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Abstract—A key opportunity to be exploited in the coming
decade is the utilization of the universal penetration of mobile
connectivity to make life better for inhabitants of urban cities.
There exist a wide range of possibilities to deploy smart mobile
solutions for vertical sectors and markets that span health,
transportation, environment, safety, entertainment, buildings,
education, business, agriculture, and industry. In this paper,
we consider the development of a mobile sensing framework
that utilizes the embedded sensors in smartphones to seamlessly
capture context information in urban environments. We present
an overview of a design architecture that facilitates silent mobile
sensing in addition to centralized context data visualization and
analytics. Moreover, we discuss potential application scenarios
that can use the presented framework to develop mobile solutions
for smart cities. Finally, we present preliminary results for a case
study that aims at creating public WiFi coverage maps for the
campus of the American University of Beirut.

I. INTRODUCTION

High-end smartphones are equipped with multiple em-
bedded sensors and, thus, can capture in real time context
information that can be utilized to develop innovative mobile
solutions for smart cities [1]. A up-to-date smartphone includes
more than 10 embedded sensors in addition to audio/video
recording and GPS localization capabilities (e.g., see Figure 1).

However, smartphones have not been fully exploited yet
taking into account their powerful computing, storage, and
sensing capabilities [2]. Crowd-sensing is a growing field
that benefits from the pervasive dominance of smartphones in
everyday life in order to collect large-scale sensor data [3], [4].
Crowd-sensing applications can in general be categorized into
two types. The first type is personal sensing, in which the aim
is to capture information mainly related to the smartphone’s
user, e.g., user’s activity mode. The second type is commu-
nity sensing, in which sensor data is collected from many
smartphones in order to monitor phenomena occurring in the
environment around the users, e.g., traffic congestion level.
Community sensing can be further divided into participatory
sensing in which the user gets involved in the sensing pro-
cess, and opportunistic sensing which takes places seamlessly
without any user intervention [3].

In this paper, we present the design architecture, prototype
implementation, and application scenarios for a silent mobile
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Fig. 1. Sensors available in a Galaxy Note II smartphone accessed using an
Android API.

sensing framework that is being developed at the American
University of Beirut (AUB). The long-term objective is to
have a scalable and flexible framework that can be reused
for different crowd-sensing applications and that facilitates
dynamic spatiotemporal visualization over geographical maps
and the development of mobile solutions using data as a
service. Moreover, we present an overview with preliminary
sample results for utilizing the developed framework to create
public WiFi coverage maps for AUB’s campus. The coverage
maps will include both WiFi signal strength level in addition
to WiFi connection quality level.

Many mobile sensing projects focused on individual sensing
applications [5]. For example, the SenSay application [6]
aims at recognizing user context to improve the phone’s
usability. SoundSence [7] is an application that makes use
of the microphone to detect user-based sound events. Other
examples include an e-coaching message-based system for
exercise and physical condition monitoring [8], an emergency
situations recognizer [9], and a context recognizer for social
networking purposes [10]. Recently, there is a shift towards
community sensing applications where the emphasis is on
phenomena affecting the environment or the society rather
than the individual users [5]. VTrack [11] is an example of a
transportation and traffic related application, CenceMe [12] is
an example of a social networking oriented mobile application,
and UbiFit Garden [13] is an example of a health oriented
mobile application.

In Section II, we present the design and prototype imple-
mentation of the silent mobile sensing framework that ie being



developed at AUB. In Section III, we discuss sample prelimi-
nary results with focus on creating public WiFi coverage maps.
Finally, challenges are highlighted and conclusions are drawn
in Section IV.

II. DESIGN ARCHITECTURE AND PROTOTYPE
IMPLEMENTATION

In this section, we present the design architecture and
prototype implementation for a silent mobile sensing frame-
work that is being developed at AUB. The aim is to be
able to capture seamlessly a wide range of spatiotemporal
contextual information in urban cities using the smartphones
of mobile users. The captured sensor data provides wealth of
opportunities to better understand the city dynamics and to
implement customized mobile solutions towards the vision of
smart cities. The design is divided into four main modules:
silent mobile sensing module, cloud server and storage mod-
ule, map visualization module, and mobile solutions develop-
ment module. Figure 2 presents a general description of the
presented framework.

A. Silent Mobile Sensing Module

The first module in the framework is the silent sensing mo-
bile application that is capable of acquiring seamlessly context
data from sensors embedded in smartphones with a pre-defined
configuration including sensor and sensing rate selection. The
mobile application should be silent without any interference
with the user’s normal operation of the device, and should be
lightweight to consume limited energy and storage resources.
The captured raw data is then stored in a local database with
processing over several intelligent steps that include: data
filtering to exclude in-valid or in-applicable measurements,
data compression to reduce the local storage requirements, and
efficient data uploading using the available wireless interfaces.
For the efficient uploading, an experimental study is conducted
to determine the adequate upload rate and size of batches, i.e.,
to determine how frequently to upload the stored sensor data.

