
LAMBDAFICATOR: From Imperative to Functional
Programming through Automated Refactoring
Lyle Franklin

Ball State University
USA

ljfranklin@bsu.edu

Alex Gyori
Politehnica University of Timisoara

Romania
gyori@cs.upt.ro

Jan Lahoda
Oracle

Czech Republic
jan.lahoda@oracle.com

Danny Dig
University of Illinois

USA
dig@illinois.edu

Abstract—Java 8 introduces two functional features: lambda
expressions and functional operations like map or filter that
apply a lambda expression over the elements of a Collection.
Refactoring existing code to use these new features enables
explicit but unobtrusive parallelism and makes the code more
succinct. However, refactoring is tedious (it requires changing
many lines of code) and error-prone (the programmer must
reason about the control-flow, data-flow, and side-effects). Fortu-
nately, these refactorings can be automated.

We present LAMBDAFICATOR, a tool which automates two
refactorings. The first refactoring converts anonymous inner
classes to lambda expressions. The second refactoring converts
for loops that iterate over Collections to functional oper-
ations that use lambda expressions. In 9 open-source projects
we have applied these two refactorings 1263 and 1595 times,
respectively. The results show that LAMBDAFICATOR is use-
ful. A video highlighting the main features can be found at:
http://www.youtube.com/watch?v=EIyAflgHVpU

I. INTRODUCTION

Some object-oriented languages such as Smalltalk, Scala,
JavaScript, Ruby supported lambda expressions from the first
release. Others, like C# (v 3.0), C++ (v 11) were retrofitted
with lambda expressions. Java 8 is the latest mainstream
language to retrofit lambda expressions [1].

Enabled by lambda expressions, the Java 8 collections [2]
provide internal iterators [3] that take a lambda expression
as an argument. For example, filter takes a predicate
expression and filters the elements of a collection, map maps
the elements of a collection into another collection, forEach
executes a block of code over each element, etc. The internal
iterators enable the library developers to optimize perfor-
mance, for example by providing parallel implementation,
short-circuiting, or lazy evaluation.

Until now, Java did not support lambda expressions, but
instead emulate its behavior with an anonymous inner class
(from here on referred as AIC). An AIC typically encodes
nothing more than a function. The Java class library defines
several interfaces that have just one method. These are called
functional interfaces and are mostly instantiated as AIC. Clas-
sic examples are Runnable – whose run method encapsulates
work to be executed inside a Thread, Comparator – whose
compare method imposes a total order on a collection of
objects, or ActionListener – whose actionPerformed

method encapsulates the behavior when an action (like press-
ing a GUI button) is performed.

Refactoring existing Java code to use lambda expressions
brings several benefits. First, the refactoring makes the code
more succinct and readable by introducing more concise ex-
pressions. Previously, using the old AIC, the programmer had
to write five lines of code to encapsulate a single statement.

Second, in the refactored code it is easy to introduce explicit
but unobtrusive parallelism by simply using parallel:
myCollection.parallelStream()

.map(e -> e.length())

Third, the refactored code makes the intent of the loop
more explicit. Suppose we wanted to iterate over a collection
of blocks, and color all blue blocks in red. Compared to the
old style of external iterators (e.g., with a for statement), the
refactored loop is:
blocks.stream()

.filter(b -> b.getColor() == BLUE)

.forEach(b -> { b.setColor(RED);});
This style encourages chaining the operations in a pipeline

fashion, thus there is no need to store intermediate results in
their own collections. Many programmers prefer this idiom, as
witnessed by its popularity in Scala [4], FluentIterable [5]
in Guava Google Libraries, or Microsoft PLINQ library [6].

Fourth, elements may be computed lazily: if we map a
collection of a million elements, but only iterate over the
results later, the mapping will happen only when the results
are needed.

