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Abstract
The importance of software security cannot be over-
stated. In the past, researchers have applied program
analysis techniques to automatically detect security vul-
nerabilities and verify security properties. However, such
techniques have limited success in reality because they
require manually provided code-level security specifica-
tions. Manually writing and generating these code-level
security specifications are tedious and error-prone. Ad-
ditionally, they seldom exist in production software.

In this paper, we propose a novel method and tool,
called AutoISES, which Automatically Infers Security
Specifications by statically analyzing source code, and
then directly use these specifications to automatically de-
tect security violations. Our experiments with the Linux
kernel and Xen demonstrated the effectiveness of this ap-
proach – AutoISES automatically generated 84 security
specifications and detected 8 vulnerabilities in the Linux
kernel and Xen, 7 of which have already been confirmed
by the corresponding developers.

1 Introduction

1.1 Motivation
The critical importance of software security has driven
the design and implementation of secure software sys-
tems. Security-Enhanced Linux (SELinux) [23, 28], de-
veloped as a research prototype to incorporate Manda-
tory Access Control (MAC) into the Linux kernel sev-
eral years ago, imposes constraints on its existing Dis-
cretionary Access Control (DAC) for stronger security.
SELinux has since been adopted by the mainline Linux
2.6 series and incorporated into many commercial dis-
tributions, including Redhat, Fedora, and Ubuntu. Re-
cently, Xen also adopted a similar MAC security archi-
tecture to enable system-wide security policy [7].

A core part of such access control systems is
a set of security check functions, which check
whether a subject (e.g., a process) can perform a
certain operation (e.g., read or write) on an object
(e.g., a file, an inode, or a socket). These pro-
tected operations are called security sensitive opera-
tions. For example, Linux’s security check function
security file permission(〈file〉, . . .) can deter-
mine if the current process is authorized to read or
write the file, while another security check function,
security file mmap(〈file〉, . . .), checks if the cur-
rent process is authorized to map a file into mem-
ory. To ensure only authorized users can read or write
the file, developers must add the security check func-
tion security file permission() before each file
read/write operation on every file. Similarly, develop-
ers must add security file mmap() each time before
mapping a file to memory, to ensure only authorized
users can memory map the file.

A major challenge of supporting the secure architec-
ture above is to ensure that all sensitive operations on all
objects are protected (i.e., checked for authorization) by
the proper security check functions in a consistent man-
ner. If the proper security check function is missing be-
fore a sensitive operation, an attacker with insufficient
privilege will be able to perform the security sensitive op-
eration, causing damage. For example, the file read/write
operation is performed in many functions throughout
the Linux kernel, such as read(), write(), readv(),
writev(), readdir(), and sendfile(). Despite the
different names of these function calls, they all per-
form the same conceptual file read/write operation, and
must be checked for authorization by calling the security
check function security file permission(). As
the Linux kernel code is reasonably mature, most of these
functions performing the file read/write operation, such
as read(), write(), and readdir(), are protected by



linux/fs/read_write.c:
static ssize_t do_readv_writev(...) { …

// performs file
// read/write operation

ret = file->f_op->readv(file,); …
}

linux/fs/read_write.c:

ssize_t vfs_read(...) {
…
ret = security_file_permission (file, ...);
…
// performs file read/write operation
ret = file->f_op->read(file, ...);
…

}

linux/fs/read_write.c:

ssize_t vfs_write(...) {
…
ret = security_file_permission (file, ...);
…
// performs file read/write operation
ret = file->f_op->write(file, ...);
…

}

linux/fs/readdir.c:

ssize_t vfs_readdir(...) {
…
ret = security_file_permission (file, ...);
…
// performs file read/write operation
ret = file->f_op->readdir(file, ...);
…

}

Forgot to call
security_file_permission()!

–- A security violation.

(a) file read/write operation
protected by the check

(b) file read/write operation
protected by the check

(c) file read/write operation
protected by the check

(d) Security Violation – violating the
implicit security specification

Figure 1: A real security violation in Linux 2.6.11. The security check security file permission() was missing before
the security sensitive operation performed via file->f op->readv(), violating the implicit security specification — every
file read/write operation must be checked for authorization using security file permission(). This is a real security
violation, which has already been fixed in later versions. The code is slightly modified to simplify illustration.

the security check function, as shown in Figure 1(a)-(c).
However, in a few other cases, as shown in Figure 1(d),
the security check function is not invoked before the file
read/write operation performed by readv(), violating
the implicit security specification or security rule: every
file read/write operation must be protected by calling se-
curity check function security file permission().
Due to this real world security vulnerability in Linux
2.6.11 (CVE-2006-1856 [1]), unauthorized user can read
and write files that they are not allowed to access, poten-
tially providing unauthorized user account access. Addi-
tional damages might include partial confidentiality, in-
tegrity, and availability violation, unauthorized disclo-
sure of information, and disruption of service.

There have been great advances in applying program
analysis techniques [2, 4, 5, 12, 16] to automatically de-
tect these security vulnerabilities and to verify security
properties [6, 9, 18, 30]. Generally, these tools take a
specification that describes the security properties to ver-
ify as input. For example, in earlier efforts [9, 30], the
authors manually identified the data types (e.g., struct
file, struct inode, etc.) that might be accessed to
perform security sensitive operations and automatically
verified that any access to these data types was protected
by a security check function. Although these previous
studies detected some vulnerabilities, and made signifi-
cant progresses toward automatic verification of security
properties, they are limited in two perspectives:

• All these previous tools require developers or their
tool users to provide code-level security specifi-
cations, which greatly limit their practicability in
checking and verifying security properties. Writ-
ing specifications that accurately capture the secu-
rity properties of a piece of software and at the same
time maintaining their correctness across different
versions of the software is notoriously difficult. Such
specifications seldom exist in production software.

• Human-generated specifications can be imprecise,
causing false positives and potentially false negatives
in violation detection. As an example, the specifi-
cation used in one of the earlier work [30], intro-
duced false positives because it treated any access
to specified data structures as security sensitive op-
erations. In reality, a security sensitive operation
typically consists of accesses to multiple data struc-
tures: a file read/write operation involves accessing
struct file, struct inode, struct dentry,
etc. Accessing the file structure alone is not neces-
sarily (actually in most cases is not) a file read/write
operation. In addition, some field accesses (e.g.,
file->f version) of a security sensitive data type
are not part of any security sensitive operation, and
therefore do not need to be protected. Therefore, in
the two cases above, simply requiring accesses to ev-
ery field of these data structures to be protected led
to false positives [30]. The specification may also
introduce false negatives because it does not spec-
ify which security check is required for which op-
eration. The tool can fail to detect violations where
the wrong check function is used as different security
sensitive operations (e.g., file read/write and memory
map) may access the same data types (e.g., struct
file) but require different security checks.

Therefore, to design tools that are truly usable for or-
dinary programmers, it is highly desirable for these tools
to meet the following three requirements on specification
generation: (1) to automatically check against source
code for security violations, the security specifications
must be at the code level. The conceptual specification
“file read/write operation must be protected by the secu-
rity check function security file permission()”
can not be checked against source code without know-
ing its corresponding code-level representation. (2) as it
is tedious and error-prone for developers to write these



linux/include/linux/fs.h:
static inline loff_t i_size_read(struct
inode *inode) { ...

return inode->i_size;
}

linux/mm/filemap.c:
ssize_t generic_file_readv (...) {  ...

