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Abstract
This paper addresses the problem of targeted test generation for actor systems. Specifically, we
propose a method to support generation of system-level tests to cover a given code location in
an actor system. The test generation method consists of two phases. First, static analysis is
used to construct an abstraction of an entire actor system in terms of a message flow graph
(MFG). An MFG captures potential actor interactions that are defined in a program. Second,
a backwards symbolic execution (BSE) from a target location to an “entry point” of the actor
system is performed. BSE uses the MFG constructed in the first phase of our targeted test
generation method to guide execution across actors. Because concurrency leads to a huge search
space which can potentially be explored through BSE, we prune the search space by using two
heuristics combined with a feedback-directed technique. We implement our method in Tap, a
tool for Java Akka programs, and evaluate Tap on the Savina benchmarks as well as four open
source projects. Our evaluation shows that the Tap achieves a relatively high target coverage
(78% on 1,000 targets) and detects six previously unreported bugs in the subjects.
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1 Introduction

We address the problem of targeted test generation for actor systems. Recall that an actor is
an autonomous, concurrent agent which communicates with other actors using asynchronous
messages. Asynchronous message-passing and state encapsulation (isolation) in actors make it
easier to understand the message flow and facilitate scalability. State encapsulation prevents
low-level data races and atomicity violations. Asynchronous message-passing avoids syntactic
deadlocks [6, 7]. As a result, actor languages and frameworks–such as Erlang [9], Salsa [40],
Scala/Java Akka [4, 2], and Orleans [3]–have gained in popularity, and have been used for
scalable applications (for example, see [1, 3]).
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8:2 Targeted Test Generation for Actor Systems

A goal of testing programs is to detect violations of desired safety properties. Some
safety properties such as “no dangling links” or “division by zero” are implicit. Others
are explicitly stated in the form of assertions. Violations of safety properties happen if
particular lines of the code can be reached with problematic data. Because concurrency leads
to nondeterminism, figuring out if particular lines of the code can be reached is challenging.
By taking advantage of the actor semantics, more effective testing tools may be developed.
One approach [33, 22] is to combine concolic testing [34] with partial order reduction based
on a macro-step actor semantics [8]. Unfortunately, given the very large number of potential
message schedules in an actor system, concolic testing is sometimes ineffective in determining
if a particular code location can be reached.

An alternate approach is to use a targeted test generation technique to try to generate tests
that cover specific code locations.1 Targeted test generation has the advantage that one does
not explore paths leading to code locations that obviously cannot have problems. Previous
research has developed techniques and tools based on symbolic execution for targeted test
generation for sequential programs (e.g., [24, 18, 16, 25, 10, 15, 29, 13]).

In this paper, we propose a method for generating targeted tests for actor systems based
on backward symbolic execution (BSE). The tests we generate are system-level test: they
exercise a group of interacting actors rather than only an isolated actor. The goal is to
find if a particular line can be reached through sending messages to the entry point of an
actor system, where an entry point is a message handler of an actor which interacts with the
external environment. In actor terminology, such actors are called receptionists. Each test
consists not only of the messages received by each actor but also the order in which these
messages are received. We start a BSE from the target code and explore only those paths
that are relevant to reaching that target; the exploration continues until a feasible path to
an entry point of the actor system is found.

In sequential programs, a call graph is used to guide the inter-procedural BSE [15, 29, 13].
In the actor context, we propose to use an abstraction of an actor system called message
flow graph (MFG). An MFG captures interactions between actors and is useful to guide
inter-actor BSE. We develop a sound whole-system static analysis to construct MFGs for
actor systems.

One challenge in static MFG construction and BSE for actor systems is to handle actor
operations such as message send/receive and actor creation. Even when an actor framework is
written in a language like Java, analyses that treat these actor operations as normal methods
would not work: if the actor semantics is ignored, BSE will explore the library methods
that are used to implement an actor runtime. Because a library that implements an actor
runtime contains complex multi-threading and networking code, symbolic execution would
become infeasible (cf. [22]). In addition, a static analysis would not be able to establish
connections between actors without understanding the meaning of these library methods.
To solve this problem, we define formal semantic models of actor operations in both MFG
analysis and BSE, and replace actual implementations of actor operations with the semantic
models. Assuming that the actor library has been correctly implemented, we prevent our
analysis from exploring the underlying library. This makes our analysis more efficient and
thus scalable.

