
Evaluating Machine-Independent Metrics for State-Space Exploration

Vilas Jagannath, Matt Kirn, Yu Lin, and Darko Marinov

Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana IL, 61801, USA

Email: {vbangal2,kirn1,yulin2,marinov}@illinois.edu

Abstract—Many recent advancements in testing concurrent
programs can be described as novel optimization and heuristic
techniques for exploring the tests of such programs. To em-
pirically evaluate these techniques, researchers apply them on
subject programs and capture a set of metrics that characterize
the techniques’ effectiveness. From a user’s perspective, the
most important metric is often the amount of real time required
to find a error (if one exists), but using real time for comparison
can be misleading because it is necessarily dependent on the
machine configuration used for the experiments. On the other
hand, using machine-independent metrics can be meaningless
if they do not correlate highly with real time. As a result, it
can be difficult to select metrics for valid comparisons among
exploration techniques.

This paper presents a study of the commonly used machine-
independent metrics for two different exploration frameworks
for Java (JPF and ReEx) by revisiting and extending a previous
study (Parallel Randomized State-Space Search) and evaluating
the correlation of the metrics with real time both on a single
machine and on a high-performance cluster of machines. Our
study provides new evidence for selecting metrics in future
evaluations of exploration techniques by showing that several
machine-independent metrics are a good substitute for real
time, and that reporting real time results even from clusters
can provide useful information.

I. INTRODUCTION

With the prevalence of multicore processors, more con-

current programs are being developed and used. However,

concurrent programs are difficult to develop and notorious

for having hard-to-find and hard-to-reproduce errors. It is

challenging for developers to avoid such errors due to the

complexity of reasoning about an enormous set of possible

interleavings that are not immediately intuitive from the

code itself. Concurrent programs are also difficult to test

as it is necessary to check how a program behaves not only

for different inputs but also for different interleavings for a

given input. As such, it is important to develop and evaluate

techniques that test concurrent code effectively.

Concurrent programs are often tested using tools that sys-

tematically explore some or even all possible interleavings of

a given program for a given input—this approach is known

as state-space exploration [1]. Conceptually, the exploration

begins from a start state, executes the program up to a point

where a set of non-deterministic choices c1, . . . , cn are pos-

sible (e.g., n threads are enabled so either one of them could

proceed first), selects one of the choices ci according to some

strategy, continues exploration based upon that choice until

a particular criteria is satisfied, and then backtracks to ci
in order to explore the choices extending from ci+1. This

approach can result in a huge number of interleavings to

explore (e.g., for n enabled threads, there could be up to n!

different results of execution based on the orderings of these

threads)—this problem is known as state-space explosion.

Since state-space exploration is essentially a search over

the state space, tools can adopt different search strategies

(e.g., depth-first, random, best-first) to perform the explo-

ration. Tools can also employ different methods to restore

states from which other choices were available, to explore

those remaining choices. Some tools checkpoint encountered

states and restore states using the checkpoints. Other tools

store the choices that lead to encountered states and re-

execute those choices to restore states. While checkpointing

states can be memory and time intensive, hashes of state

checkpoints can be used to efficiently remember previously

explored states. Tools that remember previously explored

states are called stateful, and they can reduce exploration

time by avoiding re-exploration of states. Tools that do not

remember previously explored states are called stateless, and

they can reduce exploration time by avoiding costly hash

comparisons for all encountered states.

Developing new techniques for faster state-space explo-

ration has received much attention in research, e.g., [2]–

[8]. The techniques can be categorized in many different

ways. One category of techniques consists of strategies

that prioritize or select the exploration of certain parts

of the state space by leveraging additional information or

heuristics [4], [6]–[12]. A recent, promising strategy in this

category is known as Iterative Context-Bounding (ICB) [4],

which prioritizes exploration according to the number of

preemptive context switches between threads. The main idea

is to explore the parts of the state space that consist of

a smaller number of context switches first, because many

concurrency errors often manifest in such schedules. We

use an implementation of the ICB strategy in the ReEx

framework [8], [13] for some of our experiments. Other

techniques include those that parallelize a single exploration

by partitioning the exploration into non-overlapping sub-

spaces [14], [15] and those that exploit diversity among

different (potentially overlapping) complete explorations by

performing them in parallel [3], [5].

http://www.vilasjagannath.com/
http://mir.cs.illinois.edu/~kirn1/
http://mir.cs.illinois.edu/~yulin2/
http://mir.cs.illinois.edu/~marinov/

To empirically evaluate these techniques, researchers ap-

ply them on subject programs, capture a set of metrics, and

compare the values to assess the techniques’ effectiveness.

Effectiveness usually has two dimensions. One dimension

is the level of assurance (soundness/completeness) of the

technique with respect to the detection of a particular

property (e.g., deadlock). The second dimension is whether

a technique finishes quickly. A user will have to allocate

precious resources that will be consumed to perform the

state-space exploration, so a technique that provides high

assurance in a short amount of real time will consume less

of a user’s resources. However, real time is only a valid mea-

surement for a given machine configuration (e.g., CPU/mem-

ory/disk/network speed, task scheduling algorithm, garbage

collection/disk paging, etc.). As such, research studies that

provide evaluations of real time are necessarily machine-

dependent, and thus their results may not apply across

different machine configurations, may be hard to repeat, and

may be difficult to compare with other techniques. Studies

that perform large experiments for comparing techniques on

clusters of machines are further impacted by this concern

since the results from clusters may not necessarily allow

comparisons of real time.