__generic_file_aio_read(); ...
}

(c) Accesses in the Code(b) Security Violation

Security Check Function: security_file_permission
Security Sensitive Operation (A group of data
structure accesses):
1. READ inode->i_size
2. READ file->f_flags
3. READ file->f_pos
4. READ file->f_dentry
5. READ file->f_dentry->d_inode
6. READ file->f_vfsmnt
7. READ dentry->d_inode
8. READ address_space->flags
9. READ address_space->nrpages
10. WRITE address_space->nrpages
11. READ address_space->page_tree
12. READ address_space->tree_lock
13. READ page->_count
14. READ page->flags
15. WRITE page->index
16. READ page->mapping
17. WRITE page->mapping
18. READ pglist_data->node_zonelists
19. READ zone->wait_table
20. READ zone->wait_table_bits
21. READ (Global) nr_pagecache
22. READ (Global) zone_table

(a) Security Rule/Specification

READ file->f_flags

READ inode->i_size

linux/fs/read_write.c:

static ssize_t do_readv_writev(...) {
…

// file->f_op->readv is set to function
generic_file_readv().

ret = file->f_op->readv();
…

}

security_file_permission() is 
missing before the file read/write
operation, which accesses data

structures in (a) in many different
functions and files.

linux/mm/filemap.c:
ssize_t __generic_file_aio_read(...) {

struct file *filp = iocb->ki_filp; …
if (filp->f_flags …  ) { …  
} …
i_size_read(); …  }

Figure 2: A code-level security specification AutoISES automatically generated and a real security violation to the specification
in Linux 2.6.11. The leftmost box shows the security rule, consisting of a security check function and a group of data structure
accesses. Each row is one access, which can be either a structure field access or a global variable access, denoted by “(Global)”.
For each structure field access, the name before the first -> is the type name of the structure, and the rest are field names. For a
global variable, the variable name is used. The code is slightly modified to simplify illustration.

security rules, the tool should automatically generate se-
curity specifications with minimum user/developer in-
volvement; and (3) the generated specification must be
precise, otherwise it would result in too many false posi-
tives and/or false negatives.

1.2 Our Contributions
This paper makes two contributions:

(1) We propose an approach and a tool, AutoISES,
to automatically extract concrete code-level security
specifications from source code and automatically de-
tect security violations to these specifications. Our
key observation is that although the same security sen-
sitive operation can be performed in different functions,
ultimately, the structure fields and global variables these
functions access are the same. We call these structure
field and global variable accesses together as data struc-
ture accesses. For example, all of the different func-
tions performing the file read/write operation share the
22 data structure accesses listed in Figure 2(a) (automat-
ically generated by AutoISES), including reading field
f flags of the file structure and reading field i size
of the inode structure. These 22 data structure accesses
are performed in many different functions located in dif-
ferent source files. Intuitively, this makes sense as secu-
rity check functions are designed to protect data. There-
fore, the use of data structure accesses is fundamental in
representing security sensitive operations.

Based on this observation, we propose a method and a
tool, called AutoISES, to Automatically Infer Security
Specifications by statically analyzing source code and
directly use these specifications to automatically detect
security violations. Specifically, if a code-level security
sensitive operation is frequently protected by a security
check function in source code, AutoISES automatically
infers that the security check function should be used to
protect the particular code-level security sensitive opera-
tion. Our rationale is that for release software, the ma-
jority of the code should be correct, therefore we can use
the code to infer security specifications or rules, which
are observed in most places of the source code, but may
not in a few other places. The rationale is similar to that
of prior work in specification mining [10, 11, 20, 22],
each of which extracts different types of programming
rules automatically from source code or execution trace.
However, previous techniques are not directly applica-
ble to our problem, because they are limited by the
types of rules they can infer (e.g., function correlation
rules [10, 20], variable value related invariants [11], vari-
able pairing rules [22]). As noted previously, our key ob-
servation states that the sensitive operation should be rep-
resented as data structure accesses, therefore, it requires
AutoISES to be able to learn specifications that contain
both functions and multiple variable accesses that satisfy
certain constraints. None of the previous techniques can
be applied without significant re-design of the learning
algorithm (more detailed discussion in Section 6.1 and
Section 7).



We evaluated AutoISES on the latest versions of
two large software systems, the Linux kernel and
Xen, to demonstrate the effectiveness of our approach.
AutoISES automatically extracted 84 rules from the
Linux kernel and Xen, and detected 8 true violations, 7 of
which are confirmed and fixed by the corresponding de-
velopers. Figure 2 shows (a) the code-level security spec-
ification learned by AutoISES which consists of the 22
data structure accesses, (b) a security violation automati-
cally detected by AutoISES, and (c) the unprotected sen-
sitive operation that performs all the accesses shown in
(a) in different functions located in various source files.
It would be very difficult, if impossible, for a human be-
ing to generate such a specification. More examples and
results can be found in Section 5.

The automatically generated specifications can also
be used by other analysis tools for vulnerability detec-
tion. Additionally they can assist in software understand-
ing and maintenance. These results demonstrate that
AutoISES is effective at automatically inferring secu-
rity rules and detecting violations to these rules, which
greatly improves the practicality of security property
checking and verification tools.

(2) We quantitatively evaluate rule granularity im-
pact on the accuracy of rule inference and vi-
olation detection. Security specifications can vary
in granularity. For example, a single access
can be represented with the access type (read or
write), READ inode->i size, or without it, ACCESS
inode->i size. Similarly, the same access can be rep-
resented with the structure field, READ inode->i size,
or without it, READ inode. Theoretically, finer granu-
larity causes more false negatives and fewer false pos-
itives for violation detection compared to coarser gran-
ularity. The choice of granularity can greatly affect the
accuracy of rule inference and violation detection. Al-
most all previous rule generation and violation detection
techniques [3, 9, 10, 11, 20, 22, 30] choose fixed gran-
ularity without quantitatively evaluating how good their
choice is.

In our work, we quantitatively evaluate the impact of
different rule granularity on rule inference and violation
detection. This approach is orthogonal to our automatic
rule inference techniques and can be applied to other rule
extraction techniques.

Interestingly, our results show that if we
do not distinguish the fields, then the inferred
code-level security sensitive operation for the
check function security inode link() and
security file unlink() is the same, failing to
distinguish the two different operations. Using our
finest granularity, AutoISES can disambiguate the
two similar operations (the unlink operation contains

READ inode->i size, but the link operation does
not). Our results also show that on average our most
fine-grained rules causes 33% fewer false positives than
the most coarse-grained rules, and detected all of the true
violations that the most coarse-grained rules can detect.
This indicates rule granularity significantly affects
violation detection accuracy and could be considered a
tuning parameter for other rule inference and violation
detection tools to reduce false positives.

On the other hand, coarse-grained rules help us dis-
cover high level rules that are shared by different secu-
rity check functions, which fine-grained rules fail to un-
cover (examples shown in Section 5.3). These results
call for attention that different levels of granularity have
measurable advantages and disadvantages, and one could
quantitatively evaluate the tradeoffs when designing rule
inference and violation detection tools in order to choose
the most suitable granularity.

In summary, AutoISES closes an important gap in
achieving secure software systems. To have truly secure
software systems, not only must one have a secure de-
sign, but the implementation must faithfully realize the
design. To verify that the implementation faithfully real-
izes the design, one must write a correct code-level spec-
ification which can be verified by automatic tools such as
a model checker or a static analyzer. AutoISES allows
the security specifications to be automatically extracted
from the actual implementation, alleviating the develop-
ers from the burden of manually writing specifications
while at the same time significantly improving the accu-
racy of the specification.