In general, it is computationally intractable to consider every possible message arrival
schedule even if we explore only paths that are relevant to a single target. To efficiently
navigate the search space, we use a depth-first search strategy combined with two heuristics

1 Targeted test generation is sometimes called directed or guided test generation in the literature.
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and a feedback-directed search technique. The depth-first strategy attempts to reach the
entry point of the actor system as soon as possible. The two heuristics are as follows:
1. Each message handler is executed atomically so that search space is reduced due to

the lack of the interleaved execution of message handlers. This heuristic applies the
macro-step semantics in the Actor model [8], which follows from the fact that messages
to a given actor are processed one at a time and that actors do not share state.

2. Low weights are assigned to transitions in BSE that introduce more actors to be explored,
in order to avoid unnecessary explorations. The heuristic is based on the conjecture that
most concurrency bugs may be triggered by considering interactions of a small number of
actors. We do not have direct evidence of this conjecture. However, there is a previous
finding that most concurrency bugs in multi-threaded programs may be triggered using
only two threads [23].

As constraints are collected and solved, some paths turn out to be infeasible. In this
case, we deduce an unsatisfiable core–a subset of the constraint clauses whose conjunction is
unsatisfiable. Our feedback-directed technique uses these unsatisfiable cores to effectively
drive BSE towards a feasible path. The technique is particularly useful in cases where BSE
frequently hits infeasible paths.

We have implemented our method in a tool called Tap for the Java Akka framework [2],
a popular library enabling actor-style programming in Java. However, our method can be
applied to other actor frameworks or languages. We evaluate Tap on Savina [21], a set of 30
third-party actor benchmarks, as well as on four open source actor projects from GitHub.
The evaluation results show that Tap is effective in covering targets, achieving 78% target
coverage on a total of 1,000 targets. The heuristics and the feedback-directed technique
together substantially improve the target coverage over random search. In addition, Tap
detects six previously unreported bugs in the subjects, five of which are crash bugs caused
by out-of-order message delivery.

The paper makes the following contributions:
The MFG concept and construction: We introduce the MFG abstraction for actor
systems and develop a sound static analysis to construct it.
Modeling of actor operations in BSE: We formally define the full semantics of actor
operations in BSE for actor systems.
Efficient path exploration: We propose two search heuristics and a feedback-directed
technique to efficiently navigate the generally huge search space in BSE of actor systems.
Implementation and evaluation: We implement our method in Tap for Java Akka,
and conduct evaluations on benchmarks and real-world projects that demonstrate Tap’s
effectiveness in target coverage and bug detection.

2 Background

We provide background on the Actor model and the Java Akka framework. We also describe
the targeted test generation problem for actor systems in terms of the inputs and outputs.

2.1 The Actor model
In the Actor model [19, 6, 8], an actor is an agent of computation; it performs computations
as a response to a message. An actor is characterized by an actor name, a local state, and
behaviors. The actor name serves as the address of the actor in the system; it can be passed
around to other actors so that they may send messages to it. The local state of an actor is

ECOOP 2018



8:4 Targeted Test Generation for Actor Systems

1 public class Main {
2 public static void main(String[] args) {
3 ActorSystem system = ActorSystem.create("Banking");
4 ActorRef serverActor = system.actorOf(Server.props()));
5 ActorRef clientActor = system.actorOf(Client.props(serverActor));
6 }
7 }
8 public class Client extends UntypedActor {
9 private double balance = 100;
10 private ActorRef server;
11 @Override
12 public void onReceive(Object message) {
13 if (message instanceof WithdrawMessage) {
14 double amount = ((WithdrawMessage) message).amount;
15 if(balance >= amount) {
16 balance -= amount;
17 server.tell(message);
18 }
19 } else if(message instanceof DepositMessage) {
20 double amount = ((DepositMessage) message).amount;
21 balance += amount;
22 server.tell(mesage);
23 }
24 }
25 }
26 public class Server extends UntypedActor {
27 private double balance = 100;
28 @Override
29 public void onReceive(Object message) {
30 if (message instanceof WithdrawMessage) {
31 double amount = ((WithdrawMessage) message).amount;
32 assert(balance >= amount);
33 balance -=amount;
34 } else if(message instanceof DepositMessage) {
35 double amount = ((DepositMessage) message).amount;
36 balance += amount;
37 }
38 }
39 }

Figure 1 A simplified Bank Account example.

encapsulated within the actor – no external entity can change it directly. The only way to
change the local state of an actor is to send it a message that triggers this actor to change
its own state. Upon receiving a message, an actor can have the following three behaviors:
(1) performing local computations (updating its local state), (2) sending messages to actors,
or (3) creating new actors. Communication between actors is through asynchronous message
passing – the sender does not block its computation waiting on the recipient to process the
message, nor does it assume the order in which the recipient processes its incoming messages.
Messages are immutable and processed by the recipient one at a time without interleaving.
An actor system contains a group of actors. The subset of actors that can communicate
with the external environment are called receptionists, and the other actors in the system are
called internal actors.