The issues with real time lead researchers to use machine-

independent metrics that allow comparison of techniques

across different machine configurations. Empirical studies in

the literature often vary widely in their selection of machine-

independent metrics (e.g., number of states, transitions, or

paths) and machine-dependent metrics (e.g., real time or

amount of memory). When machine-independent metrics are

used, they do not provide much utility for evaluating the

efficiency of techniques if they are not good indicators of

real time. Hence, machine-independent metrics that correlate

highly with real time are the most desirable.

Dwyer et al. performed an important study on the con-

trolling factors in evaluating state-space exploration tech-

niques [2] and found that three factors—the search strategy

used, the error density of the state space, and the number

of threads—greatly affect comparisons among techniques.

Based on this study, they selected a set of programs, with

errors which were the most challenging to find (i.e., with

low error density), to be used for comparing techniques.

Moreover, they proposed and evaluated a new technique

called Parallel Randomized State-Space Search (PRSS) [3]

to reduce the time required to find these errors. PRSS was

evaluated for the Java PathFinder (JPF) tool for stateful

exploration of Java programs [16], [17] (specifically, an older

JPF version, 3.1.2), and it was shown that PRSS can be very

effective at finding errors quickly by exploiting the diversity

among different random but potentially overlapping parallel

explorations of a state space.

In this paper, (i) we revisit and extend the PRSS study by

evaluating it with new contexts: additional subject programs,

an additional state-space exploration tool, an additional

search strategy, and a new version of JPF; and (ii) we

additionally evaluate the correlation of machine-independent

metrics with real time for two different state-space explo-

ration tools for Java, stateful JPF (the latest version 6.0) and

stateless ReEx (version 1.0).

In summary, we provide new evidence for selecting

metrics in future evaluations of state-space exploration

techniques. We find that several machine-independent met-

rics correlate highly with real time for many programs

across multiple machine configurations and exploration

tools. Additionally, all of the currently widely used machine-

independent metrics for state-space exploration appear to

be equally good proxies for real time, so researchers can

measure and report metrics that have the lowest measure-

ment overhead without much loss in confidence. Lastly, real

time measured on clusters can correlate reasonably well with

machine-independent metrics and so should be reported by

studies that perform experiments on clusters.

II. BACKGROUND

In this section we provide more information about PRSS

and review metrics commonly used for evaluation of state-

space exploration techniques in recent literature.

A. Parallel Randomized State-Space Search

The Parallel Randomized State-Space Search (PRSS)

technique consists of performing multiple parallel random-

ized state-space explorations, each with a unique random

seed on a separate machine in a cluster, and stopping all

the explorations when one of them detects an error. The

intuition behind the technique is that different randomized

explorations will exercise diverse regions of the state space

and hence detect an error (if one exists) faster than just

performing a single non-randomized (default) exploration.

To evaluate PRSS [3], the authors performed the following

steps. (i) They ran 5000 randomized depth-first explorations

of each artifact using JPF. (ii) They sampled 50 random

simulations of various PRSS configurations including 1, 2,

5, 10, 15, 20, and 25 parallel computers for each artifact. For

example, the simulations for the PRSS configuration with 2

parallel computers involved randomly choosing 50 pairs of

explorations from logs of the 5000 explorations recorded for

an artifact and retaining the fastest exploration within each

pair. (iii) They plotted the distribution of the results of the

50 simulations for each PRSS configuration and artifact. The

mean of the distribution was considered the expected perfor-

mance. (iv) They determined the point of diminishing return

(PDR), i.e., the configuration where adding more parallel

computers did not yield substantial performance benefits

compared to the cost of utilizing additional computers.

Through this evaluation, PRSS was shown to be effective

(some speedups more than 100x) for exploring various con-

current programs using JPF version 3.1.2 across a reasonably

small number (5-20) of parallel machines. However, it is not

Paper Metric(s) Search Type Used Randomness Machine Configuration

CAPP [8] Transitions Stateful Yes Cluster

CAPP [8] Schedules Stateless Yes Cluster

Controlling Factors [2] States Stateful Yes Cluster

CTrigger [18] Time Stateless No Single machine

Depth Bounding [11] States, Transitions, Time, Memory Stateful No Not specified

Distributed Reachability [15] Time Stateless Yes Cluster

Gambit [7] Time, Memory Hybrid Yes Not specified

ICB [4] States, Time Hybrid No Not specified

PENELOPE [19] Time Stateless No Not specified

PRSS [3] States Stateful Yes Cluster

Random Backtracking [12] States, Transitions Stateful Yes Not specified

Swarm [5] States, Time, Memory Stateful Yes Single machine

Table I
CHARACTERISTICS OF EVALUATION FOR A SAMPLE OF RECENT PAPERS ON STATE-SPACE EXPLORATION

clear whether similar results could be obtained for (i) other

concurrent programs, (ii) stateless exploration, (iii) different

search strategy, or (iv) the latest version of JPF which

incorporates many new optimizations. We revisit PRSS with

these four additional contexts in Section III.

The authors of the PRSS study also considered using

stateless search with JPF but ultimately did not use it because

the version of JPF that they used in their experiments

could not find an error in orders of magnitude more time

than stateful searches that could in a few minutes. In our

evaluation, we perform stateless search with ReEx and find

that stateless search can be used effectively for PRSS, and

that its effectiveness may depend on the implementation of

the tool used.

