
Staging Static Analyses for Program Generation∗

Sam Kamin Baris Aktemur Michael Katelman
University of Illinois at Urbana-Champaign

201 N.Goodwin Urbana, IL 61801 USA

{kamin,aktemur,katelman}@cs.uiuc.edu

Abstract
Program generators are most naturally specified using a
quote/antiquote facility; the programmer writes programs
with holes which are filled in, at program generation time,
by other program fragments. If the programs are generated
at compile-time, analysis and compilation follow genera-
tion, and no changes in the compiler are needed. However,
if program generation is done at run time, compilation and
analysis need to be optimized so that they will not over-
whelm overall execution time. In this paper, we give a com-
positional framework for defining program analyses which
leads directly to a method of staging these analyses. The
staging allows the analysis of incomplete programs to be
started at compile time; the residual work to be done at run
time may be much less costly than the full analysis. We give
frameworks for forward and backward analyses, present sev-
eral examples of specific analyses, and give timing results
showing significant speed-ups for the run-time portion of
the analysis relative to the full analysis.

Categories and Subject DescriptorsD.3.4 [Processors]:
Code generation

General Terms Languages, performance

Keywords run-time code generation, program generation,
static analysis, staging

1. Introduction
We are concerned here with languages in which code gener-
ators are specified by embedding quoted program fragments
within a larger program (the meta-program) [6, 12, 13, 4].
These quoted fragments include “holes” — portions of the

∗Partial support for this work was received from NSF under grant CCR-
0306221.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00

program that are to be filled in with other fragments to gener-
ate a complete program (see Figure 1). Such systems provide
a natural, easy to understand method of creating program
generators. They raise several kinds of research questions:
What properties of generated programs can be inferred from
the initial set of fragments? How quickly the generated pro-
gram can be generated? The latter is of most interest when
program generation occurs at run time.

Code genBody (int n) {
if (n==0)

return $< 1 >$;

else

return $< x * ‘(genBody(n-1)) >$;

}

Code genPowerFun (int n) {
return $< int pow (int x) {

return ‘(genBody(n));

} >$;

}

meta-program

�� ��
�� ��

holesquoted fragments XXXXX

�
���

�
JJ

�

�
�

�

Figure 1. Terminology for program generators. When a
fragment fills in a hole, we call it aplug. Note that a fragment
is never used as a plug until all of its holes have been filled.

This paper addresses the question: how quickly can static
analyses be performed on generated programs? To be pre-
cise: We are given a programP [•, . . . , •] with holes, and a
collection of plugsQ1, . . . , Qn. We want to find the result
of some static analysis when applied toP [Q1, . . . , Qn]. We
could, at run time, fill in the plugs and run the analysis. How-
ever, we can save time by preprocessingP and theQi, and
then combining them at run time to produce the same result.

We present a framework for static analyses which allows
us to make a clear distinction between compile time — when
we know all the fragments, but do not know which fragments
will fill in which holes in which other fragments — and
run time — when we create the generated program and can
do the analysis. The ability to stage analyses depends upon
finding an accurate representation for the dataflow functions;
we present representations for several analyses. The staging
can produce substantial speed-ups in the analyses.

We begin the technical presentation (Section 3) with our
forward analysis framework, illustrating it with a simple

analysis,uninitialized variables. We discuss how the frame-
work allows for efficient staging of analyses, and in Sec-
tion 4 present a collection of analyses. Section 5 presents the
backward analysis framework. Section 6 gives performance
results for various analyses and benchmark programs.

The contributions of this paper are three-fold: (1) We de-
fine frameworks for forward and backward analyses of ab-
stract syntax trees (AST), including break statements, which
explains how analyses can be staged. Staging requires that
dataflow functions be represented “adequately.” (2) We give
representations for several dataflow problems, and for staged
type checking. (3) We provide experimental evidence of
speed-ups from staging.

A more detailed presentation of this work is given in [8].

2. Related Work
Our work shares with several others a concern withrepre-
sentationof dataflow functions, and some of our represen-
tations have appeared previously. In the area ofinterproce-
dural dataflow analysis, Sharir and Pnueli [17] introduced
the idea of summarizing the analysis of an entire proce-
dure. Rountev, Kagan and Marlowe [15] discuss concrete
representations for these summary functions, to allow for
“whole program” analysis of programs that use libraries; our
representation for reaching definitions appears there. Reps,
Horwitz, and Sagiv [14] give representations for a class of
dataflow problems, including reaching definitions and linear
constant propagation. (Interprocedural analysis is similar to
staged analysis in that one can think of the procedure call as
a “hole,” and the procedure as a “plug.” However, the con-
trol flow issues are very different; that work must deal with
the notion of “valid” paths — where calls match returns —
while we must deal with multiple-exit control structures.)
To parallelize static analyses, Kramer, Gupta and Soffa [10]
partition programs and analyze each partition to produce a
summary of its effect on the program as a whole.

In hybrid analysis [16], Marlowe and Ryder partition a
program based on strong components, representing dataflow
functions for each component. A representation for reach-
ing definitions that is “adequate” in our sense is given there.
Marlowe and Ryder also talk aboutincremental analysis
where the problem is to maintain the validity of an analysis
during source program editing. But note the subtle but im-
portant distinction betweenincrementalanalysis andstaged
analysis: there,anynode can change at any time; here, some
parts of the program are fixed and some unknown, and the
goal is to fully exploit the fixed parts.

In approximate analysis[18], the meta-program is ana-
lyzed to determine as much as possible about what the gener-
ated program will look like. This approach has the advantage
of avoiding run-time analysis entirely, but the disadvantage
that the analysis results are very approximate.

Lastly, we mention the work of Chambers et al. [3]. That
work has the ambitious goal ofautomaticallystaging com-

pilers: a user can indicate when some information will first
become available, and the system will produce an optimizer
to efficientlyperform the optimization at that time. The broad
goals of that work — optimizing run-time compilation —
are the same as ours. However, we are much less ambitious
about the use of automation (and, indeed, that work accom-
modates a limited number of optimizations); we are, instead,
providing a mathematical framework that can facilitate the
manual construction of staged analyses.

3. Framework for Forward Analysis
Our framework differs from the standard one [1] in that
it analyzes abstract syntax trees (ASTs), not control-flow
graphs (CFGs). Since program fragments appear as ASTs,
this is the natural unit of analysis for our purposes. Note
that we are considering only intraprocedural analysis in this
paper. However, as noted above, our techniques have much
in common with some interprocedural analyses; we expect
the extension to be relatively straightforward.

In this section, we present our framework as the third in a
sequence of frameworks of increasing complexity. For each
framework, the plan is the same:

1. Present an analysis frameworkF for calculating dataflow
values for AST’s in a latticeData.

2. Present a frameworkR for calculating representations of
dataflow functions, given an “adequate” representation
R.

3. Give a theorem relating representations produced byR
to dataflow functions given byF .

4. Give an alternative method of calculating representations,
calledFR, more efficient thanR, which uses the defi-
nition of F but applies it to representations rather than
dataflow values.

As a running example in these sections, we useuninitialized
variables, an analysis that calculates a list of variables that
may have been used without being initialized.

The first framework contains only simple control struc-
tures; the theorems are trivial in this case, but we introduce
notation and explain how staging works. The second frame-
work handles break statements. These two frameworks cal-
culate dataflow values only for the root of an AST; the final
framework calculates values at each node within an AST.

Figure 2 shows the language we treat in this paper. Keep
in mind that this is the languageinside quotations. We do not
include holes because these are not proper elements of the
language. To avoid notational complexities, we allow holes
only in statement position; allowing holes in expression po-
sition poses no fundamental problems.

Dataflow values are assumed to come from a lattice,
calledData. DefineDFFunto be the function spaceData →
Data (confined to functions that preserve>Data).

e ∈ Exp
x ∈ Var
` ∈ Label
P ∈ Pgm ::=x = e | skip | if e then P1 else P2 | P1; P2

| while e do P | ` : P | break `

Figure 2. The language treated in this paper

F [[skip]] = id

F [[x = e]] = asgn(x, e)

F [[P1; P2]] = F [[P1]];F [[P2]]

F [[if then (e) P1 else P2]] = exp(e); (F [[P1]] ∧ F [[P2]])

Figure 3. First framework

3.1 Simple Control Structures

Our first framework (Figure 3) treats a subset of the full
language, programs with only sequencing and conditionals.
F assigns an element ofDFFun to every program. We use
semi-colon (;) for function composition in diagrammatic or-
der. The meet (∧) operation on functions is defined point-
wise, andid is the identity function inDFFun. asgnandexp
are the only functions specific to a particular analysis. The
types of all the names appearing in this definition are:

id : DFFun
asgn: Var× Exp→ DFFun
exp: Exp→ DFFun
; : DFFun× DFFun→ DFFun
∧ : DFFun× DFFun→ DFFun

We earlier stated that we allow only>-preserving functions
in DFFun. The identity function has this property, and func-
tion composition and meet preserve it, so we need only to
confirm it forasgnandexpfor each analysis.

To get the result of the static analysis ofP , applyF [[P]]
to an appropriate initial value.

As an example, we define an analysis for variable initial-
ization. Here,Data = P(V ar)2, with ordering

(D, U) v (D′, U ′) if D ⊆ D′ and U ⊇ U ′

The datum(D,U) entering a node means thatD is the set
of variables that definitely have definitions at this point, and
U is the set that may have been used without definition.

asgn(x, e) = λ(D, U).(D ∪ {x}, (vars(e) \D) ∪ U)
exp(e) = λ(D, U).(D, (vars(e) \D) ∪ U)

vars(e) is the set of variables occurring ine. It is easy
to see thatasgn(x,e) andexp(e) preserve>Data (the pair
(V ar, ∅)).

Returning to the general case, our task is to find represen-
tations of elements ofDFFun for each analysis.

Definition SupposeR is a set with the following values
and functions:

>R : R expR: Exp→ R
idR : R ;R : R×R→ R
asgnR: Var× Exp→ R ∧R : R×R→ R

R is an adequate representationof a dataflow problem if
there is a homomorphismabs : R → DFFun. Specifically,
this requires (unsubscripted names are the values inDFFun)

abs(>R) = λd.>Data
abs(idR) = id
abs(asgnR(x, e)) = asgn(x, e)
abs(expR(e)) = exp(e)
abs(r ;Rr′) = abs(r); abs(r′)
abs(r ∧R r′) = abs(r) ∧ abs(r′)

(>R is not used until the next subsection.)

Definition R : Pgm→ R is the function defined as in
Figure 3, but with allF ’s replaced byR and all operations
replaced by their “sub-R” versions.

Theorem If R is an adequate representation, then for all
P , abs(R[[P]]) = F [[P]].

Proof Trivial.

For uninitialized variables, a natural representation, which
is also adequate, is almost the same asData:

R = P(V ar)2 ∪ {>R}

For any fragmentP , R[[P]] is the pair containing the set of
variables definitely defined inP and the set possibly used
without definition inP . Then,

abs(D, U) = λ(D′, U ′).(D′ ∪D, U ′ ∪ (U \D′))

(abs(>R) necessarily equalsλd.>Data, as required by the
definition of adequacy.)

The operations on this representation are1

idR = (∅, ∅)
asgnR(x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))
(D, U) ;R (D′, U ′) = (D ∪D′, U ∪ (U ′ \D))
(D, U) ∧R (D′, U ′) = (D ∩D′, U ∪ U ′)

To illustrate, we show a program annotated with the value
of R[[P]] for each subtreeP :

// ({x, y}, {x, z}) (entire fragment)
y = x; // ({y}, {x})
if (z > 10) // ({x}, {x, y, z}) (‘if’ statement)
{ // ({x, w}, {x, y}) (‘true’ branch)

w = 15; // ({w}, ∅)
x = x + y + w; } // ({x}, {x, y, w})

else

x = 0; // ({x}, ∅)

In Figure 2, we included while statements in our lan-
guage. They can be defined using a maximal fixpoint in the
usual way:

1 Throughout the paper, to avoid clutter, we ignore> when defining func-
tions; in every case, the definitions ofasgn(x, e), exp(e), ;R, ∧R, andabs
should check for> and return it.

F [[while e do P]] = mfxp(λp.exp(e); (F [[P]]; p ∧ id))

We cannot defineR[[while e do P]] in this way, becauseR is
not a partial order. However, in all of our analyses — and
most static analyses — this fixpoint converges in a fixed
number of iterations. Thus,F [[while e do P]] will be equal
to the first element of the listexp(e), exp(e);F [[P]]; exp(e),
exp(e);F [[P]]; exp(e);F [[P]]; exp(e), . . . that is equal to the
next element, and the corresponding element ofR will repre-
sent it. We might only add that the iteration bound is another
parameter to the analysis that can vary among analyses.

In principle, we could now move on to staging, usingR
to calculate the representation of fragments. In practice, we
calculate them by using the definition ofF . This method will
turn out, in the following sections, to be more efficient.

Definition FR : Pgm→ R → R is the function defined
as in Figure 3, but with all occurrences ofF replaced byFR,
and operations defined as follows:

idR = id
asgnR(x, e) = λr.r ;R asgnR(x, e)
expR(e) = λr.r ;R expR(x, e)
f ;R g = f ; g
f ∧R g = λr.fr ∧R gr

Definition r ≡ r′ if abs(r) = abs(r′).

Theorem If R is adequate, then for allP andr,FR[[P]]r
≡ r ;RR[[P]].

Proof The proof is a straightforward induction onP .

Corollary FR[[P]]idR ≡ R[[P]].

If abs is injective — in which case we callR an exact
representation— then we can replace≡ by = in the above
theorems. All the analyses we define in this paper are exact.

We are now ready to stage static analyses. The first stage
calculates values ofR, and the second, run-time, stage uses
F to complete the analysis:

Static stage: For every fragmentP , analyze every maximal
hole-free subtreeT by computingFR[[T]]idR.

Dynamic stage: Holes will be filled “bottom-up,” so all
fragments will have their holes filled before they them-
selves can be plugs. Thus, plugs are hole-free. After fill-
ing in the holes inP with plugs Q1, ..., Qn, we have
an AST in which some nodes have already been anno-
tated with representations (namely, the hole-free subtrees
of P and the plugsQ1, ..., Qn). We can now calculate
F [[P [Q1, ..., Qn]]] with the appropriate initial value, but
without traversing subtrees of the nodes that are already
analyzed. It is in this exception that staging has its bene-
fit.

3.2 Break Statements

We expand our analysis now to labelled statements and
break-to-label statements. The idea is this: Since a break

F [[skip]] = id

F [[x = e]] = λ(η, d).(η, asgn(x, e)(d))

F [[break `;]] = λ(η, d).(η[` 7→ d ∧ η(`)],>Data)

F [[` : P]] = λ(η, d). let (η1, d1)← F [[P]](η, d)
in (η1[` 7→ >Data], d1 ∧ η1(`))

F [[P1; P2]] = F [[P1]];F [[P2]]

F [[if (e) P1 else P2]] = λ(η, d). let (η1, d1)← F [[P1]](η, exp(e)(d))
(η2, d2)← F [[P2]](η, exp(e)(d))

in (η1, d1) ∧ (η2, d2)

Figure 4. Framework with break statements

results in transfer of control to the end of a labelled state-
ment, we treat it as the meet of the statements up to the
break with the normal exit from the labelled statement (and
with all other breaks to this label). We will see that an ade-
quate representation in the sense of the previous section can
be extended uniformly to a representation for this case.

Throughout this section and the next, we assume all pro-
grams are legal in the sense that they do not contain nested
labelled statements with the same label.

An environmentη is a function inEnv = Label →
Data. Now the incoming and outgoing values are pairs:

F [[P]] : Env ×Data→ Env ×Data

The extended analysis is shown in Figure 4.asgnandexp
have the same types as in the previous section; semi-colon
is again function composition (in the expanded space), and
id is the identity function. We extend meet to environments
element-wise and then to pairs component-wise.

A word of explanation is in order about labelled state-
ments and breaks. Suppose a statementP is contained within
a labelled statement with labelL, and we are evaluating
F [[P]](η, d). d contains information about the control flow
paths that reachP . η contains information about all the con-
trol flow paths that were terminated with abreak L statement
prior to reachingP ; since there may be more than one,η(L)
gives a conservative approximation by taking the meet of all
those paths. Thus, ifP is break L, thend is incorporated
into the outgoing environment by takingd ∧ η(L). Further-
more, the “normal exit” fromP is>Data. For any statement
Q, F [[Q]] preserves>Data in its second argument. so any
statements directly followingP will be ignored. For labelled
statements,F [[L : P]](η, d) first calculatesF [[P]](η, d). It
is important thatη(L) = >Data; this will be the case be-
cause (a) the initial value for any analysis has the environ-
mentλ`.>Data, (b) L : P is legal, so it cannot be within
another statement labelledL, and (c)F [[L : P]](η, d) returns
an environment in whichL is reset to>Data.

Representations of these functions are derived from rep-
resentations of functions inDFFun. AssumeR is an ade-
quate representation ofDFFun. It can be extended to a rep-
resentationER of functions in the spaceEnv × Data →
Env ×Data. DefineEnvR = Label→ R. Then

R[[skip]] = (>EnvR , idR)

R[[x = e]] = (>EnvR , asgnR(x, e))

R[[break `;]] = (>EnvR [` 7→ idR],>R)

R[[` : P]] =let (η, r)←R[[P]]
in (η[` 7→ >R], r ∧R η(`))

R[[P1; P2]] =let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in (η1 ∧R (r1;R η2), r1;R r2)

R[[if (e) P1 else P2]] = let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in expR(e);R ((η1, r1) ∧R (η2, r2))

Figure 5. Representation for framework of Figure 4

ER = EnvR ×R

Figure 5 gives a function to calculate representations. Al-
though very similar toF , R has one crucial difference. For
statementP1;P2, whereF simply uses function composi-
tion,R calculates an explicit value. Of particular interest is
the way environments are affected. The environment given
by R[[P2]] incorporates all the control flow up to any break
statements inP2. The new environment augments each value
in that environment by addingr1, which is the dataflow in-
formation for anormal exit from P1. That is, an abnormal
exit is either an abnormal exit fromP1 or a normal exit from
P1 followed by an abnormal exit fromP2. Furthermore, if
there is a break to the same label from bothP1 andP2, the
total effect is that two separate paths meet after the statement
with that label, so the functions in the two environments are
joined.

Defining the abstraction function:

absE : ER → (Env ×Data→ Env ×Data)
absE(ηR, r) = λ(η, d).(λ`.η(`) ∧ abs(ηR(`))d, abs(r)d)

we have the following theorem.

Theorem If R is adequate, then for all programsP ,
absE(R[[P]]) = F [[P]].

Again, we can (and do) calculateR by reinterpretingF
using the operators ofR. The function

FR : Pgm→ ER → ER

is defined the same way asF but with the “super-R” versions
of the operators.asgnR and expR are exactly the same as
in the previous section;idR, ;R, and ∧R have the same
definitions but different types;>R is>R.

Theorem Given P , let (η, r) = R[[P]]. For all η′, r′, as
long asη′(L) = >R for any labelL that occurs inP ,

FR[[P]](η′, r′) ≡ (λ`.η′(`) ∧R (r′ ;R η(`)), r′ ;R r).

Corollary FR[[P]](>EnvR
, idR) ≡ R[[P]].

Again,≡ can be replaced by= for all the analyses we
present in this paper. The value of this theorem is more
easily seen now than in the previous section.R contains a
fundamental inefficiency in the calculation of environments

inR[[P1;P2]]. Because this involves modifyingall the values
given in the environment ofP2, it can lead to quadratic
behavior for a sequence of statements each of which contains
a break statement. (The effect is far worse, in practice, in
Section 3.3, where the dataflow functions forevery nodein
P2 need to be modified.)F does not have this inefficiency.
There, the environments are threaded through the program,
so a break statement causes the environment to be updated
just once, and the value placed there is never changed.

Adding a break statement to our previous example, we
show the values ofFR[[P]](>EnvR

, (∅, ∅)) for each nodeP .

// ({L 7→ ({x, y}, {x, z})}, ({x, w, y}, {x, z}))
y = x; // (∅, ({y}, {x}))
if (z > 10) // ({L 7→ ({x}, {z})}, ({x, w}, {x, y, z}))
{ // (∅, ({x, w}, {x, y}))

w = 15; // (∅, ({w}, ∅))
x = x + y + w; } // (∅, ({x}, {x, y, w}))

else

{ // ({L 7→ ({x}, ∅)},>)
x = 0; // (∅, ({x}, ∅))
break L; } // ({L 7→ (∅, ∅)},>)

The approach to staging is unchanged.

3.3 The Framework

The frameworks described so far lack one important ingre-
dient: they do not give us information about each node in the
AST, but only about the root node of the AST. Most static
analyses are used to obtain information at each node: What
definitions reach this particular node? What variables have
constant values at this particular point in the program?

The complete analysis returns a map giving data at each
node. Assuming each node is uniquely identified by an el-
ement ofNode, we defineNodeMap = Node ◦→Data
(partial functions fromNode to Data). Now,

F [[P]] : NodeMap×Env×Data→ NodeMap×Env×Data

We also change the type ofasgn:

asgn: Node×Var× Exp→ DFFun

for cases (such as reaching definitions) whereNode is con-
tained withinData. In most cases, such as uninitialized vari-
ables, the first argument is ignored.

The full forward analysis is shown in Figure 6.
As in the previous section, we can start with an adequate

representation and create a representation for this analysis.
Specifically, define

FR = (Node ◦→R)× EnvR ×R

The abstraction function becomes:

absF : FR → (NodeMap× Env ×Data→
NodeMap× Env ×Data)

absF (ϕR, ηR, r) = λ(ϕ′, η′, d′).(ϕ′ ∪ (λn.abs(ϕR(n))d′),
λ`.η′(`) ∧ abs(ηR(`))d′,
abs(r)d′)

Representations are calculated by functionR (Figure 7).

F [[n : skip;]] = λ(ϕ, η, d).(ϕ[n 7→ d], η, d)

F [[n : x = e;]] = λ(ϕ, η, d).let d′ ← asgn(n, x, e)(d)
in (ϕ[n 7→ d′], η, d′)

F [[n : break `;]] = λ(ϕ, η, d).(ϕ[n 7→ >Data],
η[` 7→ d ∧ η(`)],>Data)

F [[n : (` : (n1 : P))]] =
λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n1 : P]](ϕ, η, d)

in (ϕ1[n 7→ d1 ∧ η1(`)], η1[` 7→ >Data], d1 ∧ η1(`))

F [[n : (n1 : P1; n2 : P2)]] =
λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n2 : P2]](F [[n1 : P1]](ϕ, η, d))

in (ϕ1[n 7→ d1], η1, d1)

F [[n : if(e) n1 : P1 else n2 : P2]] =
λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n1 : P1]](ϕ, η, exp(e)(d))

(ϕ2, η2, d2)← F [[n2 : P2]](ϕ, η, exp(e)(d))
in ((ϕ1 ∪ ϕ2)[n 7→ d1 ∧ d2], η1 ∧ η2, d1 ∧ d2)

Figure 6. Forward analysis framework

R[[n : skip]] = ({n 7→ idR},>EnvR , idR)

R[[n : x = e]] = ({n 7→ asgnR(n, x, e)},>EnvR , asgnR(n, x, e))

R[[n : break `;]] = ({n 7→ >R},>EnvR [` 7→ idR],>R)

R[[n : (` : n1 : P)]] = let (ϕ, η, r)←R[[P]]
in (ϕ[n 7→ r ∧R η(`)], η[` 7→ >R], r ∧R η(`))

R[[n : (n1 : P1; n2 : P2)]] =
let (ϕ1, η1, r1)←R[[P1]], (ϕ2, η2, r2)←R[[P2]]
in (λn′. if ϕ1(n

′) defined thenϕ1(n
′)

if ϕ2(n
′) defined thenr1;R ϕ2(n

′)
if n′ = n thenr1;R r2 ,

η1 ∧R (r1;R η2),
r1;R r2)

R[[n : if (e) n1 : P1 else n2 : P2]] =
let (ϕ1, η1, r1)←R[[P1]], (ϕ2, η2, r2)←R[[P2]]
in (expR(e);R ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2)]),

expR(e);R (η1 ∧R η2),
expR(e);R (r1 ∧R r2))

Figure 7. Representation for framework of Figure 6.

Theorem If R is adequate, then for all programsP ,
absF (R[[P]]) = F [[P]].

We can defineFR as in previous sections, and obtain

TheoremLet (ϕ, η, r) = R[[P]]. Then for allϕ′, η′, r′,

FR[[P]](ϕ′, η′, r′) ≡
(ϕ′ ∪ λ.r′ ;R ϕ(n), λl.η(l) ∧R (r′ ;R η(l)), r′ ;R r)

Our previous example with numbered nodes is in Figure
8. We show the value of functionR[[P]] only at the top node.
The environment and data values are just as in Section 3.2:
{L 7→ ({x, y}, {x, z})} and({x, w, y}, {x, z}), respectively.
The node map is:

{ n1 7→ ({x, w, y}, {x, z}), n2 7→ ({y}, {x}),
n3 7→ ({x, w, y}, {x, z}), n4 7→ ({x, w, y}, {x, z}),
n5 7→ >R, n6 7→ ({w, y}, {x, z}),
n7 7→ ({x, w, y}, {x, z}), n8 7→ ({x, y}, {x, z}), n9 7→ >R }

n1: // entire fragment
n2: y = x;

n3: if (z > 10)
n4: {
n6: w = 15;
n7: x = x + y + w; }

else

n5: {
n8: x = 0;
n9: break L; }

Figure 8. The example program with numbered nodes.

Note that the values associated with the nodes are different
from those in the previous analyses. This node map incorpo-
rates what is known about each nodeat the top node(as in
[17]). For example, when we get through noden6, we will
have definedw andy, and will have usedx andz possibly
without definition. Thus, suppose we put this fragment into
a hole at a position wherex has been defined. We can look
at, for example, noden6 and immediately find that onlyz
may have been used without definition. Note also that the
fragment as a whole definitely definesw, even though it is
only defined in one branch of the conditional; since the false
branch ends in a break, control can only reach the end of this
statement by taking the true branch.

Thus, we can analyze selected nodes without analyzing
the entire tree, which can have a salutary effect on the run-
time performance of the analysis.

Again, staging is not fundamentally different in this more
complicated framework. One new wrinkle is that a single
plug cannot be used in to fill two holes because its node
names would then not be unique in the larger AST; thus,
nodes in plugs need to be uniformly renamed before inser-
tion in a larger tree, a process that is easily done.

4. Adequate Representations
We now present several analyses. Like variable initialization,
all the representations we present here are exact.

4.1 Reaching Definitions I

The reaching definitions at a point in a program include any
assignment statement which may have been the most recent
assignment to a variable prior to this point.

Data = P(Node) ∪ {>}

Sets inData are ordered by reverse inclusion, with∅ being
the element just below>. The operations are

asgn(n, x, e) = λD.(D \Dx) ∪ {n}
exp(e) = λD.D

whereDx means the definitions ofx. The representation is:

R = (P(Var)× P(Node)) ∪ {>R}

If R[[P]] = (V,N), V are all the variables defined inP and
N are the assignment statements that define those variables
and may reach the end ofP .

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {n})
expR(e) = (∅, ∅)
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∩K2, G1 ∪G2)

abs(K, G) = λD. G ∪ (D \K)

whereG\K = {n ∈ G |n is the definition of somex ∈ K}.

4.2 Available Expressions

Available expressions are those expressions that have been
previously computed, such that no intervening assignment
has made their value obsolete. A given statement makes
some expressions available, kills some expressions (by as-
signing to the variables they contain), and lets others pass
through unmolested.

Data = P(Exp) ∪ {>}

Sets inData are ordered by set inclusion.

asgn(n, x, e) = λE.(E ∪ {e′ | e′ ∈ sub(e)}) \ Ex

exp(e) = λE.E ∪ {e′ | e′ ∈ sub(e)}

whereEx is the set of expressions that containx andsub(e)
is the set of all subexpressions ofe.

The following seems an obvious representation.

R = (P(Var)× P(Exp)) ∪ {>R}

The value(V,E) represents thatE is the set of expressions
made available by a statement, andV is the set of variables
defined by that statement (so that the statement kills any
expressions containing those variables).

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′ | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′ | e′ ∈ sub(e)})
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∪K2, G1 ∩G2)

abs(K, G) = λE.G ∪ (E \K)

whereG\K = {e ∈ G |none of the variables ine occur inK}.
However, this isnot an adequate representation for the

analysis. Consider the statement:if (cond) {a = . . .; . . .
= a + b} else {}. Suppose thata + b is available before
this statement. It will also be available afterwards. However,
since there is an assignment toa in one branch, the statement
kills any expression containinga. Furthermore,a + b is not
generated in the other branch. Thus, the onlyR value that
we could assign to this if-statement is({a}, ∅). But this will
kill the incoming definition ofa + b.

To obtain an adequate representation, we need to record
that some expressions are guaranteed to survive a statement,
even if they contain variables that are in its kill set, while

others will be killed, as usual. We do this by putting annota-
tions on expressions in the available set:

Definition For setS, SAnnot = {smust | s ∈ S} ∪
{ssur | s ∈ S}. Also define the operation “.” on annotations:
must.must = must and otherwisea.a′ = sur.