2.2 Actors in Akka
Akka is a set of libraries for developing distributed and scalable systems on the Java Virtual
Machine. It can be used in both Scala and Java. The core of Akka is the akka-actor library,
which is an implementation of the Actor model. Figure 1 shows a simplified Bank Account
example written using Java Akka. We use this example to illustrate important concepts of
the Actor model in the context of Akka.
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Actor Creation. To create actors, we need to first create the enclosing actor system (Line
3 in Figure 1), a container in which the actors run. Then we create actors that live in the
system via the method actorOf. The example creates two actors: a client and a server (Lines
4-5). The actorOf method takes as input a configuration object (props) that specifies the
options for creating an actor such as its type and arguments to its constructor, and returns
an ActorRef object, which represent the address of the actor in the system. The ActorRef
corresponds to the concept, actor name in the Actor model. Following the naming convention
in Akka, we will use the terms actor reference and actor name interchangeably in this paper.
Other actors can send a message to this ActorRef, and the actor identified by this ActorRef
will receive this message. Note that other actors cannot directly access the local state of this
actor (e.g., access fields, call instance methods) through the ActorRef.

Acquaintance Relations. Actor A knows of actor B if A has access to the actor reference
(ActorRef) of B. At Line 5 in our example, we create a clientActor and pass it the ActorRef of
the serverActor (now the client knows of the server and can send messages to it). The actor
reference can also be sent as a message to inform other actors. Another type of acquaintance
between actors is via receiving messages: when an actor receives a message, it can access the
actor reference of the sender through the getSender() method. An actor can also get its own
actor reference through the getSelf() method.

Sending and Processing Messages. Every actor must implement a message handler, the
onReceive method. The onReceive method takes as input a message object, and is invoked
upon receiving a message. Typically, different types of messages trigger different behaviors in
the actor. For example, the onReceive of the Client actor (Lines 13-23) behaves differently on
the WithdrawMessage and the DepositMessage. Messages are sent via calling the tell method
on an ActorRef object (e.g., Line 17).

2.3 Problem Description
Actors model an open system – a system that may interact with its external environment. In
order to preserve locality properties of actors, such interaction is through messages received
by receptionist actors in the system and messages sent to external actors by actors in the
system. Thus the entry points of the system are message handlers of receptionists. Examples
of open systems in the real-world include Twitter, LinkedIn, Facebook Chat, and Halo 4, all
of which have been implemented using actors.

The input to our problem includes: (1) the code under test, (2) a target code location,
(3) a user defined set of receptionists of the system, and (4) a start configuration defining
the initial acquaintance between actors. The output (if found) is a test case that covers the
target. Such a test consists of messages sent to relevant actors as well as their arrival orders
on each of these actors.

In our Bank Account example, the code under test is the Client and the Server actor
classes; the receptionist is the Client actor as the client is the interface of the system for
user interactions. The main method sets up the initial acquaintance that the client knows
of the server. Suppose our target is the negation of the assertion at Line 32. One possible
output test case that covers the target is as follows. The client receives a deposit message
with the amount 50 and a withdraw message with the amount 120, in that order. Since
the deposit message is received before the withdraw message, the condition at Line 15 is
evaluated to true, and the client forwards both messages to the server. However, on the
server side, the withdraw message somehow arrives before the deposit message, causing the
assertion violation. This test case specifies the messages received by the client and the server
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8:6 Targeted Test Generation for Actor Systems

Class ::= class C extends C ′ {
−−−−→
C ′′ f; K

−→
M}

ActorClass ::= class C extends C’ {
−−−→
C” f; K R

−→
M}

K ∈ Ctor ::= C(
−−→
C ′ f) {super(

−→
f ′);