B. Metrics

Researchers developing techniques for improving state-

space exploration use various metrics to evaluate their

techniques and present their results. Table I shows a sam-

pling of recent papers presenting techniques for state-space

exploration and the metrics used in their evaluation. Re-

searchers often use machine-independent metrics to allow

for analysis of results across machine configurations. The

machine-independent metrics used vary based on the type

of exploration tool used. In this paper, we consider both

stateful (JPF) and stateless (ReEx) exploration tools.

Common machine-independent metrics for stateful explo-

ration (e.g., JPF) include the following. States: The total

number of unique program states encountered during the

exploration. Transitions: The total number of transitions

performed during the exploration; a transition progresses the

execution from one program state to another. Instructions:

The total number of instructions executed during the explo-

ration; each transition consists of one or more instructions.

ThreadCGs: The total number of thread choices generated

during exploration; a thread choice is generated when the

exploration encounters a state with multiple enabled threads.

Common machine-independent metrics for stateless ex-

ploration (e.g., ReEx) include the following. Schedules:

The total number of schedules encountered during the ex-

ploration. Since the most common form of stateless explo-

ration performs backtracking via re-execution, each schedule

involves the re-execution of the program being explored for

a unique sequence of choices. Choices: The total number

of choices encountered during the exploration. Each choice

is a point where more than one thread is available to be

scheduled, and one of them is chosen to be scheduled. This

is equivalent to the ThreadCGs metric for JPF. Events: The

total number of events encountered during the exploration.

Each event denotes the execution of a scheduling-relevant

bytecode instruction (e.g., lock/unlock, field read/write).

Choices are created when two or more threads in the

program are all about to perform an event. Threads: The

total number of threads created during the exploration across

all schedules. The threads that are part of the program are

re-created and counted during each schedule.

In Section III, we investigate the correlation of these

commonly used machine-independentmetrics with real time,

which is the metric that a user of a tool eventually experi-

ences and cares most about.

III. STUDY

A. Study Goals

The goal of our study is two-fold. First, we reinvestigate

PRSS with the new contexts: different version of JPF (the

latest version, 6.0), stateless exploration (using ReEx), dif-

ferent search strategy (ICB), and different concurrent pro-

grams. Second, we utilize the results of these and additional

experiments to answer questions about the correlation of

various machine-independent metrics with real time both

on a compute cluster and on a dedicated desktop computer.

As such, we revisit the same three research questions from

PRSS [3] and address two more for correlation of real time

with machine-independent metrics. More specifically, we

address the following five questions:

RQ1 - Cost Reduction: Does there exist a feasible PRSS

configuration that performs better than the default explo-

ration? A feasible configuration is one with a reasonable

number of parallel machines that could be available to a

testing organization.

Subject Source Error #Threads #Classes SLOC Evaluated with JPF Evaluated with ReEx

Airline [20] Assertion violation 6 2 136 X

BoundedBuffer [20] Deadlock 9 5 110 X X

BubbleSort [20] Assertion violation 4 3 89 X X

Daisy [20] Assertion violation 3 21 744 X

Deadlock [20] Deadlock 3 4 52 X

DEOS [20] Assertion violation 4 24 838 X

Elevator [20] ArrayIdxOOBExcptn 4 12 934 X

PoolOne [21] Assertion violation 3 51 10042 X X

PoolTwo [22] Assertion violation 3 35 4473 X X

PoolThree [23] Deadlock 2 51 10802 X X

RaxExtended [20] Assertion violation 6 11 166 X

ReplicatedWorkers [20] Deadlock 3 14 432 X

RWNoDeadLckCk [20] Assertion violation 5 6 154 X

Table II
STUDY ARTIFACTS

RQ2 - Parallel Speedup: Does the performance of PRSS

improve with the number of parallel machines used? If so,

is there a point of diminishing returns?

RQ3 - Error Detection: Can PRSS be used to detect an

error in programs where the default exploration runs out of

time or memory?

RQ4 - Metrics Correlation: Do machine-independent met-

rics for state-space exploration correlate with real time for

exploration? Does the correlation differ on compute clusters

and dedicated machines?

RQ5 - Metrics Selection: Which metrics should be reported

in future studies on state-space exploration?

B. Study Setup

1) Artifacts: We conducted our study with the thirteen

concurrent Java programs shown in Table II. The programs

have diverse characteristics and include benchmarks ob-

tained from the Software-artifact Infrastructure Repository

(SIR) [20], [24] and real-world test cases obtained from the

Apache Commons Pool project [21]–[23].

We performed our JPF-based experiments with the eleven

programs shown in Table III, which includes all seven

programs used in the original PRSS study with the same

inputs. The only exception is BoundedBuffer for which the

latest JPF runs out of 8GB of memory for all explorations

with the (3,6,6,1) input used in the original PRSS study. We

have reported this as a regression to JPF developers, who

have confirmed the error and are investigating it. Therefore,

in our experiments we used the default input of (1,4,4,2).

Airline and Deadlock were not used for the JPF experiments

since the default exploration found the error too quickly to

warrant the use of PRSS.

We performed our ReEx-based experiments with the seven

programs shown in Table IV. The remaining six programs

are reactive programs with cyclic state spaces that cannot be

explored with ReEx (or another stateless tool that performs

no state matching or fair scheduling to make progress when

cycles are possible), because any single execution of such a

program could be infinitely long.