Then, this analysis is defined as follows:

R = P(Var)× P(ExpAnnot) ∪ {>R}

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′must | e′ ∈ sub(e)})
(K1, G1);R (K2, G2) = (K1 ∪K2,
{emust | emust ∈ G2}∪
{em | esur ∈ G2, em ∈ G1}∪
{esur | esur ∈ G2, em 6∈ G1, vars(e) ∩K1 = ∅}∪
{em | em ∈ G1, en 6∈ G2, vars(e) ∩K2 = ∅})

(K1, G1) ∧R (K2, G2) = (K1 ∪K2,
{em.n | em ∈ G1, en ∈ G2}∪
{esur | em ∈ G1, en 6∈ G2, vars(e) ∩K2 = ∅}∪
{esur | em ∈ G2, en 6∈ G1, vars(e) ∩K1 = ∅})

abs(K, G) = λE.{e | emust ∈ G}∪
{e | esur ∈ G, e ∈ E}∪
{e | e ∈ E, ea 6∈ G, vars(e) ∩K = ∅}

The most interesting case is in the definition of semi-
colon, whenesur ∈ G2 ande ∈ G1 (with either annota-
tion). In that case,e is included in the available set,even if
it is killed byK2. Looking again at the if statement we dis-
cussed above, the true branch gives({a}, {(a + b)must}),
and the false branch gives(∅, ∅). The meet of these values
is ({a}, {(a + b)sur}). This value summarizes the effect of
the if statement correctly: if(a + b)must is in the incoming
available set, then it will be in the resulting available set.

Annotations are used again in the alternative representa-
tion for reaching definitions and for constant propagation.

4.3 Reaching Definitions II

Using annotations, we give an alternative representation for
reaching definitions.

R = (Var→ P(Node)Annot) ∪ {>R}

idR = λv.∅sur

asgn(n, x, e) = (λv.∅sur)[x 7→ {n}must]
exp(e) = λv.∅sur

S1;R S2 = λx.let pm ← S1(x), qn ← S2(x)
in if n = must thenqn else(p ∪ q)m

S1 ∧R S2 = λx.let pm ← S1(x), qn ← S2(x)
in (p ∪ q)m.n

We assume thatS(x) defaults to∅sur

abs(S) = λD.{n ∈ D |n : x = e andS(x) = psur} ∪
{n ∈ p |n : x = e andS(x) = pm}

4.4 Constant Propagation

The framework can be instantiated for constant propagation
with the following definitions.

Data = (Var→ Z>⊥) ∪ {>R}

of Data is ordered under the usual pointwise ordering.

asgn(n, x, e) =
λM.if isConstant(e, M) thenM [x 7→ consVal(e, M)]

elseM [x 7→ ⊥]
exp(e) = λM.M

For the representation,R is a function giving values for
variables. However, these values are actually sets of vari-
ables, integer literals, and binary expressions, meaning “the
set will be reduced to a constantc, if every element it con-
tains eventually reduces to the constantc”. Using this set, we
effectively delay the meet operation, and gradually complete
it as information becomes available.

R = V ar → CSAnnot

CS = P (Exp ∪ {⊥})

We assume that, for allC ∈ CS, if ⊥ ∈ C thenC ≡
{⊥}; if there exist two integersi1, i2 ∈ C such thati1 6= i2
thenC ≡ {⊥}. In the following definitions,M1 andM2 ∈
Data,C andC ′ ∈ CS, m andn ∈ Annot.

idR = λv.∅sur

asgnR(n, x, e) = (λv.∅sur)[x 7→ {e}must]
expR(e) = λv.∅sur

M1 ∧R M2 = λx.let Cm ←M1(x), C′
n ←M2(x)

in (C ∪ C′)m.n

M1;R M2 = λx.semicolon(M1, M1(x), M2(x))

semicolon(M, Cm, C′
must) = update(M, C′)must

semicolon(M, Cm, C′
sur) = (update(M, C′) ∪ C)m

The functionupdate(M,C) checks the constant mapM
for each variable found in the elements of the setC, and
if there exists a mapping inM for that variable, uses it
to updateC. For example, letM(y) = {w, z}, andC =
{y + 1}. Thenupdate(M,C) returns{w + 1, z + 1}.

Theabsfunction, wherei ∈ Z, is

abs(M) = λS.λx. let CM ← semicolon(S, S(x), M(x))
in if C = {i} theni else⊥

4.5 Type Checking

Type checking is the most complicated of our analyses (see
[9] for a full presentation). It requires that the framework be
extended to accommodate declarations and scopes:

F [[n : int x]] = λ(ϕ, η, d).let d′ ← intDecl(n, x)(d)
in (ϕ[n 7→ d′], η, d′)

F [[n : {n1 : P}]] =
λ(ϕ, η, d).let η′ ← map(beginScope, η),

(ϕ1, η1, d1)← F [[n1 : P]](ϕ, η′, beginScope(n, d))
in let d′ ← endScope(d1)

in (ϕ1[n 7→ d′], map(endScope, η1), d
′)

TheData values consist of a stack of type environments,
to accommodate different levels of scopes. In the lattice, a
shorter stack appears below a longer one. If the stack frames
are the same, ordering is done pairwise among the type
environments kept in the frames.

Data = TySt ∪ {error }
TySt = ((Node ∪ {?})× TyEv)∗

TyEv = V ar ◦→Type
Type = {int , bool}

asgn(n, x, e) = λΓ. if type(x, Γ) = type(e, Γ) thenΓ elseerror
intDecl(n, x) = λΓ. if Γ(x) is defined thenerror

elseadd(Γ, x, int)
exp(e) = λΓ. if type(e, Γ) = bool thenΓ elseerror
beginScope(n, Γ) = [Γ, (n, ε)]
endScope([Γ, (n, γ)]) = Γ

The star inTySt denotes the initial frame of the stack.
Summarizing a node requires that we remember certain

“proof obligations” which we may not be able to discharge
until we have the entire program together. These obligations
are of three kinds: ensuring that two variables have the same
type; ensuring that a given variable has a given type; and
ensuring that a variable is not being redeclared. AnR value,
in addition to a stack of type environments, consists of a set
Oblg which can carry the three kinds of obligations.