−−−−−−−−−−−−→
this.f ′′ = f ′′′;}

R ∈ Receive ::= void onReceive(C v) {
−−−−→
C’ v’; −→s }

M ∈ Method ::= C m(
−−→
C ′ v) {

−−−→
C ′v′; −→s }

s ∈ Stmt ::= v = e;` | return v;` | if (e) −→s else
−→
s′ ;`| v.send(v’);`

e ∈ Expr ::= v | (C) v′ | v.f | v.m(
−→
v′ ) | new C(−→v )| v op v′ | aref

aref ∈ ARef ::= create(C.class, −→v ) | self | sender

v ∈ Var is a set of variable names
f ∈ FieldName is a set of field names
C ∈ ClassName is a set of class names
m ∈ MethName is a set of method names

` ∈ Lab is a set of labels
op ∈ {+,−, ∗, /,<,>,==, ! =, . . . , instanceof}

Figure 2 An actor language extending Featherweight Java.

as well as the message receiving orders on both actors. For illustration purposes, we do not
assume the first-in-first-out (FIFO) message delivery between a pair of actors in this example.
Given FIFO message delivery, the two messages could be routed through different actors,
still creating nondeterminism in the arrival order at the server.

Note that we must specify the receptionists of an actor system in our problem settings.
This requirement enforces system-level testing because internal actors can only be tested
through receptionists. In our example, to cover the target we have to send messages to the
client in order to trigger messages sent to the server. If all actors were potential receptionists,
then every actor may receive messages directly from the external environment. In this case,
each actor may be tested individually with all possible message sequences and no interaction
between actors need be considered. The benefit of considering external messages only to
designated actors is that it constrains the generated tests to those which would realistically
occur in an actor system. While this means that system-level testing is required, it eliminates
consideration of tests based on arbitrary messages to individual actors that would never be
sent in a realistic system.

3 Actor Language

To formally describe our method, we define a simplified actor language by extending Feather-
weight Java [20] and adding actor constructs to it. We choose the Featherweight Java language
for its simplicity and for the fact that our tool targets Java Akka. The formalism in this paper
largely follows the conventions in previous work [20, 35, 26]. The actor constructs in our
language resemble the counterparts in Java Akka. Although there have been formalizations of
actor languages [8, 32], our formalization of the language is closely coupled with our analysis,
and includes more details such as data store and context, which are required to specify our
analysis.
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α ∈ ActorMap = ActorRef → ActorState

msg ∈Message = ActorRef ×ActorRef ×Obj
r ∈ ActorRef ⊂ Obj
ς ∈ ActorState = Stmt× Stack × Store× CallStack × Context

st ∈ Stack = (Var ⇀ Addr)∗

σ ∈ Store = Addr → Obj

o ∈ Obj = HContext× (FieldName ⇀ Addr)
cs ∈ CallStack = (Stmt× Context×Addr)∗

a ∈ Addr = (Var × Context) ∪ (FieldName×HContext)
c ∈ Context is an infinite set of regular contexts

hc ∈ HContext is an infinite set of heap contexts

Figure 3 Domains of actor maps and messages.

3.1 Syntax
Figure 2 describes the grammar of a simplified actor language. The language is in A-Normal
form, where computations are syntactically sequentialized. For example, the statement v =
o.m(o.f) is transformed to two statements v1 = o.f; v2 = o.m(v1) in A-Normal form. Such
transformation brings our language closer to an intermediate language for simpler semantics
definitions. Most of the notations in Featherweight Java are intuitive. We give a quick
reminder of the less obvious conventions. A class declaration consists of a list of fields (we
use an arrow to represent a list), a single constructor, and a list of methods. The constructor
takes as input a list of arguments and assigns each argument to the corresponding field.
Each statement in the language is assigned a distinct label. We augment Featherweight Java
with binary expressions and if statements, which are later needed in the formalization of
the BSE semantics. We omit the loop statement because loops are bounded and unrolled
into if statements in our analysis. Such unrolling trades completeness for tractability and is
standard practice in testing.

We now introduce actor constructs (highlighted in bold). Each actor class declaration
must include exactly one onReceive method. This method takes a single input (message)
and returns void. An actor creation operation create(A.class, −→v ) takes as input the class
of the actor to be created C, followed by a list of arguments to the constructor of C, and
returns the actor reference of the created actor. A message send operation v.send(v′);` sends
the message v′ to the actor reference v of the recipient actor.

3.2 Concrete Semantics
An instantaneous snapshot of an actor systems is called a configuration.2 The semantics of
our language is defined by a transition relation on configurations. A configuration is a tuple,〈

α
∣∣ µ〉

2 Recall that actors are asynchronous: there is no unique global time. Thus an actor snapshot is with
respect to some frame of reference, i.e., a causally consistent linearlization of a partial order.