2) Experiments: We conducted six sets of experiments to

answer our research questions:

• JPF-Cluster: We performed default depth-first explo-

ration and 1000 randomized depth-first explorations

using the latest JPF for each of the eleven programs

used for the JPF-based experiments. To perform the ran-

domized depth-first explorations, we used the cg.seed

property with the DFSHeuristic search class and set

the cg.randomize_choices property to path. Using

the results of these experiments we were able to revisit

PRSS with a different version of JPF and reconsider

the PRSS-related research questions.

• ReEx-Cluster (DFS and ICB): We performed both

default depth-first and default ICB exploration using

ReEx for each of the seven programs used for the

ReEx-based experiments. For both DFS and ICB, we

additionally performed 500 randomized explorations

with the reex.exploration.randomseed

property using the RandomDepthFirst and

RandomIterativeContextBounding search

strategies, respectively, on the same seven programs.

For both the default and randomized ICB explorations,

we set the reex.exploration.preemptionbound

to 2. Using the results of these experiments we were

able to revisit PRSS with a stateless exploration tool.

Using the results of the ICB experiments we were able

to revisit PRSS with a different search strategy.

• Desktop: We repeated a subset (50 seeds) of each of

the cluster experiments on a dedicated desktop machine

to measure real time more precisely and contrast the

results with the cluster experiments.

The cluster experiments were performed on our depart-

mental compute cluster, which uses Condor [25], and has

375 machines with CPU configurations that were either

an Intel Xeon CPU X5650 @ 2.67 GHz or Intel Xeon

CPU L5420 @ 2.50 GHz, memory configurations ranging

from 1GB to 8GB, and 64-bit Sun JVM v1.6.0 10 on

Linux 2.6.18. This was the only cluster available to us,

but we repeated some of the experiments to account for

the diversity of machines and found that the difference in

measured real time was negligible. The desktop experiments

were performed on a dedicated machine with an Intel Core2

Duo E8400 @ 3.0 GHz, 2.00GB RAM, 64-bit Sun JVM

v1.6.0 29 on Microsoft Windows 7; each seed was re-

explored for 3 samples, and the real times were averaged

to account for the potential system fluctuations. Each explo-

ration in all the experiments had a one hour time limit.

We used the cluster experiments to compute the effec-

tiveness of PRSS (described in Section II-A) for the new

contexts. Then, as in the original PRSS study, we decided

on the PDR values by making reasonable averages from

several researchers that mostly agreed on common values

for the number of computers. To measure the correlation

of various machine-independent metrics with real time, we

built linear regression models of each common machine-

independent metric (described in Section II-B) versus real

time for each of the six experiments.

C. Study Design

Independent Variables: The independent variables for our

study include the artifacts used, type of exploration tool used

(stateful JPF or stateless ReEx), type of search performed

(depth-first or ICB), and machine configurations used. An-

other independent variable for the simulations performed

to evaluate PRSS effectiveness is the number of parallel

computers in the simulated configurations.

Dependent Variables: The measured results of our experi-

ments in terms of both machine-independent and machine-

dependent metrics form the basis for the dependent variables

of our study. For RQ1 and RQ2, the dependent variable is

the performance of the various PRSS configurations in terms

of States for JPF and Schedules for ReEx and also the PDR

in terms of the number of parallel computers. For RQ3, the

dependent variable is the detection of an error by PRSS

configurations in cases where the default exploration was

unable to do so. For RQ4 and RQ5, the dependent variable is

the coefficient of determination (R2) of the linear regression

models built to fit the measured real time to various machine-

independent metrics.

D. Study Results

In this section we present the results of our experiments in

terms of the research questions posed in Section III-A. RQ1,

RQ2, and RQ3 address the effectiveness of PRSS under

new contexts. Figure 1 and Table III show PRSS results

for the latest JPF version. Figure 1 shows the distribution of

results for the various PRSS configurations. Table III shows

the exploration costs for the default exploration, comparing

it with the exploration costs for the PRSS configuration

indicated by the PDR. The table also shows the minimum

and maximum exploration costs across all the 1000 ran-

dom explorations performed for the experiment. Figure 2

and Table IV show the PRSS results for stateless DFS

exploration with ReEx. Figure 3 and Table IV show PRSS

results for ICB exploration performed with ReEx. RQ4 and

RQ5 address the correlation of machine-independent metrics

with real time. Table V shows results for the machine-

independent metrics collected during the (stateful) JPF based

experiments. The table presents R2 values for the linear

regression models built to fit millisecond-precision real time

to the machine-independent metrics. The models were built

both for the experiments performed on the compute cluster

and dedicated desktop machine. Table VI shows the same

results for machine-independent metrics collected during

(stateless) ReEx based experiments.

RQ1 - Cost Reduction: We discuss this question with

respect to the new contexts under which we revisited PRSS.

Latest JPF (version 6.0): Comparing Table III with the

original PRSS [3], the results indicate that the performance

of JPF has improved substantially since the original PRSS

study. For most of the programs, the default exploration

with the latest JPF finds the error faster than reported in

the original PRSS study. This is most evident with Rax-

Extended, ReplicatedWorkers, and RWNoDeadLckCk where

the default exploration with the latest JPF is orders of

magnitude faster than what was reported earlier. Despite this

improvement, all cases have a feasible PRSS configuration

for every program, which could find an error substantially

faster in terms of states than the default exploration (Ta-

ble III, Maximum and Minimum columns). For Daisy, all

the PRSS configurations are able to find the error faster.

