
How Good Are the Specs?
A Study of the Bug-Finding Effectiveness of

Existing Java API Specifications

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu
Grigore Rosu and Darko Marinov

ASE 2016
Singapore, Singapore
September 7, 2016

CCF-1421503, CCF-1421575, CCF-1438982, CCF-1439957

What is a Specification (Spec)?

• Violating a spec may or may not be a bug

2
[*] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API property inference techniques.
TSE, 39(5):613–637, 2013.

“A spec is a way to use an API as asserted by the developer
or analyst, and which encodes information about the
behavior of a program when an API is used”

--Robillard et al.[*]

An Example Spec in our Study - CSC

3

• CSC = Collections_SynchronizedCollection

[*] https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedCollection(java.util.Collection)

“It is imperative that the user manually synchronize on the
returned collection when iterating over it ... Failure to follow

this advice may result in non-deterministic behavior” [*]

• CSC is specified in the Javadoc for java.util.Collections:

• CSC was formalized to enable checking this spec

CSC Formalized in JavaMOP

4

1. Collections_SynchronizedCollection (Collection c, Iterator i) {
2. Collection c;
3. creation event sync after() returning (Collection c):
4. call (Collections.synchronizedCollection(Collection)) || ... { this . c = c ; }
5. event syncMk after (Collection c) returning (Iterator i):
6. call (Collection+.iterator()) && target (c) && condition (Thread.holdsLock(c)) {}
7. event asyncMk after (Collection c) returning (Iterator i):
8. call (Collection+.iterator() && target(c) && condition (!Thread.holdsLock(c)) {}
9. event access before (Iterator i):
10. call (Iterator.(..)) && target (i) && condition (!Thread.holdsLock(this.c)) {}
11. ere : (sync asyncMk) | (sync syncMk access)
12. @match { RVMLogging.out.println (Level.CRITICAL, __DEFAULT_MSG); … }
13.}

• JavaMOP is a runtime verification tool that can check
program executions against formal specs

364 im = Collections.synchronizedList(…);
365 + synchronized (im) {
366 for (IInvokedMethod iim : im) { … }
367 + }

Illustrative Example

5

364 im = Collections.synchronizedList(…);
365 for (IInvokedMethod iim : im) { … }

CSC SPECJavaMOPJavaMOP

Line 365 invokes im.iterator()
without first synchronizing on im

Pull Request

CODE + TESTS

CSC was violated on… (SuiteHTMLReporter.java:365)… A
synchronized manner

Spec Violations

Accepted by TestNG developers
Rejected by XStream developers

Specs in SE Research

• Researchers have proposed many specs by writing
manually or mining automatically

• This is the first large-scale study of the effectiveness of
these specs for finding bugs during testing

• An effective spec catches true bugs without generating
too many false alarms

6

Overview of Our Study

7

Code + TestsCode + Tests SpecsSpecs

Spec ViolationsSpec Violations

JavaMOPJavaMOP

Bug?Bug?

Yes No

Manual InspectionManual Inspection

Submit Pull RequestSubmit Pull Request

200 199

6,404

852

95

Experimental Subjects

• 200 open-source projects were selected from GitHub
• Average project size: 6 KLOC
• Average number of tests: 90.3

8

• Each selected project satisfies four criteria:
Uses Maven (for ease of automation)
Contains at least one test
Tests pass when not monitored with JavaMOP
Tests pass when monitored with JavaMOP

Specs Used in our Study

• 182 manually written specs formalized by Luo et al. [1]

• 17 automatically mined specs provided by Pradel et al. [2]

• All specs in our study are publicly available online

9

[1] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu. RV-Monitor: Efficient parametric
runtime verification with simultaneous properties. In RV, pages 285–300, 2014.
[2] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking API protocol conformance with mined multi-
object specifications. In ICSE, pages 925–935, 2012.

Tools Used in our Study

• JavaMOP (runtime verification tool)
• Easy to use: integrate into pom.xml and run “mvn test”
• JavaMOP allows to monitor multiple specs simultaneously

• Randoop (automatic test generation tool)
• Does type of tests affect the bug-finding effectiveness of specs?
• We generated tests for 122 of 200 projects
• Average number of generated tests = 17.5K
• Total number of generated tests = 2.1M

10

Inspecting & Classifying Violations

• We inspected 852 (of 6,404) unique spec violations
• We did not inspect violations from 21 manually written specs
• We sampled 200 violations of 1,141 automatically mined specs

• Multiple co-authors inspected most violations

• Classification
• FalseAlarm (716)
• TrueBug (114)
• HardToInspect (22)

11

Research Questions

• RQ2: How many bugs are found from spec violations?