R = TySt×Oblg
Oblg = P(V ar2 ∪ (V ar × Type) ∪ V ar) ∪ {error }

The appearance of an expression or assignment statement
generates a set of obligations:

asgnR(n, x, e) = ([], mkOblg(x, e))
expR(e) = ([], mkOblg(e, bool))
intDeclR(n, x) = ([(?, ε[x 7→ int])] , {x})

wheremkOblgis an overloaded function defined by:

mkOblg(x, y) = (x, y)
mkOblg(x, e1 ⊕ e2) = mkOblg(e1, ltype(⊕))
t mkOblg(e2, rtype(⊕)) t (x, type(⊕))

mkOblg(x, T) = (x, T)
mkOblg(e1 ⊕ e2, T) = mkOblg(e1, ltype(⊕))
t mkOblg(e2, rtype(⊕))
if type(⊕) = T (error otherwise)

where⊕ denotes any binary operation.t is union if both
sides are not the specialerror value, but when one of
the arguments iserror , then the error value is propagated.
ltype, rtype, typedenote theexpectedtype of the left argu-
ment, right argument, and return value, of the operator.

We define the meet and semicolon operations as

(Γ, ∆);R (Γ′, ∆′) = let Γ′′ := sequence(Γ, Γ′)
∆′′ := sequence(∆, ∆′, Γ)

in (Γ′′, ∆′′)

wheresequence: TySt× TySt → TySt is

sequence(Γ1, Γ2) = concatenate(Γ1, Γ2)

B[[skip;]] = id

B[[x = e;]] = λ(η, d).(η, asgn(x, e)(d))

B[[break `;]] = λ(η, d).(η, η(`))

B[[` : P]] = λ(η, d). let (η′, d′)← B[[P]](η[` 7→ d], d)
in (η′[` 7→ >R], d′)

B[[P1; P2]] = B[[P2]];B[[P1]]

B[[if(e) P1 else P2]] = ληd. let (η1, d1)← B[[P1]](η, d)
(η2, d2)← B[[P2]](η, d)

in (η, exp(e)(d1 ∧ d2))

Figure 9. Backward analysis framework

R[[skip]] = (>EnvR , idR)

R[[x = e]] = (>EnvR , asgnR(x, e))

R[[break `;]] = (>EnvR [` 7→ idR],>R)

R[[` : P]] = let (η, r)←R[[P]]
in (η[` 7→ >R], r ∧R η(`))

R[[P1; P2]] = let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in (η1 ∧R (η2;R r1), r2;R r1)

R[[if (e) P1 else P2]] = (R[[P1]] ∧R R[[P2]]);R expR(e)

Figure 10. Representation for framework of Figure 9.

andsequence: Oblg ×Oblg × TySt → Oblg is

sequence(∆1, ∆2, Γ) = {δ : δ ∈ ∆1 or, δ ∈ ∆2 andΓ 6` δ}

For meet we have

(Γ, ∆) ∧R (Γ′, ∆′) = (longestCommonPrefix(Γ, Γ′), ∆ ∪∆′)

Finally, in theabs function, if the obligations imposd by
the plug are not satisfied by the incoming type stack, we
return error, otherwise we just sequence the incoming type
stack with the plug’s.

abs(ΓR, ∆R) = λΓ. let (Γ′, ∆′)← (Γ, ∅);R (ΓR, ∆R)
in if ∆′ = ∅ thenΓ′ elseerror

5. Backward Analysis Framework
We can define a similar framework for backwards analysis,
although break statements significantly complicate matters.
Due to space constraints, we only provide the intermediate
framework here. It is presented in Figure 9, and the repre-
sentation in Figure 10. The abstraction function is

absE(ηR, r) = λ(η, d).(η, abs(r)(d)∧
^

l∈Label

abs(ηR(l))(η(l)))

Theorem For all P , if the DFFun functions are distribu-
tive (i.e.f(d ∧ d′) = f(d) ∧ f(d′)), absE(R[[P]]) = B[[P]].

For the full framework which builds a node map at the
top node, the intermediate framework can again be extended

naturally as in forward analysis (Figure 6). However, defin-
ing R is not that straightforward. We need to keep an envi-
ronment for every node in the node-map. So the type of the
representation function is

R : Pgm→ (Node→ (EnvR ×R))× EnvR ×R

Analogous to howR[[P1;P2]] in the forward representa-
tion function of Figure 7 updates the node-map for each node
in P1 andP2,R[[L : P]] andR[[P1;P2]] in the full backward
representation function update each mapping in their node-
maps as well.

5.1 Live Variables

Data = (P(Var)) ∪ {>}

ordered by reverse set inclusion.

asgn(n, x, e) = λL.(L \ {x}) ∪ vars(e)
exp(e) = λL.L ∪ vars(e)

R = P(Var)2

asgnR(n, x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))

Definitions of idR, ;R, ∧R and abs are the same as in
reaching definitions I (Section 4.1).

5.2 Very Busy Expressions

The definitions, except the following, are the same as in
available expressions.

asgn(n, x, e) = λE.(E \ Ex) ∪ sub(e)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e)})

6. Performance
We are interested in therun-timecosts of two methods of
doing static analysis. One method is to fill in the holes
and analyze the complete program at run time (thebase
analysis); the other is to use ourstaged analysis.

The benchmarks we present are of two kinds:artificial
benchmarks illustrate how performance is affected by spe-
cific features in a program;realisticbenchmarks are program
generators drawn from previous publications.

For some analyses, one needs only the dataflow informa-
tion for the root node; examples are uninitialized variables
and type-checking. For most, we need the information at
many, though not necessarily all, nodes. (Note that the base
case must visit every node at run-time, even if it is only in-
terested in a subset.)

We implemented the framework in Java. In Table 1, we
present the performance of three analyses, on a variety of
benchmark programs, as ratios between the base and the
staged analyses; higher numbers represent greater speed-
up. We run the experiments in three different Java runtime
environments: Sun’s HotSpot, GNU’s libgcj, and Kaffe. For
reaching definitions (RD) and constant propagation (CP), we
perform the analysis at every assignment statement (roughly

half the nodes in the programs). For type checking (TC), we
analyze only the top node.