Stateless Exploration Tool: The results indicate that PRSS

can be applied successfully even with a stateless exploration

tool. All programs had a feasible PRSS configuration that

reduced exploration costs compared to the default explo-

ration. For BoundedBuffer, Deadlock, and PoolThree all

PRSS configurations were faster than or as fast as the default

exploration. For all programs, the fastest random search

(Table IV, Minimum column) was orders of magnitude faster

than the default exploration. Also, the slowest random search

(Table IV, Maximum column) that was slower than the

default exploration was orders of magnitude slower than

the default exploration. This diversity among the random

explorations is key to the success of PRSS.

ICB Search Strategy: The results for the ICB search

strategy show that the effectiveness of PRSS is dependent

on the search strategy that is used. While each program

(except Deadlock) had a feasible PRSS configuration that

improved upon the default exploration, the diversity among

different configurations was minimal compared to the JPF

and ReEx random depth-first explorations. This can be

observed from the difference between the Minimum and

Maximum values in Table IV and the means of the various

PRSS configurations in Figure 3. For example, for Airline,

the costs of the random explorations ranged from 44287

schedules to 44314 schedules, while the cost of the default

1 2 5 10 15 20 25

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

BoundedBuffer(1,4,4,2)

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

BubbleSort

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

Daisy()

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

4
e

+
0

5
5

e
+

0
5

6
e

+
0

5

DEOS(false)

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
e

+
0

0
1

e
+

0
6

2
e

+
0

6
3

e
+

0
6

4
e

+
0

6

Elevator()

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

PoolOne

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

PoolTwo

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
1

0
0

2
0

0
3

0
0

PoolThree

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

RAXextended(4,3,false)

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

1
2

0
0

0 ReplicatedWorkers(5,2,0.0,10.7,0.05)

Paralell Processors

S
ta

te
s

1 2 5 10 15 20 25

0
1

0
0

0
2

0
0

0
3

0
0

0

RWNoDeadLckCk(2,2,100)

Paralell Processors

S
ta

te
s

Legend

Max

Mean+SD

Mean

Mean−SD

Min

Figure 1. PRSS results for JPF

Subject States PDR
Default Minimum Maximum Nodes Mean Speedup

BoundedBuffer 235 87 314 5 121 1.9

BubbleSort 258 57 748 5 160 1.6

Daisy 45712 19 44570 10 295 155.0

DEOS 28523 8509 663529 10 43486 *0.7

Elevator 468064 38040 4558268 10 65381 7.2

PoolOne 490 69 1470 5 332 1.5

PoolTwo 603 44 2029 5 87 6.9

PoolThree 218 12 377 2 24 9.0

RaxExtended 4331 80 12546 10 114 38.0

ReplicatedWorkers 1960 108 29833 15 973 2.0

RWNoDeadLckCk 396 61 6071 10 110 3.6

Table III
JPF PRSS RESULTS (* INDICATES A SLOWDOWN)

1 2 5 10 15 20 25

−
1

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Airline

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0 BoundedBuffer(1,4,4,2)

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25−
1

0
0

0
0

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

BubbleSort

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

0
5

0
1

0
0

Deadlock

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

0
1

0
2

0
3

0
4

0
5

0
6

0

PoolOne

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

0
e

+
0

0
5

e
+

0
4

1
e

+
0

5

PoolThree

Paralell Processors

S
c
h

e
d

u
le

s

Figure 2. PRSS results for ReEx DFS

Subject Schedules (DFS) PDR (DFS) Schedules (ICB) PDR (ICB)
Default Min Max Nodes Mean Speedup Default Min Max Nodes Mean Speedup

Airline 48 1 1783 2 1 48.0 44312 44287 44314 5 44287 1.0

BoundedBuffer 1166902 (TO) 1 1140436 15 1 ≥1166902.0 1329 1 40 10 1 1329

BubbleSort 109 1 2426308 2 28 3.9 5179 4644 4712 15 4646 1.1

Deadlock 298 1 298 2 3 99.3 6 9 9 1 9 *0.7

PoolOne 444908 (TO) 1 968282 15 6 ≥74151.3 6463 1094 1153 15 1097 5.9

PoolTwo 540355 (TO) 1 734014 1 1 ≥540355.0 123 107 108 10 107 1.2

PoolThree 434097 (TO) 1 156921 5 1 ≥434097.0 2 1 2 1 1 2.0

Table IV
REEX PRSS RESULTS (* INDICATES A SLOWDOWN)

1 2 5 10 15 20 25

4
4

2
8

5
4

4
2

9
0

4
4

2
9

5
4

4
3

0
0

4
4

3
0

5
4

4
3

1
0

4
4

3
1

5 Airline

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

2
4

6
8

1
0

1
2

1
4

BoundedBuffer(1,4,4,2)

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

4
6

4
0

4
6

5
0

4
6

6
0

4
6

7
0

4
6

8
0

4
6

9
0

4
7

0
0

BubbleSort

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

1
1

0
0

1
1

1
0

1
1

2
0

1
1

3
0

1
1

4
0

1
1

5
0

PoolOne

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

1
0

6
.8

1
0

7
.0

1
0

7
.2

1
0

7
.4

1
0

7
.6

1
0

7
.8

1
0

8
.0

PoolTwo

Paralell Processors

S
c
h

e
d

u
le

s

1 2 5 10 15 20 25

6
7

8
9

1
0

1
1

1
2

Deadlock

Paralell Processors

S
c
h

e
d

u
le

s

Figure 3. PRSS results for ReEx ICB

exploration was 44312 schedules. This reduction in diversity

is a result of the nature of our randomized ICB exploration

where randomization only happens among choices with the

same number of preemptions.

