How Good Are the Specs?

A Study of the Bug-Finding Effectiveness of
Existing Java APl Specifications

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu
Grigore Rosu and Darko Marinov

ASE 2016
Singapore, Singapore
September 7, 2016

. UNIVERSITY OF ILLINGIS AT LUREANA-CHAMPAIGN
™

CCF-1421503, CCF-1421575, CCF-1438982, CCF-1439957

What is a Specification (Spec)?

“A spec is a way to use an API as asserted by the developer
or analyst, and which encodes information about the
behavior of a program when an APl is used”

--Robillard et al.l’}

* Violating a spec may or may not be a bug

[*] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API property inference techniques.
TSE, 39(5):613-637, 2013. 2

An Example Spec in our Study - CSC

e CSC = Collections_SynchronizedCollection

e CSCis specified in the Javadoc for java.util.Collections:

“It is imperative that the user manually synchronize on the
returned collection when iterating over it ... Failure to follow
this advice may result in non-deterministic behavior” [’

e CSC was formalized to enable checking this spec

[*] https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedCollection(java.util.Collection)

CSC Formalized in JavaMOP

e JavaMOP is a runtime verification tool that can check
program executions against formal specs

Collections_SynchronizedCollection (Collection c, Iterator i) {
Collection c;
creation event sync after() returning (Collection c):
call (Collections.synchronizedCollection(Collection)) | | ... {this.c=c; }

event syncMk after (Collection c) returning (Iterator i):
call (Collection+.iterator()) && target (c) && condition (Thread.holdsLock(c)) {}
event asyncMk after (Collection c) returning (Iterator i):
call (Collection+.iterator() && target(c) && condition (!Thread.holdsLock(c)) {}
. event access before (lterator i):
10. call (Iterator.(..)) && target (i) && condition (!Thread.holdsLock(this.c)) {}
11. ere : (sync asyncMk) | (sync syncMk access)
12. @match { RVMLogging.out.println (Level.CRITICAL, _ DEFAULT _MSG); ... }
13.}

©WONOUAWN R

llustrative Example

CODE + TESTS JavaMOP H CSC SPEC

Spec Violations
M CSC was violated on... (SuiteHTMLReporter.java:365)... A
synchronized collection was accessed in a thread-unsal manner

Pull Request
364 im = Collections.synchronizedList(...); 364 im = Collections.synchronizedList(...);
365 for (IiInvokedMethod iim :im) { ... } 365 + synchronized (im) {
1 366 for (lInvokedMethod iim :im) { ... }
367 + }

Accepted by TestNG developers

Line 365 invokes im.iterator()
without first synchronizing on im Rejected by XStream developers

5

Specs in SE Research

e Researchers have proposed many specs by writing
manually or mining automatically

* This is the first large-scale study of the effectiveness of
these specs for finding bugs during testing

* An effective spec catches true bugs without generating
too many false alarms

Overview of Our Study

200 199
Code + Tests JavaMOP Specs

Spec Violations R

Manual Inspection g:%Y:

Yes No
\4

CEM Submit Pull Request

Experimental Subjects

e 200 open-source projects were selected from GitHub
* Average project size: 6 KLOC
e Average number of tests: 90.3

e Each selected project satisfies four criteria:
v'Uses Maven (for ease of automation)
v'Contains at least one test
v'Tests pass when not monitored with JavaMOP
v'Tests pass when monitored with JavaMOP

Specs Used in our Study

* 182 manually written specs formalized by Luo et al. 1]
e 17 automatically mined specs provided by Pradel et al. [2

e All specs in our study are publicly available online

[1] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu. RV-Monitor: Efficient parametric

runtime verification with simultaneous properties. In RV, pages 285-300, 2014.
[2] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking API protocol conformance with mined multi-

object specifications. In ICSE, pages 925-935, 2012.

Tools Used in our Study

e JavaMOP (runtime verification tool)
e Easy to use: integrate into pom.xml and run “mvn test”
e JavaMOP allows to monitor multiple specs simultaneously

e Randoop (automatic test generation tool)
e Does type of tests affect the bug-finding effectiveness of specs?
 We generated tests for 122 of 200 projects
e Average number of generated tests = 17.5K
e Total number of generated tests = 2.1M

10

Inspecting & Classifying Violations

 We inspected 852 (of 6,404) unique spec violations
 We did not inspect violations from 21 manually written specs
 We sampled 200 violations of 1,141 automatically mined specs

 Multiple co-authors inspected most violations

e Classification
e FalseAlarm (716)
e TrueBug (114)
e HardTolnspect (22)

Research Questions

e RQ1: What is the runtime overhead of monitoring?

v Runtime overhead: 4.3x

e RQ2: How many bugs are found from spec violations?

v We reported 95 bugs: 74 accepted, 3 rejected so far

e RQ3: What are the false alarm rates among violations?