Fig. 2. Silent mobile sensing framework general description.

This depends on the number and type of sensor measurements
in addition to the wireless connectivity availability and battery
capacity status. The captured sensor data is purged from the
smartphone after it has been uploaded to a given remote server.

In terms of implementation, an Android mobile application
has been developed named “Mapibi”. The application runs
silently in the background and records sensor data without
the need of any user intervention. The sensed raw data is
stored in a local SQLite database with the time and GPS
location attributes. The graphical user interface (GUI) shows
only the available sensors in the device and offers the user
the possibility of activating and deactivating sensors for the
measurements. The current version of the prototype GUI
design is shown in Figure 3. After pressing the start button,
the Mapibi application initiates silent sensing and storing
in the local database. The sensing rate is pre-configured by
the user depending on the required timing accuracy of the
sensed data. Then, unreliable data is filtered out and only
valid measurements are uploaded to a remote server for further
processing.

Fig. 3. Silent sensing mobile application prototype GUI.

B. Cloud Server and Storage Module

The silent sensing application will be installed on a rel-
atively large number of smartphones. The captured sensor
data from each smartphones running the application will be
uploaded on a continuous basis to a remote server for storage
and post-processing. The collected data at the server will
be utilized for two main objectives. The first objective aims
at the spatiotemporal visualization of city context data on
geographical maps (see Section II.C). The second objective
includes data analytics to offer customized mobile solutions
to users focusing on challenges in cities (see Section II.D).

In terms of implementation, an Apache HTTP server and
a MySQL database have been used with an automated PHP
based interconnection between them. In order to provide basic
privacy, no data about the identity of the smartphones or the
users is collected. An arbitrary anonymous ID is assigned by
the server for each upload session. Upon request, data can be



Fig. 4. Sample results for energy and storage requirements of the Mapibi silent mobile sensing application assuming WiFi signal level sensing, time stamp
recording, 5 seconds sampling interval, and duration of one day.

retrieved from the MySQL database and automatically con-
verted to JSON format for processing in the map visualization
module.

C. Spatiotemporal Visualization Module

This module aims at the visual representation of the data
that has been stored and post-processed at the remote server.
The output will include multiple layers of spatiotemporal
data overlaid over geographical maps that capture user-centric
contexts such as, e.g., people mobility patterns, traffic con-
gestion, user density distribution, wireless network coverage
maps, noise pollution levels, etc. This module is important to
capture dynamically and in real-time context variation over
both the spatial and temporal dimensions and, thus, it helps
better understand aspects related to city dynamics. In terms of
prototype implementation, the Google Maps JavaScript API
was used with a customized Heatmap Layer and a time line
for interactive scrolling over the temporal dimension (see
Figure 6).

D. Mobile Solutions Development Module

The loop between users and the server is closed with the
development of customized mobile solutions that provide the
captured sensor data as a service. This leads to a wide range of
potential application scenarios that can be built based on the
presented silent mobile sensing framework. The following are
some selected examples: i. Utilizing the accelerometer sensor
with GPS localization to design intelligent mobile solutions
in order to address traffic congestion in cities; ii. Capturing
cellular/WiFi signal strength levels with GPS localization
to create public spatiotemporal coverage maps in order to
guide city inhabitants to good connectivity areas or to help
operators identify coverage holes (see Section III.B for more
details); iii. Monitoring people’s density and mobility patterns

in selected parts of the cities over time, e.g., to optimize bus
routing and schedules within a large enterprise or campus;
iv. Applying signal processing techniques to audio signals
recorded silently via the smartphone’s microphone to create
noise pollution maps in order to help locating quiet places for
relaxation or crowded places for socialization inside the city.

III. SAMPLE PROTOTYPE TESTING RESULTS

In this section, we present sample prototype testing results
focusing on the storage/energy requirements of the Mapibi
silent sensing mobile application and on the utilization of the
developed framework to create public WiFi coverage maps.

A. Silent Sensing Mobile Application: Storage and Energy
Requirements

Continuously collecting data from smartphone sensors re-
sults in some challenges. For example, recording and process-
ing sensor data at a high sampling rate lead to an increase in
the energy consumption and, thus, lead to significant battery
drainage. Moreover, the low accuracy of sensors, at times,
leads to difficulties in getting reliable data. In order to better
understand the requirements of continuous sensing mobile ap-
plications, we conducted an experimental study using a Galaxy
Note II smartphone running the Mapibi mobile application
with different configurations. Figure 4 presents a summary of
the obtained results for the following scenario: WiFi signal
strength sensing and recording, time stamp recording, sensing
interval every 5 seconds, and no other applications are run-
ning. The Android OS reported that the Mapibi application
consumed only 2.8% (6% of the 47% consumed) of the
battery’s total energy capacity over a duration of 24 hours
with a data storage of 608 KB (around 24 KB stored per
hour). However, when the sampling rate was reduced to
1 second with additional storage of GPS location data, the



energy consumption of the Mapibi application increased to
33.11% of the battery’s total energy capacity over a duration
of 12 hours with a data storage of 2,32 MB (around 200 KB
stored per hour). This demonstrates the impact of the sensing
rate and the number/type of sensors on the energy and storage
requirements of continuous silent mobile sensing applications;
thus, this motivates the development of lightweight silent
mobile sensing applications, efficient storage techniques with
advanced compression algorithms, and intelligent approaches
to avoid in-accurate or in-valid sensing activity or sensor
measurements.

B. Towards Public WiFi Coverage Maps

The presented silent mobile sensing framework is being
tested for a mobile solution that aims at creating public WiFi
coverage maps. The aim is to perform seamless collection
of WiFi coverage data from smartphones while connected
to AUB’s wireless network, apply post-processing and visu-
alization at the remote server side, and share the outcome
dynamically over a spatiotemporal map that can be publicly
accessed via an interactive web interface.

For the WiFi coverage maps mobile solution, the informa-
tion that will be captured in the smartphone includes: time
of the recording, GPS location, WiFi signal strength level,
and WiFi connection quality level. Before uploading the data,
certain conditions will be checked to make sure that the data
is valid, e.g., data with invalid GPS location or invalid WiFi
signal level will be discarded. It is important to highlight
that capturing the WiFi signal strength level is straightforward
using existing Android APIs; however, capturing the WiFi
connection quality level is more challenging as it depends on
the signal strength in addition to the access network load and
the end-to-end Internet connection congestion.

Figure 5 presents sample experimental measurement results
that we have conducted in [14] to quantify the impact of WiFi
signal strength level and access network load on effective
download bit rate (which maps to connection quality level)
and energy consumed from the smartphone’s battery. Results
show that as the signal strength increases on the right vertical
axes from -70 dBm to -40 dBm, the effective download bit
rate for WiFi increases from 400 Kbps to 1.8 Mbps on the
x-axis, which leads to a reduction on the energy consumption.
Similarly, as the WiFi access network load increases from low
to medium to high, the effective download bit rate decreases
notably even though the signal strength level was high during
the measurements.

In order to capture the WiFi connection quality level, a
“speed test” based approach is implemented that downloads
data of a given size from a server and records the download
time in order to empirically evaluate the effective download
bit rate. Some challenges that need to be addressed include
determining the size of the data to be downloaded for accurate
bit rate estimation, setting appropriate triggers to initiate the
bit rate estimation function only when needed, finding an
approach to perform WiFi-related sensing while the device is
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Fig. 5. Effective download bit rate and consumed energy as a function
of both WiFi access network load and WiFi signal strength level. The WiFi
measurement points represented by * correspond to the right vertical axes of
signal strength levels.

in sleep mode, and differentiating between private and public
WiFi connectivity.

Preliminary testing of the WiFi coverage maps mobile so-
lution has been initiated at AUB using the smartphones of five
mobile users. The Mapibi application was downloaded to their
devices and data was recorded over part of AUB’s campus.
A sample spatiotemporal visualization with a heat map layer
for the WiFi signal strength data collected in the Faculty of
Engineering and Architecture area is shown in Figure 6 for
demonstration purposes. The green color represents high WiFi
signal strength, whereas the yellow color represents low WiFi
signal strength.

IV. CONCLUSION

We presented the design architecture and prototype imple-
mentation details results for a silent mobile sensing frame-
work that is being developed at the American University of
Beirut. Moreover, we discussed example scenarios for using
the framework to develop mobile solutions for smart cities
with preliminary sample results based on a case study to
create public WiFi coverage maps. The long-term goal is to
utilize wireless connectivity and mobile network penetration
to create context maps using data extracted seamlessly from
smartphones via silent mobile applications. The extracted data
and the created context maps can then be utilized to identify
problems and opportunities, capture infrastructure capabilities,
and trigger customized solution development in order to im-
prove the quality of life of inhabitants in cities.

Towards achieving this long-term goal, there are research
challenges that still need to be addressed including lightweight
silent sensing mobile applications with relatively low energy
and storage requirements, user incentives, user privacy, device
platform inter-operability, advanced sensing functionalities,
etc. For example, concerning energy consumption, the follow-
ing factors play an important role: the upload data batch size,
the frequency of uploading, the amount of pre-processing at
the device level, the number and type of sensors that need to
be captured, and the frequency of sensing.



Fig. 6. Preliminary spatiotemporal map visualization for WiFi signal strength levels collected using the Mapibi silent mobile sensing application on part of
AUB’s campus.
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