HotSpot libgcj Kaffe
Sample Program RD CP TC RD CP TC RD CP TC

Big-plug 2.10 1.19 3.65 7.43 3.78 5.15 9.73 5.23 5.63
Small-plug-A 2.17 1.12 3.50 6.96 3.91 4.28 10.7 4.62 5.55
Small-plug-B 2.40 1.14 2.97 4.78 3.41 4.39 7.03 4.65 5.40
Two-plug 1.67 1.17 1.66 2.59 2.19 2.90 3.83 2.83 3.18
Fib1 ([7]) 1.10 1.07 1.31 1.24 0.93 1.17 1.64 1.26 1.05
Fib2 ([7]) 1.23 1.16 0.67 1.48 0.99 1.18 2.02 1.47 1.05
Sort ([5]) 1.48 1.21 1.92 1.64 1.08 1.59 1.86 1.29 1.66
Huffman ([7]) 1.11 1.29 0.30 1.04 0.93 1.02 1.31 1.30 0.95
Marshalling 1 ([2]) 12.37 3.93 28.27 34.83 15.42 9.34 49.64 18.92 12.04
Marshalling 2 ([2]) 2.01 1.75 16.01 1.83 1.33 1.86 2.59 2.27 1.47

Table 1. Benchmarking results. The numbers show the ratio
of thebase caseto thestagedcase.

We briefly describe the benchmarks used in Table 1.
Big-plug is a small program with one hole, filled in by a
large plug.Small-plug-A is a large program with a hole
near the beginning, filled in by a small plug.Small-plug-B
is a large program with a hole near the end, filled in by a
small plug.Two-plug is a medium-sized program with two
holes, filled in by medium-sized plugs.Fib1 andFib2 is two
versions of a Fibonacci function divided into small pieces for
exposition [7].Sort is a generator that produces a sort func-
tion by inlining the comparison operation [5].Huffman is a
generator that turns a Huffman tree into a sequence of con-
ditional statements [7].Marshalling 1 is part of a program
that produces customized serializers in Java; characteristics
much like Big-plug [2].Marshalling 2 is a different part of
the same program; has many holes and many small plugs.

As often happens, the invented benchmark examples
show the best performance improvements. Our approach
does result in slow-downs in some cases; the worst cases are
Fib2 and Huffman, both of which consist of many holes and
small plugs. Overall, the results are quite promising.

7. Conclusions
We have presented a framework for static analysis of ASTs
that allows these analyses to be staged (when the representa-
tions are adequate). The method has application to run-time
program generation: by optimizing the static analysis of pro-
grams, it can speed up overall run-time code generation time.

We are aware that the kinds of analyses we have presented
are not normally done on source code. One area for future
work is to explore analyses that occur naturally at source
level; the type-checking analysis is one example. Another
is to adapt our approach to CFGs. However, CFGs with
multiple exits are difficult to use as plugs. An alternative is
to use an intermediate language that is itself structured.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their helpful comments.

References
[1] A. Aho, R. Sethi, and J. Ullman.Compilers: principles,

techniques, and tools. Addison-Wesley, 1986.

[2] B. Aktemur, J. Jones, S. Kamin, L. Clausen. Optimizing
Marshalling by Run-time Program Generation.GPCE ’05,
Tallinn, Estonia, 2005.

[3] C. Chambers. Staged compilation.PEPM ’02, Portland, OR,
USA, 2002.

[4] K. Czarnecki, J. O’Donnell, J. Striegnitz, W. Taha. DSL
Implementation in MetaOCaml, Template Haskell, and C++.
DSPG ’04, Dagstuhl, Germany, 2004

[5] S. Kamin, M. Callahan, L. Clausen. Lightweight and
Generative Components I: Source-Level Components.GCSE
’99, Erfurt, Germany, 1999.

[6] S. Kamin, L. Clausen, A. Jarvis. Jumbo: run-time code gen-
eration for java and its applications.CGO ’03, Washington,
DC, USA, 2003.

[7] S. Kamin. Program generation considered easy.PEPM ’04,
Verona, Italy, 2004.

[8] S. Kamin, B. Aktemur, M. Katelman. Staging Static Analyses
for Program Generation (Full Version). University of Illinois
Technical Report, 2006.

[9] M. Katelman Staged Static Analyses and Run-time Program
Generation M.S. Thesis, Computer Science Dept., Univ. of
Illinois, 2006.

[10] R. Kramer, R. Gupta, M. Soffa. The Combining DAG: A
Technique for Parallel Data Flow Analysis.IEEE Trans.
Parallel Distrib. Syst.5(8), 1994

[11] T. Marlowe, B. Ryder. An efficient hybrid algorithm for
incremental data flow analysis.POPL ’90, San Francisco,
CA, USA, 1990

[12] Y. Oiwa, H. Masuhara, A. Yonezawa. Type safe dynamic
code generation in java.JSST Workshop on Programming
and Programming Languages (PPL2001), 2001.

[13] M. Poletto, W. Hsieh, D. Engler, M. Kaashoek. C and tcc: a
language and compiler for dynamic code generation.ACM
TOPLAS, 21(2):324–369, 1999.

[14] T. Reps, S. Horwitz, M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability.POPL ’95, San
Fransisco, CA, USA, 1995

[15] A. Rountev, S. Kagan, T. Marlowe. Interprocedural Dataflow
Analysis in the Presence of Large Libraries.CC ’06, Vienna,
Austria, 2006

[16] B. Ryder, M. Paull. Incremental data-flow analysis algo-
rithms. ACM TOPLAS, 10(1):1–50, 1988.

[17] M. Sharir, A. Pnueli. Two approaches to interprocedural
dataflow analysis. InProgram Flow Analysis: Theory and
Applications, 189–234, 1981.

[18] F. Smith, D. Grossman, G. Morrisett, L. Hornof, T. Jim.
Compiling for runtime code generation. Technical report,
Department of Computer Science, Cornell University, 2000.