X 82.81% for manually written specs
X 97.89% for automatically mined specs

RQ1: Time Overhead of Monitoring

mop — base

Overhead =
base

mop: time to run tests with monitoring
base: time to run tests without monitoring

e Average overhead: 4.3x
* Average additional time: 12.5s
e Specs are monitored simultaneously

RQ2: Bugs in Subject Programs
I - T

Total TrueBugs 114 From manual specs 110
From auto specs 4

Unique TrueBugs 97

Already fixed TrueBugs 2

Reported TrueBugs 95 Accepted 74
Rejected 3
Pending 18

e Bugs accepted in Joda-Time, TestNG, XStream, BCEL, etc.

14

RQ3: False Alarm Rates (FAR)

FAR — FalseAlarms *100%

FalseAlarms+TrueBugs

 FAR = 82.81 % for manually written specs
 FAR =97.89 % for automatically mined specs
e All inspected violations were in 99 projects:

-

FAR = 100% .
3

50% < FAR < 100% 20
0% < FAR < 50%
FAR = 0% 7 @

15

RQ3: FAR vs. Project Characteristics

Manually written specs

82.81

Libraries

Project code

FAR was very high along

86.55 all dimensions considered
80.82

Single-module

Multi-module

Slightly higher FAR in
libraries than in project

Manually written tests

Automatically generated tests

code

Automatically mined specs

Libraries

Project code

Single-module

Multi-module

97.84

98.04

16

RQ3: FAR among Inspected Specs
_

Total FAR = 100%

Number of specs not violated 119 50% < FAR < 100% 6
Number of specs not inspected 21 0% <FAR<50% 4
Number of inspected specs 42 FAR=0% 1

* Only 11 of 182 manually written specs helped find a bug

e Only 3 of 17 automatically mined specs helped find a bug
e FSM162, FSM33, and FSM373
e 87.50%, 90.00% and 98.06% FAR, respectively

17

Example False Alarm

e Consider the Iterator_HasNext spec: “hasNext() must
return true before calling next() on an iterator”
e 150 FalseAlarms, 97.40% FAR

Highlighted Iterator_HasNext violation is a false alarm

1 ArraylList<Integer> list = new ArrayList<>(); list.add(1);
2 Iterator<integer> it = list.iterator();
3 if (it.hasNext()){ int a = it.next();}

4 if (list.size() > 0){ int b = list.iterator().next();}

Rejected Pull Requests

e XStream (a CSC violation)

e “..there’s no need to synchronize it... As explicitly stated ...,
XStream is not thread-safe ... this is documented ...”

e JSqglParser (no check for validity of s in parseLong(s, int))

e “..parser ... ensures that only long values are passed ... do you
have a ... SQL, that produces a NumberFormatException?”

* threerings.playn (stream not flushed)

e “[class] automatically flushes the target stream when done() is
called ... an additional flush is unnecessary.”

19

Positive Developer Responses

e Developers asked us for more fixes
e “| found the following... Can you please check these out as well?”

e Developers accepted better exception messages
e “Looks good, I'll ... add that more helpful error message.”

e Developers liberally accepted some pull requests
e “While I’'m not convinced it is necessary, this will cause no harm.”

20

Recommendations for the Future

e Open and community-driven spec repositories
* We could have evaluated more specs if these existed

* More work on spec testing and filtering of false alarms
e Greater emphasis on bug-finding effectiveness

e Better categorization of specs
 Complementing benchmarks with OSS
e Confirming spec violations with developers

Conclusions

* The first large-scale evaluation of existing Java API specs

v 199 specs and 200 open-source projects
v Average runtime overhead was 4.3x
v Found many bugs that developers are willing to fix

X False alarm rates are too high

* We made some recommendations for future research

e Study data is online: http://fsl.cs.illinois.edu/spec-eval

legunse2@illinois.edu

22