12

• RQ1: What is the runtime overhead of monitoring?

• RQ3: What are the false alarm rates among violations?

Runtime overhead: 4.3x

We reported 95 bugs: 74 accepted, 3 rejected so far

82.81% for manually written specs
97.89% for automatically mined specs

RQ1: Time Overhead of Monitoring

• Average overhead: 4.3x
• Average additional time: 12.5s
• Specs are monitored simultaneously

13

= −
mop: time to run tests with monitoringbase: time to run tests without monitoring

RQ2: Bugs in Subject Programs

• Bugs accepted in Joda-Time, TestNG, XStream, BCEL, etc.
14

Count Breakdown
Total TrueBugs 114 From manual specs 110

From auto specs 4
Unique TrueBugs 97
Already fixed TrueBugs 2
Reported TrueBugs 95 Accepted 74

Rejected 3
Pending 18

RQ3: False Alarm Rates (FAR)

• FAR = 82.81 % for manually written specs
• FAR = 97.89 % for automatically mined specs
• All inspected violations were in 99 projects:

15

= * 100%
FAR [%]
FAR = 100% 69
50% ≤ FAR < 100% 20
0% ≤ FAR < 50% 3
FAR = 0% 7

RQ3: FAR vs. Project Characteristics

FAR was very high along
all dimensions considered

16

Type of specs FAR [%]
Manually written specs 82.81

Libraries 86.55
Project code 80.82
Single-module 81.87
Multi-module 86.23
Manually written tests 82.51
Automatically generated tests 84.21

Automatically mined specs 97.89
Libraries 100.00
Project code 94.87
Single-module 97.84
Multi-module 98.04

Slightly higher FAR in
libraries than in project
code

RQ3: FAR among Inspected Specs

• Only 11 of 182 manually written specs helped find a bug
• Only 3 of 17 automatically mined specs helped find a bug

• FSM162, FSM33, and FSM373
• 87.50%, 90.00% and 98.06% FAR, respectively

17

Manually written specs Count
Total 182
Number of specs not violated 119
Number of specs not inspected 21
Number of inspected specs 42

FAR Count
FAR = 100% 31
50% ≤ FAR < 100% 6
0% ≤ FAR < 50% 4
FAR = 0% 1

Example False Alarm
• Consider the Iterator_HasNext spec: “hasNext() must

return true before calling next() on an iterator”
• 150 FalseAlarms, 97.40% FAR

18

1 ArrayList<Integer> list = new ArrayList<>(); list.add(1);

2 Iterator<Integer> it = list.iterator();

3 if (it.hasNext()){ int a = it.next();}

4 if (list.size() > 0){ int b = list.iterator().next();}

Highlighted Iterator_HasNext violation is a false alarm

Rejected Pull Requests

• XStream (a CSC violation)
• “...there’s no need to synchronize it... As explicitly stated …,

XStream is not thread-safe ... this is documented …”

• JSqlParser (no check for validity of s in parseLong(s, int))
• “...parser … ensures that only long values are passed ... do you

have a … SQL, that produces a NumberFormatException?”

• threerings.playn (stream not flushed)
• “[class] automatically flushes the target stream when done() is

called … an additional flush is unnecessary.”

19

Positive Developer Responses

• Developers asked us for more fixes
• “I found the following... Can you please check these out as well?”

• Developers accepted better exception messages
• “Looks good, I’ll … add that more helpful error message.”

• Developers liberally accepted some pull requests
• “While I’m not convinced it is necessary, this will cause no harm.”

20

Recommendations for the Future

• Open and community-driven spec repositories
• We could have evaluated more specs if these existed

• More work on spec testing and filtering of false alarms
• Greater emphasis on bug-finding effectiveness

• Better categorization of specs
• Complementing benchmarks with OSS
• Confirming spec violations with developers

21

Conclusions

• The first large-scale evaluation of existing Java API specs
199 specs and 200 open-source projects
Average runtime overhead was 4.3x
Found many bugs that developers are willing to fix
False alarm rates are too high

• We made some recommendations for future research

• Study data is online: http://fsl.cs.illinois.edu/spec-eval

22legunse2@illinois.edu