In this demo we will educate programmers and researchers
about the new lambda-related features coming in Java 8.
We are also empowering Java developers to use these fea-
tures effectively by presenting our tool, LAMBDAFICATOR,
that automates two refactorings. The first transforms AIC
to lambda expressions and the second transforms for loops
over Collections to functional operators using lambda
expressions. We are the first to implement these refactorings
and make them available as an extension to a widely used
development environment. We are shipping both refactorings
with the official release of the NetBeans IDE.

More details about the program analysis used in LAMBDAFI-
CATOR can be found in our tech report available on the tool’s
homepage: http://refactoring.info/tools/LambdaFicator

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Formal Demonstrations

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1287

Fig. 2. LAMBDAFICATOR performs the refactoring in Quick Hint mode.

II. USER EXPERIENCE

LAMBDAFICATOR provides two main workflow options, a
batch and a Quick Hint mode.

The batch mode allows the programmer to invoke the
refactoring automatically by selecting any file, or project
open in the NetBeans IDE. LAMBDAFICATOR can automatically
apply the refactoring on all files or optionally generate a
preview which lists the valid transformations and provides
fine-grain control over which transformations should take
place. In the batch mode, LAMBDAFICATOR can discover and
apply hundreds of refactorings in a matter of seconds. In Fig. 1
we show how LAMBDAFICATOR works in batch mode. We
opted to apply the refactoring on the whole Tomcat project.
LAMBDAFICATOR groups the changes per file, in the left side
panel, so we can inspect and select each of the refactorings
to apply. Alternately, we can apply all the refactorings that
LAMBDAFICATOR suggests.

The quick hint mode scans the file that is open in the editor
in real-time. Fig. 2 shows how LAMBDAFICATOR works in
quick hint mode. If LAMBDAFICATOR finds code that meets the
refactoring preconditions, it underlines the code and displays
a hint in the sidebar indicating that the refactoring is available.
If the programmer clicks the hint indicator, LAMBDAFICATOR

applies the refactoring. This option allows the programmer
to perform the refactoring without deviating from her normal
workflow.

III. OVERVIEW OF REFACTORINGS

We illustrate the problems and challenges of ANONYMOUS-
TOLAMBDA and FORLOOPTOFUNCTIONAL by showing exam-
ples of refactorings that LAMBDAFICATOR performs. We de-
signed the analysis and transformation algorithms to address
the challenges for these two refactorings. These algorithms
account for different scoping rules between the old and the new
languages constructs and convert imperative in-place mutation
into functional computations that produce new values.

A. ANONYMOUSTOLAMBDA

Fig. 1–left-hand side shows a common practice in multi-
threaded Java code, encapsulating some asynchronous com-
putation inside a Runnable. In this example, the developer
used an AIC, avoiding the hassle of creating a separate class
for running one single line of code asynchronously. Although
an AIC is an improvement over an external class, the syntax
is still unnecessarily verbose. The programmer must specify
the name of the interface, the method signature, and finally the

body of the method. Lambda expressions are a more concise
solution. With lambda expressions, the compiler can infer the
type of the interface as well as the method signature. The
programmer only has to specify the body of the method.
Fig. 1–right-hand shows a lambda expression equivalent to the
AIC on the left-hand side. LAMBDAFICATOR safely removes
the code that is cluttering the intent and makes it more concise
and readable.

While Fig. 1 shows the most basic case, LAMBDAFICATOR

analyzes the code deeper to handle several special cases.
Fig. 3, adapted from the Apache Tomcat project, shows an
example where the basic conversion would introduce a com-
pilation error. The doAction method is overloaded and can
accept two different interfaces, both of which define a single
method run(). A naive conversion results in an ambiguous
type for the lambda expression at the call site on line 1, due to
the method overloading. LAMBDAFICATOR detects the need for
a type cast and adds it, disambiguating the type of the lambda
expression.

This example also illustrates that LAMBDAFICATOR makes
the resulting lambda expression even more concise. If the
body of the lambda expression contains a single return

statement, LAMBDAFICATOR removes the return statement.
These special cases require additional analysis and would
require special attention to refactor manually.

Moreover, these changes are non-trivial. When converting
AIC to lambda expressions, the programmer must first account
for the different scoping rules between AIC and lambda
expressions. These differences could introduce subtle bugs. For
example, this or super are relative to the inner class where
they are used, whereas in lambda expressions they are relative
to the enclosing class. Similarly, local variables declared in
the AIC are allowed to shadow variables from the enclosing
class, whereas the same variables in the lambda expression
will conflict with variables from the enclosing class. Moreover,
converting AIC to lambda could make the resulting type
ambiguous, thus it requires inferring the type of the lambda.

B. FORLOOPTOFUNCTIONAL

Next we illustrate two examples of the FORLOOPTOFUNC-
TIONAL refactoring in Fig. 4. The first example shows a loop
that iterates over GrammarEngine objects. The loop checks
whether importedEngines contains an element with a given
name. The loop filters out objects with a null name,through
the continue statement, and checks if the name equals the
argument of the method for each non-null name. Our refac-
tored code makes the intent explicit: it shows a non-null
filter and returns true if any element’s name matches the
grammarName. This example illustrates how LAMBDAFICATOR

chains operations together, while expressing the semantics
of each portion of the loop explicitly. LAMBDAFICATOR is
able to determine the overall semantic of the loop and what
operators to use. LAMBDAFICATOR is able to infer that the two
operators can safely be chained and that the types match. Also
it determines that the if with a continue behaves like a non-
null filter and infers the right operation. In this case, the

1288

Fig. 1. LAMBDAFICATOR performs the ANONYMOUSTOLAMBDA refactoring in batch mode.

1 S t r i n g sep = doAct ion (new P r i v i l e g e d A c t i o n () {
2 p u b l i c S t r i n g run () {
3 r e t u r n System . g e t P r o p e r t y (” f i l e . s e p a r a t o r ”) ;
4 }
5 }) ;
6
7 S t r i n g doAct ion (P r i v i l e g e d A c t i o n a c t i o n) { . . . }
8 S t r i n g doAct ion (E x c e p t i o n A c t i o n a c t i o n) { . . . }

(a) An AIC

1 S t r i n g sep = doAct ion ((P r i v i l e g e d A c t i o n) () −>
2 System . g e t P r o p e r t y (” f i l e . s e p a r a t o r ”)
3) ;
4
5
6
7 S t r i n g doAct ion (P r i v i l e g e d A c t i o n a c t i o n) { . . . }
8 S t r i n g doAct ion (E x c e p t i o n A c t i o n a c t i o n) { . . . }

(b) Lambda conversion requiring a type cast

Fig. 3. Example of ambiguous lambda expression due to method overloading. LAMBDAFICATOR adds a type cast to disambiguate the type of the lambda
expression on line 1. In addition, LAMBDAFICATOR discarded the {} and return tokens to make the lambda expression more concise.

1 p u b l i c c l a s s GrammarEngineImpl imp lemen t s GrammarEngine {
2 . . .
3 p r i v a t e b o o l e a n i s E n g i n e E x i s t i n g (S t r i n g grammarName) {
4 f o r (GrammarEngine e : i m p o r t e d E n g i n e s) {
5 i f (e . getGrammarName () == n u l l) c o n t i n u e ;
6 (1) i f (e . getGrammarName () . e q u a l s (grammarName))
7 r e t u r n t r u e ;
8 }
9 r e t u r n f a l s e ;

10 }
11 }
12 c l a s s Ed i to rGu t t e rCo lumnManage r{
13 . . .
14 p u b l i c i n t ge tNumberOfEr ro r s () {
15 i n t c o u n t = 0 ;
16 f o r (ElementRule r u l e : g e t R u l e s ()) {
17 (2) i f (r u l e . h a s E r r o r s ())
18 c o u n t += r u l e . g e t E r r o r s () . s i z e () ;
19 }
20 r e t u r n c o u n t ;
21 }
22 }

(a)

1 c l a s s GrammarEngineImpl imp lemen t s GrammarEngine {
2 . . .
3 p r i v a t e b o o l e a n i s E n g i n e E x i s t i n g (S t r i n g grammarName) {
4 r e t u r n i m p o r t e d E n g i n e s . s t r e a m ()
5 . f i l t e r (e −> e . getGrammarName () != n u l l)
6 . anyMatch (e −>
7 e . getGrammarName () . e q u a l s (grammarName)) ;
8
9 }

10 }
11
12 c l a s s Ed i to rGu t t e rCo lumnManage r{
13 . . .
14 p u b l i c i n t ge tNumberOfEr ro r s () {
15
16 r e t u r n g e t R u l e s () . s t r e a m ()
17 . f i l t e r (r u l e −> r u l e . h a s E r r o r s ())
18 . map (r u l e −> r u l e . g e t E r r o r s () . s i z e ())
19 . r e d u c e (0 , I n t e g e r : : sum) ;
20
21 }
22 }

(b)

Fig. 4. Example of FORLOOPTOFUNCTIONAL refactoring. In column (a) you can find the original version of the program and in column (b) the refactored
one. The examples are extracted from ANTLR

semantics is preserved due to the fact that anyMatch uses
short-circuiting to ensure that elements are iterated only until
one element matches the predicate.

The second example also illustrates chaining operations
together, this time to compute a map-reduce. In this example,
the loop iterates over ElementRule objects and sums up the
number of errors for each object that has errors. In order for
the programmer to infer this chaining manually, she has to
notice that the compound assignment represents a map-reduce
operation, which may not be immediately obvious. In this
transformation we used method references, a new feature in
Java 8, to refer to the plus operator on Integer.

When performing the FORLOOPTOFUNCTIONAL refactoring,
LAMBDAFICATOR considers a set of opposing constraints. First,
LAMBDAFICATOR determines what operation each statement

in the for loop represents. This involves reasoning about
statements that branch the control flow and introduce side
effects on local variables.

LAMBDAFICATOR also considers several differences between
the original loop and the new operations. A local variable
declared in the original loop is available to all subsequent state-
ments. However, variables declared in a lambda expression are
now local to that lambda. LAMBDAFICATOR builds operations
in a pipeline fashion such that it maintains access to needed
references. In some cases, LAMBDAFICATOR merges operations
to ensure the variable references are preserved. This is due to
the constraint that operations can return only one value.

On the other hand, there are several ways of chaining
operations when refactoring a loop. LAMBDAFICATOR chooses
the most fine-grained operations in order to make the semantic
of each portion of code as explicit as possible.

1289

Another thing to consider is that for loops are inherently
eager constructs. LAMBDAFICATOR ensures all lazy operations
get executed to preserve original semantics. Thus, it requires
that the last operation in the chain be an eager operation; this
will force the lazy operations to execute as needed, i.e., just
before the eager operation. Notice that eager operations cannot
be chained because they do not return streams.

IV. EVALUATION

We evaluated our implementations by running the two
refactorings on 9 open-source projects (totaling almost 1M
SLOC), invoking ANONYMOUSTOLAMBDA 1263 times, and
FORLOOPTOFUNCTIONAL 1595 times. The results show that
the refactorings are widely applicable: the first refactoring
successfully converted 55% of AIC and the second refactoring
converted 63% of for loops. Second, the refactorings are
valuable: the first refactoring reduces the code size by 2213
SLOC, while the second refactoring infers 1093 operators
and 982 chains thus making the intent of the loop explicit.
Third, LAMBDAFICATOR saves the programmer from manually
changing 3707 SLOC for the first refactoring, and 4831 SLOC
for the second refactoring.

V. RELATED WORK

Pankratius et al.’s empirical study [7] shows that program-
mers employ a mix of functional and imperative styles when
writing parallel applications. Okur and Dig [6] empirically
show that functional operators provided in .NET, equivalent
to those being introduced in Java 8, are widely used when
writing parallel applications. LAMBDAFICATOR meets this need
by transforming serial, imperative constructs into functional
constructs, which are a precursor to parallelism. Ericksen [8]
reports on Scala’s mix of functional and imperative style used
in large commercial applications like Twitter.