Different Programs: All the additional programs had fea-

sible PRSS configurations that could provide speedup com-

pared to their default explorations. This demonstrates that

PRSS generalizes across various types of programs.

RQ2 - Parallel Speedup: We discuss this question with

respect to the new contexts under which we revisited PRSS.

Latest JPF (version 6.0): The improvement in the default

performance for the latest JPF has resulted in a reduction

in the magnitude of performance improvement random ex-

plorations can achieve, and also reduced the frequency of

random explorations that perform better than the default

exploration. While PRSS was able to achieve more than

100x speedup for three of the programs with the older JPF,

only Daisy achieved more than 100x speedup with the latest

JPF. PRSS even resulted in a slowdown for DEOS with the

latest JPF, while it had obtained a 1.8x speedup with the

older JPF. Also, while the speedup reduced, the number

of computers in the PDR PRSS configuration remained

relatively the same for the latest JPF. To summarize, PRSS

obtained lesser speedup with the latest JPF. Moreover, the

reduced speedup still required the same number of parallel

computers as with the older JPF.

Stateless Exploration Tool: The PDR configurations for

stateless exploration achieve significant speedups compared

to the default exploration, the lowest speedup being 3.9x for

BubbleSort, and the highest speedup being ≥1166902.0x for

BoundedBuffer. The second highest speedup is ≥540355.0x

for PoolTwo, which is still several orders of magnitude.

However, note that for PoolTwo, it is not really necessary to

perform PRSS since the PDR configuration has only one par-

allel computer, i.e., any one random depth-first exploration

is expected to find the error so much faster than the default

exploration. While PRSS achieves much higher speedups

for stateless exploration compared to stateful exploration,

it does so with a relatively similar number of parallel

computers. For all the programs, the PDR configuration has

15 or fewer (mostly fewer than 5) parallel computers.

ICB Search Strategy: As can be seen from Table IV,

PRSS achieves much lesser speedup (Deadlock even incurs

a slowdown) for the ICB search strategy compared to depth-

first search. This can be attributed, as described earlier, to

the lack of diversity in the randomized ICB explorations.

Different Programs: PRSS was able to achieve speedups

for all the additional programs that we used for evaluation.

The speedups ranged from 1.5x for PoolOne with stateful

JPF to ≥434097.0x for PoolThree on stateless ReEx.

RQ3 - Error Detection: Unlike in the original study, none

of the default explorations timed out with the latest JPF. So

we were unable to address this question with respect to those

experiments. However, four of the seven programs used in

the stateless ReEx experiments did time out for the default

exploration (indicated by TO in Table IV). For all four of

these programs, PRSS was able to find the error and achieve

significant speedup even compared to the costs at the point

of timeout. There were no default explorations that timed

out for the ICB experiments so this question could not be

addressed for that context.

RQ4 - Metrics Correlation: We discuss this question with

respect to the various exploration tools and strategies used.

Stateful JPF: The Desktop section of Table V shows that

for almost all the programs, all the machine-independent

stateful exploration metrics considered correlate highly with

real time, with R2 values generally more than 0.85. The

main exceptions are PoolOne and PoolTwo for which all

the metrics have lower R2 values. For both these programs,

the real time values were low (1 second or less) and not

diverse. The imprecision in measurement may explain why

their R2 values were lower. It is interesting to note that

all the considered metrics correlate equally well with real

time, i.e., metrics that measure exploration costs with a

finer granularity (e.g., instructions), which could result in

a higher measurement overhead, do not provide benefits in

terms of higher correlation with real time.

The Cluster section of Table V shows that the metrics

considered do not correlate with real time as well as in

the Desktop experiments. However, surprisingly, for the

majority of programs, all the stateful exploration metrics

do correlate reasonably well with real time, with R2 values

generally more than 0.75. Note that BoundedBuffer, Bubble-

sort, PoolOne, PoolTwo, and PoolThree each have relatively

small state spaces (indicated by Maximum/Minimum ranges

in Table III), and this smaller amount of diversity may

explain their lower correlations. Also, as observed in the

Desktop experiments, all the metrics considered correlate

equally well (or equally badly) with real time.

Stateless ReEx: Table VI shows that for almost all the

programs, all the machine-independent stateless exploration

metrics considered correlate highly with real time. This is the

case for both the Desktop experiments and surprisingly the

Cluster experiments as well. The only exception is PoolTwo

for the Desktop experiments in which all 50 seeds finished

in 1 schedule, so this small correlation can be explained by

lack of seed diversity.

ICB ReEx: Due to the lack of diversity in the random ICB

explorations and their fast completion times, we were unable

to build meaningful linear regression models comparing the

measured real time from these experiments with machine-

independent metrics. Hence, we do not consider these results

in our discussions.

RQ5 - Metrics Selection: The experimental results show

that all the commonly considered machine-independent met-

rics correlate equally well (or equally badly) with real time.

Subject Desktop Cluster
States Transitions Instructions ThreadCGs States Transitions Instructions ThreadCGs

BoundedBuffer 0.943 0.935 0.887 0.908 0.231 0.234 0.220 0.231

BubbleSort 0.866 0.873 0.755 0.780 0.313 0.319 0.297 0.303

Daisy 0.995 0.995 0.999 0.995 0.935 0.935 0.936 0.935

DEOS 0.998 1.000 1.000 0.848 0.916 0.918 0.918 0.785

Elevator 0.999 0.999 0.998 0.999 0.929 0.929 0.929 0.929

PoolOne 0.581 0.566 0.511 0.570 0.286 0.282 0.228 0.284

PoolTwo 0.694 0.614 0.787 0.692 0.568 0.522 0.612 0.571

PoolThree 0.889 0.892 0.875 0.889 0.683 0.684 0.677 0.684

RaxExtended 0.972 0.948 0.746 0.961 0.894 0.853 0.597 0.873

ReplicatedWorkers 0.995 0.993 0.994 0.995 0.895 0.891 0.894 0.895

RWNoDeadLckCk 0.990 0.981 0.959 0.991 0.780 0.758 0.741 0.780

Table V
JPF DFS METRICS TIME CORRELATIONS (R2 VALUES)

Subject Desktop Cluster
Schedules Choices Events Threads Schedules Choices Events Threads

Airline 0.887 0.894 0.891 0.893 0.951 0.955 0.952 0.952

BoundedBuffer 1.000 0.998 0.999 1.000 0.992 0.991 0.993 0.992

BubbleSort 1.000 1.000 1.000 1.000 0.988 0.995 0.994 0.988

Deadlock 0.941 0.941 0.941 0.941 0.884 0.883 0.884 0.884

PoolOne 0.801 0.799 0.801 0.801 0.953 0.950 0.955 0.953

PoolTwo 0.000 0.018 0.000 0.000 0.963 0.961 0.965 0.963

PoolThree 0.884 0.886 0.884 0.884 0.994 0.981 0.994 0.994

Table VI
REEX DFS METRICS TIME CORRELATIONS (R2 VALUES)

Thus, researchers can continue to use the metrics that are

currently used in the literature. In fact, counter intuitively,

metrics that measure exploration cost more accurately—like

instructions for stateful exploration and events for stateless

exploration—do not provide substantial benefit in terms of

correlation with real time.

It is commonly acknowledged in the research community

that real time measured from experiments performed on

compute clusters may not be reliable. Depending on the

configuration used, cluster job management systems may

schedule one or more processes on each processor of a

single SMP compute node [26], [27], so the time measure-

ments for a process may be affected by the execution of

other processes. Also, compute nodes on clusters may be

heterogeneous, i.e., have different configurations, so time

measurements may not be comparable across processes.

Hence when experiments are performed on compute clusters,

the authors usually do not report the time measurements.

However, surprisingly, our results indicate that real time

measurements from clusters can be useful since they corre-

late well with machine-independent metrics. So in the future,

researchers should consider reporting real time measured

from cluster experiments, but they should exercise caution

while aggregating results from heterogeneous clusters.

E. Threats to Validity

Internal Threats: We performed our experiments with the

default settings in JPF and ReEx, with a time bound of one

hour. Changing the settings or increasing the time bound

could affect our findings. To the best of our knowledge, there

are no errors in JPF and ReEx (and our implementations of

randomized depth-first search and randomized ICB search

algorithms in ReEx) that affected our results. However, we

did encounter a regression error in JPF that we reported to

the JPF developers.

External Threats: We used a diverse set of thirteen arti-

facts in our experiments as shown in Table II. However,

these programs do not necessarily form a representative

set of concurrent programs. Also, the programs that we

used exhibit a diverse set of errors including deadlocks,

atomicity violations, and data races that lead to various

assertion violations. However, these errors may not form a

representative set of errors found in all concurrent programs.

To mitigate the effects of using a single type of explo-

ration tool or a single search strategy, we used both stateful

JPF and stateless ReEx for both DFS and ICB search in

our experiments. However, this does not cover all types of

exploration tools or search strategies that may be used, hence

there remains a threat that our results may not generalize to

other types of tools or search strategies, or combinations of

search strategies [5].

Our experiments were performed across two different

types of machine configurations, including a desktop ma-

chine and a heterogeneous cluster, using two different op-

erating systems and two different JVM versions. However,

these machine configurations may not necessarily form a

representative set of all machine configurations. More

combinations of both desktop and cluster machines with

configurations including different operating system param-

eters, such as disk swapping, and different JVMs, possibly

with alternate parameters such as heap size, would be needed

to mitigate this threat.

Construct Threats: While designing our study, we chose

metrics that are used most commonly to report results for

stateful and stateless state-space exploration experiments.

However, using different metrics or new combinations of

them may shed a different light on our results.

Conclusion Threats: We used 1000 random seeds for the

JPF-based experiments performed on the cluster, 500 ran-

dom seeds for both the ReEx-based experiments performed

on the cluster, and a subset of 50 of those seeds for the

three sets of experiments performed on the dedicated desktop

machine. While these numbers of seeds are reasonably

large, there is a threat that they may not have sufficiently

represented the actual distribution of all possible random

explorations.