1.3 Paper Layout
The remainder of the paper is organized as follows. Sec-
tion 2 provides background information about MAC,
DAC and the assumptions we make in our work. In Sec-
tion 3, we present an overview of our approach, includ-
ing some formal definitions and how we quantitatively
evaluate rule granularity, followed by a detailed design
in Section 4. Our methodology and experimental results
are described in Section 5, and Section 6 discusses and
summarizes our key techniques, their generalization and
limitations. In Section 7 a discussion of the related work
is presented, and finally we conclude with Section 8.

2 Background and Assumptions
2.1 DAC and MAC Background
The traditional Linux kernel uses Discretionary Access
Control (DAC), meaning the access control policies are
set at the discretion of the owner of the objects. For ex-
ample, the root user typically sets the password file to be



writable only by herself. However, if the root user mis-
takenly makes the password file publicly writable, then
the whole system is at risk. This example shows one ma-
jor deficiency of DAC, that is, mistakes of individual pol-
icy decisions can result in the breach of security for the
entire system. Mandatory Access Control (MAC) is pro-
posed to address this issue. In a MAC system, there ex-
ists a system wide security policy, such as “high-integrity
file must not be modified by low-integrity users”. Even
if the root mistakenly grants write permissions on the
password file to everyone, when a normal user tries to
write the password file the attempt would fail because it
is against the system-wide policy. MAC is considerably
“safer” than DAC, but it is also more complex and more
difficult to implement, especially for large systems like
Linux [18]. It took Linux developers about two years to
add MAC to the Linux kernel, and since then it has un-
dergone many rounds of refinements and extensions. It
is expected that its development will continue well into
the future.

2.2 Assumptions
We make the following assumptions in our work.

Reasonably mature code base: Similar to previous
work on automatic rule extraction [3, 10, 11, 20, 22], we
assume that the code we work with is reasonably ma-
ture, i.e., it is mostly correct and already contains an im-
plementation of the security architecture that is mostly
working. This does not mean that software development
ceases. In fact, the software might still be under active
development and new features continue to be added. Al-
most all open source and proprietary software falls into
this category, therefore this assumption does not signifi-
cantly limit the applicability of this work.

Software developers not adversarial: We assume
that software developers are trusted and will not delib-
erately write code to defeat our rule generation mecha-
nism. This in general holds for majority of the software
that exists today, i.e., we believe that the majority of soft-
ware developers intend to write correct and secure soft-
ware. In the limited cases where this assumption does
not hold [25], there exist static analysis techniques that
can detect such malicious code [29]. However, detecting
malicious code in general is challenging and remains an
active open research problem.

Kernel and hypervisor in the trusted computing
base: For the two pieces of software that we experi-
mented with, namely, the Linux kernel and the Xen hy-
pervisor (virtual machine monitor), we assume that both
are part of the trusted computing base. Thus, the manda-
tory access control is in place to prevent user level or
guest OS level processes from breaking security poli-
cies. This assumption implies that only if a user process
or a guest OS process can bypass the MAC mechanism

(placed in the kernel or the hypervisor) do we consider it
a breach of security. The kernel or the hypervisor is free
to modify the data structures on its own behalf (e.g., for
bookkeeping purposes) without going through the secu-
rity checks. This assumption is adopted from the MAC
architecture of the Linux kernel and Xen hypervisor.

3 Overview of Our Approach
In this section, we will present our high level design
choices of rule inference and violation detection; for-
mal definitions of security rules, security sensitive oper-
ations, and security violations; and how we explore dif-
ferent levels of rule granularity. The detailed design will
be discussed in the next section.

3.1 Our approach
Our approach consists of two steps, as shown in Figure 3.
In the first step, we generate security specifications auto-
matically from the source code. The input to the gen-
erator is the source code and the set of security check
functions. The output of this step is a set of security
rules containing a security check function and a security
sensitive operation represented by a group of data struc-
ture accesses as shown in Figure 2 (a) (the advantages
of using a group of data structure accesses to represent
a sensitive operation are discussed in Section 3.2). In
the second step, AutoISES takes the source code and
the rules automatically inferred in the first step as the
input, and outputs ranked security violations. Note that
these automatically inferred rules can be used directly by
AutoISES without manual examination, which reduces
human involvement to its minimum.

Step 1: Automatically infer security
specifications

Source code A list of security
check functions

Security
specifications

Step 2: Automatically detect violations
to inferred security specifications

A ranked list of
security violations

Figure 3: The analysis flow of AutoISES.

Step 1: Inferring Security Rules This paper focuses
on inferring security rules which mandate that a secu-
rity sensitive operation must be protected by a security
check function, i.e., the sensitive operation must not be
allowed to proceed if the security check fails. In order
to effectively check such rules against the source code to



detect violations, it is crucial to specify the security rule
at the source code level. Unfortunately, in reality such
rules are usually not documented. Therefore, our goal is
to automatically infer such rules from the source code.

To infer one rule, we want to discover, for the
same security check function, what fixed security sen-
sitive operation must be protected by it. We can in-
fer this security rule from two angles: (1) we search
for all instances of the same security check function
(e.g., security file permission()) and discover
what sensitive operation is frequently protected by (e.g.,
performed after) the check function, or (2) we search
for all instances of the same security sensitive operation
(e.g., the 22 data structure accesses shown in Figure 2(a))
and then check what security check function is frequently
used to protect (e.g., invoked before) the operation. We
use the first method, because it is relatively easy to know
what the security check functions are in the source code
(usually documented), but knowing what security sen-
sitive operations are in the source code itself is still a
challenge (not documented). Specifically, we look for all
instances of the same security check in the source code
and collect sensitive operations protected by it. If this se-
curity check is frequently used to protect a fixed sensitive
operation, represented by a fixed set of data structure ac-
cesses, we infer a security rule: this set of data structure
accesses must be protected by this security check func-
tion. Our rationale is that released software is mostly
correct, so we can infer correct behavior from it.

It is not uncommon that more than one security check
function is required to protect one sensitive operation. In
such cases, our inference approach still works because
it will infer several separate rules, one for each security
check function. The set of rules related to the same sensi-
tive operation combined can detect violations where not
all of the check functions are invoked to protect the op-
eration.

We can infer security rules statically or dynamically.
While a dynamic approach is more precise, it has poorer
coverage because only executed code is analyzed. As
we study large software with millions lines of code, a
dynamic approach may not be sufficient, which is con-
firmed by previous work [9, 13]. Therefore, we use inter-
procedural and flow-insensitive static program analysis
for rule inference. A more detailed description of our
static analysis techniques can be found in Section 4.3.

In summary, our tool AutoISES automatically infers
sensitive operations in the form of a group of data struc-
ture accesses that are commonly or frequently protected
by the same security check function, given a list of secu-
rity check functions. Similar to previous rule inference
studies [3, 10, 11, 20, 22], we cannot discover all secu-
rity rules from the source code alone (discussed in Sec-
tion 6.3). However, it is effective to infer some important

security rules from source code, and detect previously
unknown security vulnerabilities.

Step 2: Detecting Violations The goal of this step is to
use the rules inferred above to detect security violations.
Similarly, we use inter-procedural and flow-insensitive
analysis for violation detection. As we already know
which data structure accesses represent the security sen-
sitive operation from an inferred rule, we can search for
instances of the security sensitive operation that are not
protected by the security check function, indicating se-
curity violations.