Recently, there is a surge of interest in supporting refac-
torings in functional languages [9]–[11]. However, we are the
first ones to help programmer retrofit functional features into
an imperative program.

Our work on refactoring for parallelism contains a tool [12]
that performs a related refactoring to ParallelArray rather
than using lambda expressions. Our tool could benefit from
the automatic thread safety analysis performed by this toolset.
LAMBDAFICATOR improves on our previous refactoring [12]
by providing increased applicability, increased readability, and
operator chaining. Our tool can also infer chaining of opera-
tors, permitting the refactoring of more complex loops, such
as iterations involving multiple control flow paths. LAMBDAFI-
CATOR also takes advantage of built-in language features, such
as lambda expressions, rather than external libraries, resulting
in improved readability.

Davis and Kiczales [13] present an approach to let pro-
grammers experiment with new language extensions without
requiring that the whole toolset (e.g., compiler, editor, etc)
support the new extensions.

VI. CONCLUSIONS

There exists an interdependence between language features,
adoption of these features in practice, and tools. On one hand,
tools do not automate features that are rarely used in practice.
On the other hand, language features are not used in practice if
they do not have tool automation. Once we break the chicken-
and-egg stalemate, tools and adoption are in a chain reaction
with a positive feedback.

The concomitant release of lambda expressions in Java 8
and our release of LAMBDAFICATOR may be the first time when
language features and refactoring tools are released together.
This could be the trigger for the chain reaction that will lead to
a wide adoption of functional/imperative hybrid, thus making
the programmer more productive.

ACKNOWLEDGMENT

Lyle Franklin and Alex Gyori did this research while un-
dergraduate summer interns at the Information Trust Institute
at UIUC. The authors would like to thank Marius Minea,
Darko Marinov, Milos Gligoric, Stas Negara, Mihai Codoban,
Caius Brindescu, Yu Lin, Krzysztof Zienkiewicz, Nick Chen,
and Qingzhou Luo for providing valuable feedback on earlier
drafts of this paper. This research is partly funded through
an NSF CCF-1219027 grant, a gift grant from Intel, and the
Intel-Illinois Center for Parallelism at the University of Illinois
at Urbana-Champaign. The Center is sponsored by the Intel
Corporation.

REFERENCES

[1] State of the lambda. [Online]. Available: http://cr.openjdk.java.net/
∼briangoetz/lambda/lambda-state-4.html

[2] State of the lambda: Collections edition. [Online]. Available:
http://cr.openjdk.java.net/∼briangoetz/lambda/sotc3.html

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
2004.

[4] The Scala Programming Language. [Online]. Available: http://www.
scala-lang.org/

[5] FluentIterable. [Online]. Available: http://docs.guava-libraries.
googlecode.com/git/javadoc/com/google/common/collect/FluentIterable.
html

[6] S. Okur and D. Dig, “How do developers use parallel libraries,” in
FSE’12, pp. 54–65.

[7] V. Pankratius, F. Schmidt, and G. Garretón, “Combining functional
and imperative programming for multicore software: an empirical study
evaluating Scala and Java,” in ICSE’12, pp. 123–133.

[8] M. Eriksen, “Scaling Scala at Twitter,” in ACM SIGPLAN Commercial
Users of Functional Programming, ser. CUFP ’10.

[9] H. Li, “Refactoring Haskell Programs,” 2006.
[10] D. Y. Lee, “A case study on refactoring in Haskell programs,” in ICSE

’11, pp. 1164–1166.
[11] H. Li and S. Thompson, “Comparative study of refactoring haskell and

erlang programs,” in SCAM ’06, pp. 197–206.
[12] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson, “ReLooper:

refactoring for loop parallelism in Java,” in OOPSLA’09: Demo, pp.
793–794.

[13] S. Davis and G. Kiczales, “Registration-based language abstractions,” in
OOPSLA ’10, pp. 754–773.

1290