ECOOP 2018



8:8 Targeted Test Generation for Actor Systems

Actor Creation〈
α • r 7→ ( Jv = create(C.class,

−→
v′ );`K, st, σ,_ )

∣∣ _〉⇒C〈
α • r 7→ ( succ(`), st, σ′,_ ) • r′ 7→ ς

∣∣ _〉, where
r′ is fresh σ′ = σ + [st(v) 7→ r′] o′i = σ(st(v′i)) ς = (nil, [], σ′′, [], nil)
−→
f = F(C) ai = (fi, hc) o = (hc, [fi 7→ ai]) σ′′ = [athis 7→ o, ai 7→ o′i, aself 7→ r′]

Message Sending〈
α • r 7→ ( Jv.send(v′);`K, st, σ,_ )

∣∣ µ〉⇒C〈
α • r 7→ ( succ(`), st, σ,_ )

∣∣ µ • (r, σ(st(v)), σ(st(v′)
)〉

Message Receiving〈
α • r 7→ ( nil, st, σ, cs, c )

∣∣ µ • (r′, r, o)
〉
⇒C〈

α • r 7→ ( s, st′, σ′, cs′, c′ )
∣∣ µ〉, where

c′ is fresh o0 = σ(athis) Jvoid onReceive (C v) {
−−−→
C ′ v′;

−→
s′ }K = rec(cls(o0))

s = car(
−→
s′ ) a = (v, c′) a′i = (v′i, c′) st′ = cons([v 7→ a, v′i 7→ a′i], st)

cs′ = cons((nil, c, nil), cs) σ′ = σ + [a 7→ o, asender 7→ r′]
Self Reference〈
α • r 7→ ( Jv = self;`K, st, σ,_ )

∣∣ _〉⇒C

〈
α • r 7→ ( succ(`), st, σ + [st(v) 7→ r)],_ )

∣∣ _〉
Sender Reference〈
α • r 7→ ( Jv = sender;`K, st, σ,_ )

∣∣ _〉⇒C〈
α • r 7→ ( succ(`), st, σ + [st(v) 7→ σ(asender)],_ )

∣∣ _〉
Figure 4 Concrete semantics for actor operations of the simplified actor language.

where α is an actor map that maps a finite set of actor references to actor states, and µ is a
finite multi-set of pending messages. It is important to note that by modeling the pending
messages as a multi-set, the order in which messages are sent is not preserved. As a result,
our language semantics does not guarantee the FIFO message delivery between a pair of
actors. We choose not to assume the FIFO message delivery in both the concrete language
semantics and the BSE semantics in Section 5.1, because the FIFO semantics is not primitive
in the Actor model [19, 6, 8]. However, one can easily accommodate the FIFO semantics
in our models by replacing the multi-set with a data structure that preserves the message
sending orders (e.g., a set of lists representing a sequence of messages, one list for each pair
of a sender and a receiver). Since most real-world actor languages and frameworks guarantee
the FIFO message delivery, we do implement the FIFO semantics in our tool.

The domains in a configuration are described in Figure 3. A message is a tuple consisting
of the actor reference of the sender, the actor reference of the recipient, and the message
content. An actor reference is an object that stores the location information of an actor. An
actor state ς consists of a statement under execution, a data stack to store local variables,
a data store of points-to relations, a call stack to track active method invocations, and a
current execution context. A data stack st consists of a list of data frames, each of which
maps local variables to addresses. A data store σ maps addresses to objects. A call stack cs
consists of a list of call frames, and each call frame consists of the statement to return to,
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MFG 
Construction BSE

System 
Under Test Target

TestMFG

Figure 5 The overview of our two-phased test generation method.

the context to restore, and the address to store the return value. An object o consists of a
heap context and a list of fields. An address is a location that holds an object. An address a
consists of either a local variable and its regular context (allocated for a local variable) or a
field and its heap context (allocated for a field). In the concrete semantics, every dynamic
object instance has a unique heap context, and every dynamic method call has a unique
regular context.

We express the concrete semantics of our language as a transition relation (⇒C) from
one configuration to another. Figure 4 shows the semantics of actor operations only. The
semantics of local computations in an actor is similar to the normal semantics of Java, and
thus omitted. For simplicity, we use underscore _ in our transition rules, to represent the
remaining states in a tuple that are neither used nor updated in the transition. We use
standard functions car, cdr, cons, list to manipulate lists, and define a number of helper
functions: succ returns the next statement given the label of the current statement, F
returns a list of field names for a given class, cls returns the class name of a given object, and
rec returns the declaration of the onReceive method of a given class. We use the operator •
to add an element to a set, and the notation + to insert or update (if existing) entries in a
map. We use nil as the null value for every domain. A fresh value means that a new value
is generated from the corresponding domain. The symbols athis, aself, and asender represent
reserved addresses to store the this object, the actor reference of itself, and the actor reference
of a sender, respectively.