While our cluster experiments were performed at different

times of the day across the span of a few weeks, the real

time results obtained could be a consequence of the load

patterns prevalent at those times. Controlled experiments

with different load patterns would have to be performed to

rule out this threat.

IV. CONCLUSIONS

Researchers have developed many new techniques to ad-

dress the increasingly important problem of state-space ex-

ploration of concurrent code. It can be hard to compare these

techniques because empirical evaluations of them use var-

ious machine-independent and machine-dependent metrics.

We present a study of various common machine-independent

metrics for two different exploration frameworks for Java

(JPF and ReEx) by evaluating their correlation with real time

across a variety of machine configurations. We find that all

of the machine-independent metrics we studied (i) correlate

reasonably well with real time, particularly on programs

with larger state spaces, (ii) correlate equally with real time,

so lower granularity metrics can be used without loss in

confidence, (iii) correlate reasonably well with real time

measured on the cluster, so researchers should also report

real time measured on clusters. Our results also indicate that

PRSS is still effective for the latest JPF and also effective

for stateless search in ReEx.

ACKNOWLEDGMENTS

We would like to thank Mladen Laudanovic for discus-

sions on statistical analysis, Qingzhou Luo for discussions

about state-space exploration, and Peter Mehlitz for help

with JPF. This material is based upon work supported by

the National Science Foundation under Grant Nos. CCF-

1012759, CNS-0958199, CCF-0916893, and CCF-0746856.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. The MIT Press, Cambridge, MA, 1999.

[2] M. B. Dwyer, S. Person, and S. G. Elbaum, “Controlling fac-
tors in evaluating path-sensitive error detection techniques,”
in FSE, 2006.

[3] M. B. Dwyer, S. G. Elbaum, S. Person, and R. Purandare,
“Parallel randomized state-space search,” in ICSE, 2007.

[4] M. Musuvathi and S. Qadeer, “Iterative context bounding for
systematic testing of multithreaded programs,” in PLDI, 2007.

[5] G. J. Holzmann, R. Joshi, and A. Groce, “Tackling Large
Verification Problems with the Swarm Tool,” in SPIN, 2008.

[6] N. Rungta, E. G. Mercer, and W. Visser, “Efficient Testing
of Concurrent Programs with Abstraction-Guided Symbolic
Execution,” in SPIN, 2009.

[7] K. Coons, S. Burckhardt, and M. Musuvathi, “Gambit: Ef-
fective Unit Testing for Concurrency Libraries,” in PPoPP,
2010.

[8] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware pre-
emption prioritization,” in ISSTA, 2011.

[9] M. Gligoric, V. Jagannath, and D. Marinov, “MuTMuT:
Efficient exploration for mutation testing of multithreaded
code,” in ICST, 2010.

[10] G. Yang, M. B. Dwyer, and G. Rothermel, “Regression model
checking,” in ICSM, 2009.

[11] A. Udupa, A. Desai, and S. Rajamani, “Depth bounded
explicit-state model checking,” in SPIN, 2011.

[12] P. Parizek and O. Lhoták, “Randomized backtracking in state
space traversal,” in SPIN, 2011.

[13] “ReEx home page,” http://mir.cs.illinois.edu/reex/.

[14] G. Ciardo, Y. Zhao, and X. Jin, “Parallel symbolic state-space
exploration is difficult, but what is the alternative?” in PDMC,
2009.

[15] R. H. Carver and Y. Lei, “Distributed reachability testing
of concurrent programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 18, 2010.

[16] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model checking programs,” Automated Software Engineer-
ing, vol. 10, no. 2, 2003.

[17] “JPF home page,” http://babelfish.arc.nasa.gov/trac/jpf/.

[18] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity
violation bugs from their hiding places,” in ASPLOS, 2009.

[19] F. Sorrentino, A. Farzan, and P. Madhusudan, “Penelope:
weaving threads to expose atomicity violations,” in FSE,
2010.

[20] University of Nebraska Lincoln, “Software-artifact Infrastruc-
ture Repository,” http://sir.unl.edu/portal/index.html.

[21] Apache Software Foundation, “POOL-107,”
https://issues.apache.org/jira/browse/POOL-107.

[22] ——, “POOL-120,”
https://issues.apache.org/jira/browse/POOL-120.

[23] ——, “POOL-146,”
https://issues.apache.org/jira/browse/POOL-146.

[24] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting con-
trolled experimentation with testing techniques: An infras-
tructure and its potential impact,” Empirical Software Engi-
neering, vol. 10, no. 4, 2005.

[25] Condor Team, “Condor Project Homepage,”
http://research.cs.wisc.edu/condor/.

[26] T. A. El-Ghazawi, K. Gaj, N. A. Alexandridis, F. Vroman,
N. Nguyen, J. R. Radzikowski, P. Samipagdi, and S. A.
Suboh, “A performance study of job management systems,”
Concurrency: Practice and Experience, vol. 16, no. 13, 2004.

[27] Condor Team, “Condor Manual Section 3.13.9: Configuring
The Startd for SMP Machines.”

http://mir.cs.illinois.edu/reex/
http://babelfish.arc.nasa.gov/trac/jpf/
http://sir.unl.edu/portal/index.html
https://issues.apache.org/jira/browse/POOL-107
https://issues.apache.org/jira/browse/POOL-120
https://issues.apache.org/jira/browse/POOL-146
http://research.cs.wisc.edu/condor/