Specifically, AutoISES starts from each root function
(automatically generated starting function for our anal-
ysis and detection as discussed later in Section 4.2.1),
and collects all data structure accesses and calls to
security check functions. Then it calculates the
accessV iolationCount, which is the number of ac-
cesses in the rule that are not protected by the par-
ticular security check function. Specifically, if an
access in the rule is performed without being pro-
tected by a security check function, AutoISES in-
creases the accessV iolationCount by one. We then
use the accessV iolationCount for violation ranking
– the higher the accessV iolationCount is, the more
likely it is a true violation. We also allow our tool
users to set up a threshold and only report violations
with its accessV iolationCount higher than the thresh-
old. Users can always set the threshold to zero to see all
violation reports.

Untrusted-space exposability analysis One key tech-
nique we used to greatly reduce false positives is our
untrusted-space exposability analysis. As we consider
the kernel and the hypervisor to be our trusted comput-
ing base, security sensitive operations in kernel space and
hypervisor that do not interact with the untrusted space
(user space or guest OS processes), do not need to be pro-
tected by a security check function. On the other hand,
if such sensitive operations interact with the untrusted
space, e.g., are performed by a user space process via
system calls, or use data copied from user space, then a
security check may be mandatory. Since it is typical that
a large number of sensitive operations are not exposed
to the untrusted space, most of the detected violations
would be false alarms, which is detrimental to a detec-
tion tool.

To reduce such false positives, we perform a simple
trusted space exposability study. Specifically, we com-
piled a list of user space interface functions that are
known a priori to be exposed to user space, e.g., sys-
tem calls such as sys read() and hypercalls. Then,
AutoISES checks what sensitive operations are reach-
able from these interface functions. If a sensitive oper-
ation that can be exposed to the untrusted space is not



protected by the proper security check function, we re-
port the violation as an error; otherwise, we report the
violation as a warning. Our goal is to ensure most of the
errors are true violations, but we still generate the warn-
ings so that developers can examine them if they want
to. This approach relies on easy-to-obtain information
(system calls and hypercalls) to automatically reduce the
number of false positives.

3.2 Formal Definitions
Based on our reasoning above, we formally define the
rule inferencing problem, security sensitive operations,
security rules, our inference rule, and violations.

Rule Inferencing Problem Given the target source
code and a set of n kernel security check functions,
CheckSet = {Check1, ..., Checkn}, each of which can
check if a subject (e.g., a process), is authorized to per-
form a certain security sensitive operation, Opi (e.g.,
read, where 1 ≤ i ≤ n), on a certain object (e.g., a file)
we want to uncover security specifications or security
rules, Rulei, in the form of a pair, (Checki, Opi), man-
dating that a security sensitive operation Opi, must be
protected, <protected, by security check function Checki

each time Opi is performed. Here protected means that
the operation Opi can not be performed if the check
Checki fails.

A security check function Checki can be called
multiple times in the program, each of which is called
an instance of the security check function, denoted as
InstanceOf(Checki)v , where v is between 1 and the
total number of Checki instances inclusive. Similarly,
a security sensitive operation Opi can appear in the
program multiples times, and each of which is called an
instance of the sensitive operation, InstanceOf(Opi)u.
If for all instances of the sensitive operation, there exists
at least one instance of security check function to protect
it, then we say that the sensitive operation is protected
by the security check function. Formally speaking,
∀InstanceOf(Opi)u, ∃InstanceOf(Checki)v,
such that InstanceOf(Opi)u <protected

InstanceOf(Checki)v => Opi <protected Checki.

Representing Security Sensitive Operations There
are several ways to represent security sensitive opera-
tions at the code level. We can use a list of data structures
that the operation manipulates, a list of functions the op-
eration invokes, or the combination of the two. The list
can be ordered or not ordered, indicating whether we re-
quire these accesses to be performed in any particular
order.

We use data structure accesses to represent a secu-
rity sensitive operation, because it has two advantages
over using function calls. First, it can infer rules that

function call based analysis would not be able to find.
For example, if a sensitive operation is performed after
a check function via different function calls, e.g., A and
B, by using function A and B to represent the operation,
we may mistakenly consider nothing is commonly pro-
tected by the check function and miss the rule. Zoom-
ing into the functions will allow us to find the shared
data structure accesses in both A and B. Additionally,
we can detect more violations by using data structure
accesses. For examples, if we find that a check func-
tion always protects function call A at many places, but
there is a violation that performs the same sensitive op-
eration via function B without invoking the check func-
tion first, then we will not be able to detect the viola-
tion unless we use the data structure accesses to rep-
resent the sensitive operation in the rule. For exam-
ple, security file permission() is used to protect
read, write, etc., in Linux 2.6.11, but the check is
missed when the sensitive operation is called through
readv (shown in Figure 2(b)), writev, aio read, or
aio write. Therefore, AutoISES would have missed
all of these violations if it had not used the actual data
structure accesses to represent the sensitive operation.

The tradeoffs between considering access orders or not
are as follows. While preserving access orders is more
precise, it has two major disadvantages. First, the order
does not matter for certain rules, and preserving the order
can cause one to miss the rule. For example, an directory
removal operation involves setting the inode’s size to 0
and decrement the number of links to it by one. The order
in which the two accesses are performed is irrelevant.
Second, it is more expensive to consider access orders,
which can affect the scalability of our tool. On the other
hand, the downside of not considering orders is that we
can potentially have a higher number of false positives
due to over-generalization. However, we did not find any
false positives caused by this reason in this study.

Therefore, we use a set of unordered data structure ac-
cesses, AccessSet = {Access1, ..., Accessm}, to repre-
sent sensitive operation Op, where each data structure
access is defined as shown in Figure 4.

Accessi := READ AST |WRITE AST |ACCESS AST

AST := type name(−>field) ∗ | global variable

Figure 4: Definition of one data structure access.
ACCESS AST means an access to AST (Abstract Syntax
Tree), either READ or WRITE.

Security Rules Replacing the security sensitive opera-
tion Opi with AccessSet as defined above, we have the
following definition of security rules:
Rulei = (Checki, AccessSeti), where Checki ∈ CheckSet

=> AccessSeti <protected Checki.



Inference Rule As such rules are usually undocu-
mented, we want to automatically infer them from source
code by observing what sensitive operation is frequently
protected by a security check function, i.e., what sensi-
tive operation are commonly protected by different in-
stances of the same security check function.

Formally speaking, we use the following inference
rule to infer security rules:

AccessSeti <frequently protected Checki

=> InferredRulei = (Checki, AccessSeti),

where Checki ∈ CheckSet.

Violations Using such inferred rules, we want to detect
security violations. An instance of a security sensitive
operation, InstanceOf(AccessSeti)u is a violation to
InferredRulei if it is not protected by any instance of
the security check function. In other words,

Given InferredRulei = (Checki, AccessSeti),

∀ InstanceOf(Checki)v,

InstanceOf(AccessSeti)u 6<protected InstanceOf(Checki)v

=> InstanceOf(AccessSeti)u ∈ V iolationi.

In this paper, we use rules and inferred rules inter-
changeably.

3.3 Exploring Rule Granularity
We explore 4 different levels of granularity based on two
metrics, whether to distinguish read and write access
types, and whether to distinguish structure fields. The
four different levels of granularity are as shown in Ta-
ble 1. For example, the access READ inode->i size is
represented as READ inode for Granularity(F−, A+),
ACCESS inode->i size for Granularity(F+, A−),
and ACCESS inode for Granularity(F−, A−).

Distinguishing Structure Fields
Yes No

Disting- Yes Granularity(F+, A+) Granularity(F−, A+)
uishing READ inode->i size READ inode
Access No Granularity(F+, A−) Granularity(F−, A−)
Types ACCESS inode->i size ACCESS inode

Table 1: Four Levels of Rule Granularity with Examples.

To better understand the impact of the rule gran-
ularity on rule inference and violation detection, and
to gain insight on how well our default granular-
ity (Granularity(F+, A+)) performs, we quantitatively
evaluate the 4 different levels of granularity on the Linux
kernel and Xen. This exploration is orthogonal to our
rule inference and violation detection, and can be applied
to previous rule inference techniques [9, 11, 20, 22, 30].

4 Detailed Design of AutoISES
4.1 A Naive Approach
We first describe a naive approach and show why it
does not work, which motivated us to explore alterna-
tives. A naive approach is to start the analysis from
the direct caller functions of a security check function,
and consider all data structure accesses performed af-
ter the security check function as the protected sensi-
tive operation. This approach does not work because
it introduces obvious imprecision. For example, as
shown in Figure 5, security inode permission()
is called at the end of function permission().
If we start from function permission(), then no
data structures are accessed after security check
function security inode permission() in function
permission(), indicating that no data structure ac-
cess is protected by security inode permission(),
which is clearly not true. This naive approach fails be-
cause permission() is not a function that actually uses
the check to protect security sensitive operations. In-
stead, it is a wrapper function of the security check func-
tion. The function that actually uses the security check
function for a permission check is vfs link() shown in
the leftmost box of Figure 5.

To automatically infer security rules, we need to auto-
matically discover the functions (e.g., vfs link()) that
actually use security checks for authorization checking.

4.2 Security Specification Extraction
The goal of AutoISES is to discover the security sensi-
tive operation, represented by a group of data structure
accesses, that is protected by a security check function.
Why we use data structure accesses to represent a se-
curity sensitive operation has already been discussed in
Section 1.2, and the two major advantages of this repre-
sentation have been described in Section 3.2. To achieve
this goal, we need to address four major challenges: (1)
how to automatically discover functions that actually use
security checks for authorization checking; (2) how to
define “protected” at the code level; (3) what informa-
tion to extract; (4) how do we turn such information into
security rules.

4.2.1 How to find functions that actually use secu-
rity checks for authorization checking?

As shown above, simply starting the analysis from the
direct callers of a security check function does not work.
To automatically detect security rules, we need to auto-
matically find the functions that actually use the check
function to protect sensitive operations. However, what
functions actually use the check function for authoriza-
tion checking depends on the semantics of the software,
and thus are extremely difficult to extract automatically.



linux/fs/namei.c:

static int may_create(struct inode *dir,...)
{

…
error = permission(dir,...);

}

linux/fs/namei.c:

int vfs_link(...) {
...
error = may_create(dir, ...);
// data structure accesses
...

}

linux/fs/namei.c:
int permission(struct inode *inode, ...) { ...

return security_inode_permission(inode, ...);

}

No code after 
security_inode_permission()

in function permission().

Figure 5: Demonstrating the naive approach does not work.

Instead, we try to automatically extract a good approx-
imation of these functions. Specifically, we (1) automati-
cally break the program into modules (e.g., each file sys-
tem is a module) based on the compilation configurations
that come with any software (e.g. in Makefile), and (2)
consider the root functions of each module as functions
that actually use security check functions for authoriza-
tion check, where root functions are functions that are
not called by any other functions in the module. These
root functions can be automatically extracted by ana-
lyzing the call graphs of each module.

Using this approach, AutoISES finds that
sys link() is a root function for the ext2 file
system module. Although vfs link() is the direct user
of the check, this approximation is good because the
root function sys link() is the caller of vfs link(),
therefore the root function contains all the data structure
accesses vfs link() performs. While it can also con-
tain accesses that are not in vfs link(), which may not
be related to the security sensitive operation, it does not
affect the violation detection accuracy much in practice
mainly for two reasons. First, since only accesses that
are protected by many instances of the same check
function is considered as part of a sensitive operation,
many unrelated accesses can be automatically elimi-
nated during the rule generation stage (Section 4.2.4).
Additionally, during the violation detection stage, we
can set the threshold for accessV iolationCount lower
to tolerate a few unrelated data structure accesses. Note
that these root functions are usually a super set of
our untrusted space interface functions, as many root
functions can only be called by other kernel modules,
which are considered trusted. Therefore, our untrusted-
space exposability study is necessary for reducing false
positives.

An alternative solution is to ask developers or tool
users to provide the functions that actually use the check
functions. Although it is easier to provide such functions
than writing the specifications directly, it is not desirable,
because (1) it is not automatic; (2) one would need to
manually identify such functions each time new code is
added; and (3) manually identified these functions can be
error-prone.

4.2.2 What does “protected” mean at the code level?
An instance of a sensitive operation Opi is considered
protected by an instance of a security check function
Checki, if the operation is allowed only if it is autho-
rized as indicated by the return value of the check func-
tion. To implement this exact semantic, we need to know
the semantics of return values of all the security check
functions, which requires significant manual work and
does not scale; this is not desirable. Therefore, we use
a source code level approximation of this semantic: a
security check function protects all data structure ac-
cesses that appear “after” the security check function in
an execution trace. Although this approximation can in-
clude some unrelated accesses, it is reasonably accurate
and effective at helping detecting violations for the same
two reasons discussed in Section 4.2.1. Additionally, the
approximation makes our approach more automatic and
general, because we do not require developers to provide
the semantics of the return values of the security check
functions.Similar to previous static analysis techniques,
our static analysis does not employ any dynamic execu-
tion information. Instead, the execution trace we use is a
static approximation of the dynamic execution trace.

4.2.3 What information to extract?
We want to extract data structure accesses that are fre-
quently protected by a security check function. Since a
typical program accesses a large number of data struc-
tures, many of which are irrelevant to the security sensi-
tive operation, we need to collect the most relevant ac-
cesses and exclude noise. For example, a loop iterator
is not interesting for our rule extraction, so we want to
exclude it. Although all data structure accesses theoreti-
cally can be protected by a security check function, struc-
ture field accesses and global variable accesses are more
commonly protected than short-lived local scalar vari-
ables. Therefore, we extract all structure field accesses
and global variable accesses. In addition, a security sen-
sitive operation, being an aggregate representation of its
specific instances, is naturally represented by accesses to
the types of data structures, and not by accesses to spe-
cific data objects. Thus, our rule inference engine con-
siders structure types as opposed to actual objects.



4.2.4 How to infer rules?
Starting from the automatically identified root functions,
we can extract the data structure access set for each in-
stance of a security check function. To obtain the data
structure access set protected by the security check func-
tion, we simply compute the intersection of all of these
access sets. Since our static analysis can miss some data
structure accesses for some root functions due to analysis
imprecision, we do not require accesses to be protected
by all instances. Instead, if intersecting an access set re-
sults in an empty set, we drop this access set because it
is likely to be an incomplete set. As long as there are
enough security check instances protecting the accesses,
we are confident the accesses are security sensitive and
the inferred rule is valid.

However, different from inferring general program
rules, many security check functions are called only once
or twice, which makes it difficult for the intersection
strategy to be effective. We observed that many such
functions are only called once or twice because Linux
uses a centralized place to invoke such checks for dif-
ferent implementations. For example, check function
security inode rmdir() is only called once in the
virtual file system level, but it actually protects the sen-
sitive rmdir operation of many different file systems.
Therefore, semantically the check function is invoked
once for each file system. Thus, we can intersect the
rmdir operations of different file systems to obtain the es-
sential protected sensitive accesses. This strategy makes
it possible for AutoISES to automatically generate rules
of reasonably small sizes with high confidence even for
check functions that are called only a few times. This
is realized by performing a function alias analysis and
generating a separate static trace for each function alias,
essentially treating each function alias as if it was a sep-
arate function call.