The Actor Creation rule says that a new actor is created with a fresh reference r′ in the
system. The actor has an initial state, where the current statement is nil. The Message
Sending rule defines the asynchronous semantics of sending messages. The new message is
put in the set of pending messages µ, and the sending actor continues its execution. Note
that messages are immutable so that there are no concurrent writes on messages. The
Message Receiving rule says that an actor can receive a message only when it is ready (i.e.,
the statement is nil). Upon receiving the message, the onReceive method is invoked, and
the message is no longer pending and thus removed from µ. After executing the onReceive
method, the statement is set to nil, signifying that the actor is ready to receive a message
again. The Self Reference rule says that the actor reference of the this object is assigned to
a local variable v. Similarly, the Sender Reference rule says that the actor reference of the
message sender is assigned to a local variable v.

4 Message Flow Graph Construction

Our test generation method operates in two phases as shown in Figure 5. In the first phase,
we use static analysis to construct a message flow graph (MFG), an abstraction of an actor
system that models potential interactions (i.e., actor creation and communication) between
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8:10 Targeted Test Generation for Actor Systems

Client Server
W, DW, D

ActorRef(Server)

Figure 6 The MFG of the Bank Account example. The symbols W and D represent the withdraw
message and the deposit message, respectively.

actors in the system. The input to our MFG analysis is the system under test including
the code and the specified receptionists, and the output is an MFG of the system. In the
second phase, we use BSE to generate a test that covers a given target. To generate tests
that exercise multiple actors, BSE must go across actors. The MFG from the first phase is a
key input that enables inter-actor BSE. After BSE reaches the entry of the message handler
on an actor a, it queries the MFG to obtain actors that can send the required message to
the actor a. Then BSE picks one potential sender, jumps to the exit of the message handler
of the sender, and continues with the previous path constraint carried over. When a feasible
path is found during the path exploration, we generate the test from the path constraint.
We next explain the MFG construction and the BSE (in Section 5) in details.

An MFG is a directed graph between abstract objects, where an abstract object represents
multiple concrete objects of the same class whose field values have been merged into a set.
Specifically, a node in the MFG represents an abstract actor and a directed edge between
two nodes means that the abstract actor represented by the source node either creates or
sends a message to the abstract actor represented by the sink node. MFG edges are labeled
with abstract constructor parameters for actor-creation edges and abstract messages for
message-sending edges. Note that the MFG edges do not indicate the acquaintance between
actors–it is possible that an actor a knows of another actor b, but there is no edge from a to
b because a neither creates b nor sends a message to b.

An abstract object may be replaced by its class if there is only one abstract object
per class. Figure 6 shows the MFG of the Bank Account example. There are two actors,
Client and Server, in the graph. The symbols W and D represent the WithdrawMessage and
the DepositMessage, respectively. Both actors are created (creation edges are represented
with dashed arrows) by the external environment. The Client is initialized with an actor
reference mapped to the Server, and it can send WithdrawMessage and DepositMessage to the
Server. The Client is the only receptionist of the system and can receive WithdrawMessage
and DepositMessage from the external environment.

To construct a MFG, we need to not only resolve the recipient of each message-sending
site and the actor being created of each actor-creation site, but also pass along the messages
and constructor parameters between actors. This is because the message and constructor
parameters can affect the analysis of receiving actors. We use points-to analysis to compute
the points-to sets for messages, constructor parameters, and actor references. In addition, we
model the semantics of actor operations so that analysis information can be carried across
actor boundaries. In particular, the actor creation operation conceptually creates two objects:
an actor reference object and a corresponding actor object. Our analysis keeps track of such
mappings to resolve the actor being created, and passes the points-to set of constructor
parameters to this actor for instantiation.
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ω ∈ Ω = ActorState×Graph×RefMap

γ ∈ RefMap = ActorRef → (ClassName×Obj)
r ∈ ActorRef ⊂ Obj
G ∈ Graph = ActorRef ×ActorRef × Type ⇀ (P(Obj))∗

Type = {create, send}
ς ∈ ActorState = Stmt× