiesis compatible with all traditional
RTS techniques forlinear histories as we abstract them in the coremt and tts functions
(Section 4.2.2). We use traditional RTS when a revision is created bycammit command,
and we reason about software history, modi cation-traversingetsts, and commands being
executed when a revision is created by other DVCS commands (mergebase, cherry-pick,
and revert). Our results show that our proposed approach impves precision more than an

order of magnitude.
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CHAPTER 6

Conclusions and Future Work

Regression testing is important for checking that software chaag do not break previously
working functionality. However, regression testing is costly as it ns many tests for many
revisions. Although RTS is a promising approach to speed up regriesstesting, and was
proposed over three decades ago, no RTS technique has beenlwig@opted in practice, due
to e ciency and safety issues. The contributions of this dissertabn address these problems.
First, we studied logs recorded in real time from a diverse group oéekelopers to under-
stand the impact of the lack of practical RTS techniques. The studshows that almost all
developers perform manual RTS, and they select tests in mostly dmbc ways (potentially
missing bugs or wasting time). Second, we proposB#istazi RTS technique, which takes a
radically di erent view from prior RTS techniques: keeping track on oarse-grained depen-
dencies can lead to faster end-to-end time than keeping track one-grained dependencies.
Ekstazi tracks dependencies on les, guarantees safety in more caseantprior techniques,
and provides a substantial reduction in regression testing timdzkstazi balances the time
for the analysis and collection phases, rather than focusing solely @ducing the number of
selected tests for the execution phase. Third, we proposed a ebapproach that improves
precision of any RTS technique for projects with distributed softare histories. Unlike any
prior RTS technique, the approach takes into account version hties arising out of dis-
tributed development, and includes several options that trade athe number of RTS analysis
runs and the number of selected tests (which re ects in the exeoon and collection time).
We now present our plans for possible future work that can build upoour current

contributions and results as described in chapters 2, 3, and 4:

Public Release of Experimental Data: We intend to release our dataset and scripts,

which are used in our experiments, to allow researchers to repr@duour results.

97



We have already released some additional information related to oaxperiments at

http://www.ekstazi.org/research.html

Regression Test Selection using File and Method Dependenci es: Changes between
two project revisions commonly update only method bodies. A tesékection technique
that uses method coverage granularity would be safe for theseisgons. However, such
technique would be unsafe for any other revision (e.g., annotatiom @ld updates, or
even method additions or deletions). We plan to combine le coveragganularity and

method coverage granularity.

Restructuring Test Classes:  Several test methods, for the same code under test, are
commonly grouped in a single test class. Therefore, it is likely that tBe test methods
have similar dependencies. Indeed, based on our evaluation (Set®03.5), using test
class granularity leads to better results than using test method gnularity, i.e., the
overhead for class granularity is smaller, and the number of selettiests is not signif-
icantly larger. In the future, we would like to group all test methodghat have similar
dependencies, even if they reside in di erent test classes/packasg Also, we would like

to split test classes, where several test methods have greatly elient dependencies.

Safety of Ekstazi Instrumentation: To collect classes covered by each test method/-
class, Ekstazi instruments several places in code (e.g., constructors, static bks,
access to static elds, etc.). We would like to produce a machine-vable proof that

our instrumentation guarantees safe test selection.

Various Testing Frameworks and JVM-based Languages: JUnit is the most widely
used testing framework (for Java), however, it is not the only teésg framework avail-
able. We plan to support other testing frameworks for Java (e.g.,e6tNG [147] and ran-
domizedtesting [128]) by insertindekstazi hooks at appropriate places (Section 3.2.3).
One of the challenges is to identify places where the hooks should bsented. Note
that we have to collect dependencies during the construction of adt entity and during

the execution of the test entity.
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http://www.ekstazi.org/research.html

Other Programming Languages: At the moment, to the best of our knowledge, there
is no (publicly available) tool, which collects dynamic dependencies, f&TS for any
language. We intend to explore if our technique (based on the le depdencies) is
applicable to other languages (e.g., Python). Our initial goal is to build language-
agnostic technique on top of Fabricate [70], which monitors all opetheles during
the execution of a process. In addition, we plan to integrate the lgnage-agnostic

technique with Ekstazi to improve RTS precision whenever a project uses Java.

Test Prioritization based on File Level Dependencies: Test prioritization is another
commonly studied regression testing technique. The goal of testigritization is to
order tests such that if there are bugs in the code under test$)d tests that would fail
due to these bugs are executed earlier in the order. Prior work stexd that several
heuristics can achieve better results than random ordering, e.grdering base on the
number of times that a test failed in the history or ordering based othe number of
statements that a test covers. We intend to explore test orderinbased on the number

of les that a test covers; les covered by each test can be obtasd by Ekstazi .

Further Analysis of Ekstazi Results: The experiments that we conducted to evaluate
Ekstazi resulted in a large body of data which led to some interesting obsetiamns.
While we reported the results that are common for RTS studies (e.ghe percentage
of selected tests), there are many other results that can be extted from the collected
data. These additional results can help us understand the bens tand limitations of
our technique. Speci cally, we plan to explore: (1) if long running tds are likely to
be selected more often than short running tests and (2) what asgmilarities in the set

of dependencies among test entities.

Impact of Ekstazi on Software Development: We hypothesize that the use ofEk-
stazi could impact software development, e.g., developers may start niagx smaller
changes or making their code more modular with the goal to minimizegeession test-
ing time. We plan to explore software histories of projects that inggrated Ekstazi

and compare software development before and after the integjom. Also, we plan to
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investigate if the developers' changes could have been done in a deet order that

would have achieved additional savings in terms of test execution tém

Considering that several open-source projects adoptétkstazi , we hope that we can
enter a new era of software development where projects emt#aRTS to speed up their
testing. While the Ekstazi techniques are likely to be improved upon, the use of RTS can
help developers to improve the quality of their software. We expetb see new, interesting

results that improve both theory and practice of regression testelection.
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