4.3 Our Static Analysis
We use inter-procedural and flow-insensitive static pro-
gram analysis to infer security rules and detect viola-
tions. It is important to use inter-procedural analysis,
because many sensitive data structure accesses related to
the same sensitive operation are performed in different
functions. In fact, these accesses can be many (e.g., 18)
levels apart in the call chain, meaning the caller of one
access can be the 18th ancestor caller of another access.
An intra-procedural analysis would not adequately cap-
ture the security rules or be effective at detecting viola-
tions. In fact, without our inter-procedural analysis, we
would not be able to detect almost any of the violations.
For higher accuracy, we perform full inter-procedural
analysis, which means that we allow our analysis tool
to zoom into functions as deep as it can, i.e., until it has

analyzed all reachable functions whose source code is
available. We chose to use flow-insensitive analysis over
flow-sensitive analysis because it is less expensive and
scales better for large software.

As function pointers are widely used in Linux and
Xen, we perform simple function pointer analysis by
resolving a function pointer to functions with the same
type. Our analysis is conservative in the absence of type
cast.

5 Methodology and Results
We evaluated our tool on the latest versions, at the time
of writing, of two large open source software, Linux and
Xen. Table 2 lists their size information.

Software Lines of Code Total # of Check Functions
Linux 5.0M 96
Xen 0.3M 67

Table 2: Evaluated software. We excluded constructor and de-
structor type of security check functions from the list, because
they are not authorization checks.

Table 3 shows our overall analysis and detection re-
sults. AutoISES automatically generated 84 code-level
security rules, which served as the concrete security
specifications of the two software we studied. These
specifications are critical for verifying software correct-
ness and security. Additionally they can help developers
better understand the code and ease the task of software
maintenance. We did not generate one rule for each secu-
rity check mainly because some parts of the source code
were not compiled for the default Linux kernel or Xen
configuration, and were therefore not analyzed.

Based on our untrusted-space exposability study re-
sults, AutoISES reports violations that can be exposed
to untrusted space as errors, and the others as warnings
since they are less likely to be true security violations.
Using the 84 automatically generated rules, AutoISES
reported 8 error reports and 293 warning reports. A total
of 8 true violations were found, 6 of which were from the
error reports, and 2 were from the warnings reports (only
the top warnings were examined). Among the 8 true vi-
olations, 7 of them have been confirmed by the corre-
sponding developers. All of the automatically inferred
rules were used by the AutoISES checker directly with-
out being examined by us or the developers. If higher de-
tection accuracy is desired, developers or tool users can
examine rules before using them for violation detection.

These results demonstrate that AutoISES is effective
at automatically inferring security rules and detecting vi-
olations to these rules, which closes an important gap
in achieving security systems and greatly improves the
practicality of security property checking and verifica-
tion tools.



# of Warnings
Software # of rules # of True Violations False Positives in Errors # Inspected Uninspected

Linux 51 7 1/6 25 (2) 265
Xen 33 1 1/2 3 0

Total 84 8 2/8 28 (2) 265

Table 3: Overall results of AutoISES. Numbers in parentheses are true violations in warning reports.

linux/fs/sys_splic.c:
static long do_splice_from(… , struct file *out,...)
{

…

return out->f_op->splice_write(...);
}

Security check
security_file_permission()

is missing here before
splice_write.

linux/fs/sys_splic.c:
static long do_splice_to(struct file *in, ...)
{

…

return in->f_op->splice_read(...);
}

linux/net/decnet/netfilter/dn_rtmsg.c:
static inline void dnrmg_receive_user_skb(..)
{

...

if (!cap_raised(...))
RCV_SKB_FAIL(-EPERM); ...

}

Security check
security_file_permission()

is missing here before
splice_read.

Security check
security_netlink_recv() should be 
used instead of cap_raised() for 

consistency.

(a) (b) (c)

Figure 6: True violations AutoISES automatically detected in the latest versions of Linux kernel. All of these violations have
already been confirmed by the Linux developers.

5.1 Detected Violations
We manually examined every error report and only the
top warning reports (due to time constraints) to deter-
mine if a report is a true violation or a false positive.

5.1.1 True Violations

There are two types of true violations, exploitable viola-
tions and consistency violations.

Exploitable Violations Among the 8 true violations,
5 are exploitable violations. Figure 6 (a) and (b) show
two exploitable violations. In Linux 2.6.21.5, secu-
rity check security file permission() was miss-
ing before the file splice read and file splice write op-
eration. Without the check, an unauthorized user could
splice data from pipe to file and vice versa, which could
cause permanent data loss, information leak, etc. This
violation has already been confirmed by the Linux de-
velopers.

Consistency Violations We term the 3 remaining true
violations Consistency Violations, meaning that although
they may not be exploitable, they violate the consistency
of using security check functions. Such inconsistencies
can confuse developers and make the software difficult
to maintain, both of which can contribute to more errors
in the future. Therefore, it is important for developers to
fix consistency violations.

Figure 6 (c) shows an example of a consistency vio-
lation. A security check security netlink recv(),

which checks permission before processing
the received netlink message, was missing in
dnrmg receive user skb(), which receives and
processes netlink messages. This error could cause
the kernel to receive messages from unauthorized
users. However, dnrmg receive user skb()
did call function cap raised(), which is what
security netlink recv() calls eventually. In other
words, it bypasses the security check interface functions,
and calls the backend security policy functions, which is
a bad practice and should be avoided.

At the time of writing, 2 out of the 3 consistency vi-
olations, including the example shown above, have been
confirmed and fixed by the corresponding developers.

5.1.2 False Positives

The false positive rate in error reports is 2 out of 8. There
are more false positives in the warning reports because
no untrusted-space exposability analysis is performed on
the warning reports. Developers can choose to focus on
the error reports to save time, or also examine the warn-
ings if desired.

Several factors can contribute to false positives. First,
as we use conservative function pointer alias analysis, we
can mistakenly consider accesses not related to an oper-
ation as part of the operation, and generate an imprecise
rule. These extra accesses do not need to be protected by
the security check, but our tool may still report such false
violations. A static analysis tool with more advanced
function pointer alias analysis could reduce such false
positives.



sys_io_submit()
sys_io_getevents()

aio_setup_iocb()

security_file_permission()

io_submit_one()

aio_run_iocb()
__aio_run_iocbs()

aio_run_all_iocbs()

read_events()

aio_run_iocb()

(1)
(2)

Figure 7: A false positive detected by AutoISES in Linux
kernel 2.6.21.5. Only related functions are shown.

Additionally, certain semantics of the target code
make some of the detected errors not exploitable.
Figure 7 shows such an example where an im-
plicit temporal constraint on certain system calls
allows the coverage of a security check to span
multiple system calls. AutoISES reported that a
security check security file permission()
should be called before aio run iocb(), but in
the call chain in Figure 7(1) starting from a sys-
tem call function sys io getevents(), the check
security file permission() was missing. How-
ever, this is not an exploitable violation, because system
call sys io getevents() cannot be called without
system call sys io submit() being invoked first,
which consults the proper security check in its callee
function aio setup iocb() in call chain (2). Because
AutoISES did not know this restriction in using the
system calls, it reports the violation. However, if
the file permission is changed after the setup system
call sys io submit() and before the invocation of
sys io getevents(), then unauthorized accesses can
occur. Linux developers confirmed the potential of such
violations, but are unlikely to fix it because the current
Linux implementation does not enforce protection
against this type of violations.

There are at least two ways to reduce or eliminate false
positives. First, we can employ more accurate static anal-
ysis techniques. Additionally, as increasing granular-
ity could reduce false positives (discussed later in Sec-
tion 5.3), we can experiment with even finer granularity,
such as distinguishing increment, decrement, and zero-
ing operations, to further reduce false positives.

5.2 Parameter Sensitivity and Time Over-
head

By default, we set the threshold of
accessV iolationCount to be 50% of the rule size,
which is the total number of data structure accesses in
a rule. We found that for Linux, the detection results
are not very sensitive to this parameter, meaning that

most true violations perform all or almost all of the data
structure accesses, and false violations often perform
none or only a few of the data structure accesses.
These results show that the generated rules capture the
implicit security rules well, and these rules are effective
in helping detecting violations to them. For Xen, the
results are more sensitive to the threshold. A possible
explanation is that, in general Xen security checks are
called fewer times compared to Linux kernel, therefore,
there are fewer instances for AutoISES to learn precise
rules. As a result, the inferred Xen rules contain more
noisy accesses that do not need to be protected by the
check functions. In this case, we set the threshold to be
higher, 90%, to minimize the impact of noisy accesses.

AutoISES spent 86 minutes on inferring 51 rules from
the entire Linux kernel, and 116 minutes on using these
rules to check for violations in the entire Linux kernel.
As the code size of Xen is much smaller, the time spent
on Xen rule generation is 25 seconds, and 39 minutes for
detection. This shows that our tool is efficient enough to
be used in practice for large real world software.

5.3 Impact of Rule Granularity
In many cases, a coarse-grained rule is overly
generalized and thus does not precisely repre-
sent the implicit security rules. For example,
two different checks, security file link() and
security file unlink() are designed to protect two
different inode operations. However, as shown in Fig-
ure 8(a), the inferred operations of Granularity(F−, A+)
are the same. Using finer granularity, Granularity(F+,
A+), AutoISES is able to automatically infer two differ-
ent operations (Figure 8(b)-(c)). For example, the unlink
operation contains access READ inode->i size,
which is not part of the link operation.

Fine-grained rules cause less false positives during
the detection stage. For 5 randomly selected secu-
rity checks, compared with the most coarse-grained
rules (Granularity(F−,A−)) our most fine-grained rules
(Granularity(F+,A+)) on average cause 33% fewer
false positives (in both error reports and warning re-
ports). Granularity(F+, A−) cause 20% fewer false pos-
itives, and Granularity(F−, A+) 13.3% fewer. The re-
sults show that using finer granularity can greatly reduce
the number of false positives, and adjusting the rule gran-
ularity could be considered as an important tuning pa-
rameter for other rule inference and violation detection
tools [9, 11, 20, 22, 30].

Although coarse-grained rules produce a higher
false positive rate, they can provide very useful infor-
mation that fine-grained rules may fail to unveil. In
the example above, the operation of Granularity(F−,
A+) is shared by almost all inode related security



Security Check:
security_inode_link/security_inode_unlink
Protected operation:
1. READ dentry
2. READ inode
3. WRITE inode
4. READ nameidata
5. WRITE vfsmount
6. READ (Global) names_cachep

Security Check:
security_inode_link
Protected operation:

1. READ inode->i_ino
2. READ inode->i_nlink
3. WRITE inode->i_nlink
4. READ inode->i_sb
...

Security Check:
security_inode_unlink
Protected operation:
1. READ inode->i_size
2. READ inode->i_ino
3. READ inode->i_nlink
4. WRITE inode->i_nlink
5. READ inode->i_sb
...

(a) rule for security_inode_link
and security_inode_unlink

Rule of Granularity(F-, A+): Rule of Granularity(F+, A+):

(b) rule for security_inode_link (c) rule for security_inode_unlink

Rule of Granularity(F+, A+):

Figure 8: For two security checks, security file link() and security file unlink(), the inferred operations of
Granularity(F−, A+) are the same. If we use Granularity(F+, A+), the learned operations are different, e.g., the unlink operation
contains an extra access, READ inode->i size.

check functions, including security inode rename(),
security inode rmdir(), security inode mkdir(),
security file link(), security file unlink(),
security inode symlink(), etc. Therefore, the rule
represent the common accesses of inode operations in
general. A more fine-grained rule may fail to reveal the
common behavior among all inode and file operations.

In addition, a fine-grained rule can be overly specific,
and cause false negatives. We did not observe such cases
for our most fine-grained rules in this study, i.e., our most
fine-grained rules were able to detect all of the true viola-
tions. The result indicates that the default granularity we
use is the best among the 4 levels of granularity in terms
of detection accuracy, as they produce the least number
of false positives, and the same number of false nega-
tives as the coarse-grained rules. In the future, we plan
to experiment with even finer granularity and its impact
on both false positives and false negatives.

Results from different levels of granularity can be used
as a metric for violation ranking. For example, a viola-
tion that is reported at all levels of granularity is probably
more likely to be a true violation than one that is reported
only at some levels. In our future work, we will explore
using the number of granularity levels a violation occurs
at to rank violations.

6 Discussions and Limitations

6.1 Key Techniques that Make AutoISES
Work

Automatically generating security specifications poses
several key challenges that make previous static analy-
sis tools not directly applicable. We designed five im-
portant techniques (first four are new) to address these
challenges as summarized below (Sec. column lists cor-
responding sections that describe the techniques):

Challenge Our Solution Sec.
How to represent a sensitive
operation at the code level

Use Data structure accesses
based on our key observation

1.2 &
3.2

High false positive rates as
many sensitive operations
can not be exposed to the
untrusted space

Simple untrusted space ex-
posability study to greatly re-
duce false positives

3.1

Root functions for analysis:
Cannot simply start analysis
from direct callers of a secu-
rity check function

Automatic root function dis-
covery: Automatically dis-
cover functions that actually
use security check functions
for authorization check

4.2.1

Insufficient invocation in-
stances of security check
functions

Leverage different im-
plementations (e.g., from
different file systems) of the
same operation

4.2.4

Data structure accesses are
spread in different functions.

Interprocedural analysis with
function pointer analysis

4.3

6.2 Generalization
Although many of the solutions described above are de-
signed for inferring security specifications and detecting
security violations, some of the ideas are general, and
can be applied to other applications. For example, our
security rules are an important type of function-data cor-
relation. Such function-data correlations widely exist in
programs. Violating these implicit constraints results in
buggy programs that may cause severe damage. Our
techniques can be used to infer those general function-
data correlations, e.g., a lock acquisition function re-
quired before accessing shared data structures, which can
be used for detecting concurrency bugs. In addition, the
strategy of using multiple implementations of the same
virtual API to generate more precise rules is generally
applicable to situations where source code at the virtual
API level is not sufficient to generate reliable rules.

6.3 Limitations
False Negatives Similar to previous static analysis
work, our approach can miss security violations. First,



if a security check function is not invoked at all (e.g.,
security sk classify flow is not used in Linux
2.6.11 yet) or the list of security check functions is in-
complete, we would not be able to infer rules or detect
violations related to these missing check functions.

Additionally, our analysis uses only data structure ac-
cesses to represent a security operation. Therefore, if the
source code of such low-level accesses is not available,
AutoISES will not be able to extract information about
them, and the representation of the sensitive operation
would be incomplete, potentially causing false negatives.

Moreover, AutoISES does not verify if the security
check is performed on the same object as the sensitive
operation. Therefore, if the proper security check is in-
voked, but on a different object, AutoISES will not de-
tect this violation. Matching the actual object remains as
our future work. Additionally, our flow-insensitive anal-
ysis could introduce false negatives. For example, if a se-
curity check is missing on a taken branch, but the check
is invoked on the non-taken branch, AutoISES may not
be able to detect the violation. Using a flow-sensitive
analysis could address this problem.

Difficulty in Verifying Violations We manually exam-
ine error reports and warning reports to determine if a
report is a true violation or a false positive. Unlike er-
rors such as buffer overflows and null pointer derefer-
ences, which are usually easy to confirm after the error
is detected, the manual verification process for security
violations is more difficult. To decide if a violation is ex-
ploitable, one needs to understand the semantics of the
code, knowing what operations can interact with the un-
trusted space, such as the user space for Linux, and de-
sign a feasible way to exploit the attack. Conversely, to
determine if a violation is a false positive, one needs to
prove that either the operation is security insensitive, or
that it is indeed covered by a security check that was not
included due to analysis imprecision. Sometimes it re-
quires deep knowledge of not only the target software,
but also how the APIs are used by client software (e.g.,
the example discussed in Section 5.1.2). Such difficulties
are mostly due to the inherent characteristics of security
violations. However, we imagine that the task would be
much easier for the original developers as they possess
deep semantics knowledge of the code.

Non-authorization Checks A small number of se-
curity checks are not authorization checks, which do
not protect any security operations. For example,
security sk free() should be called after using a
kernel sk buffer to clear sensitive data. Our current im-
plementation does not support such rules where a secu-
rity check function must be invoked after a certain opera-
tion. However, such rules can be easily supported by ex-

tending our current implementation to include the post-
operation checks.

7 Related Work
Mining Security Sensitive Operations Ganapathy et
al. used concept analysis to find fingerprints of security
sensitive operations [15]. While both this approach and
AutoISES try to map the high level security sensitive
operation (e.g., rmdir) to its implementation (e.g., the C
code sequences that actually perform the remove direc-
tory operation), there are two major differences. First,
the goals and assumptions are different. We aim to iden-
tify the pairing relationship between a security check and
the code level representation of the sensitive operation
that the check guards. Thus we assume the code already
implements a reference monitor and is mostly correct;
our goal is therefore to discover cases where the refer-
ence monitor is bypassed. Ganapathy’s goal, on the other
hand, is to retrofit code with security. Thus they assume
that the code does not have security built in. Rather, they
need to identify sequences of code that represent a unit of
security sensitive operation and that should be guarded
by a security hook. In order to do that they need more
prior knowledge with regard to the API and the secu-
rity sensitive data structures. In our case, all informa-
tion except the list of security check functions, and the
list of system call functions and hypercall functions, is
inferred from the code itself. Second, while our inferred
operations are used directly by our checker without being
examined manually, their operations still require manual
refinement prior to use.

Although automatic hook placement is promising, it
has not been adopted in reality yet. Therefore, while we
should encourage automatic hook placement, it is still
highly desirable to seek alternative, complementary so-
lutions that can automatically infer security rules from
existing or legacy source code and detect security vul-
nerabilities.

Detection and Verification Tools The past years have
seen a proliferation of program analysis and verification
tools that can be used to detect security vulnerabilities or
verify security properties [2, 4, 5, 6, 9, 12, 14, 16, 18, 27,
30]. However, no previous work can automatically gen-
erate code-level security specifications and instead re-
quire developers or users to provide these specifications.
Previous work [30] takes manually identified simple se-
curity rules to check for security vulnerabilities. As dis-
cussed in details in Section 1, the rules are coarse and
imprecise, resulting in many false alarms. Additionally,
the approach can potentially fail to detect cases where the
check and the operation does not match because the rules
do not specify which check is required for which opera-
tion. Edwards et al. dynamically detect inconsistencies



between data structure accesses to identify security vul-
nerabilities [9]. While a dynamic approach is generally
more accurate, it suffers from coverage problem - only
code that is executed can be analyzed. In addition, it re-
quires manually written filtering rules to guide the trace
analysis in order to detect security violations.

Inferring Programming Rules Several techniques
have been proposed to infer different types of program-
ming rules from source code or execution trace [3, 10,
11, 20, 22, 24]. As already discussed in Section 1, pre-
vious techniques is not directly applicable to our prob-
lem, because they are limited by the types of rules they
can infer. Specifically, Engler et al. extract programming
rules based on several manually identified rule templates,
such as function 〈A〉 and 〈B〉 should be paired, func-
tion 〈F 〉 must be checked for failure, and null pointer
〈P 〉 should not be dereferenced [10]. PR-Miner fo-
cuses on inferring correlations among functions [20].
Variable value related program invariants are inferred
by Daikon [11], and MUVI[22] infers variable-variable
correlations for detecting multi-variable inconsistent up-
date bugs and multi-variable concurrency bugs. A few
other approaches infer API and/or abstract data type re-
lated rules[3, 24]. Different from all these studies, we in-
fer rules related to security functions protecting a group
of data structure accesses based on our key observa-
tion. Inferring different types of rules requires differ-
ent techniques. In addition, dynamic analysis is used
in [3, 11], therefore the coverage is limited because only
instrumented and executed code is used for rule learning.
Moreover, unlike PR-Miner which uses only intraproce-
dural analysis, our analysis is interprocedural, which is
one of the key techniques that allow us to infer com-
plicated and detailed security rules. Additionally, while
PR-Miner uses more complex data mining techniques
to infer programming rules, we leverage readily avail-
able prior knowledge about part of our rules, the secu-
rity check functions, so that we can extract security rules
without expensive data mining techniques.

Inferring Models and Rules in General The general
idea of automatically extracting models from low-level
implementation has been discussed in previous litera-
ture [8, 17, 21]. For example, Lie et al. proposed au-
tomatic extraction of specifications from actual proto-
col code and then running the extracted specifications
through a model checker [21]. While conceptually these
approaches bear some resemblance to the approach taken
by AutoISES, we are the first to show the feasibility of
automatic extraction of security specifications from ac-
tual implementation. In addition, none of the previous
tools have demonstrated the ability to scale to programs
the size of the Linux kernel.

Lee et al. [19] use data mining techniques to learn
intrusion detection model for adaptive intrusion detec-
tion. Tongaonkar et al. [26] infer high-level security pol-
icy from low level firewall filtering rules. None of these
work infer access control related security rules.

8 Conclusions and Future Work

This paper makes two contributions. One is to automat-
ically infer code-level security rules and detect security
violations. Our tool, AutoISES, automatically inferred
84 security rules from the latest versions of Linux ker-
nel and Xen, and used them to detect 8 security vulnera-
bilities, demonstrating the effectiveness of our approach.
The second contribution is to take the first step to quan-
titatively study the impact of the rule granularity on rule
generation and verification. This approach is orthogonal
to our first contribution, and can be applied to other rule
inference tools.

While this work focuses on rule inference and viola-
tion detection in Linux kernel and Xen, our techniques
can be used to generate rules and detect violations in
other access control systems. In addition, the techniques
can be applied to infer general function-data correlation
type of rules, such as lock acquisition functions protect-
ing shared variables accesses. In the future, we plan to
improve our analysis and detection accuracy by employ-
ing a more advanced static analysis tool and using finer
rule granularity.
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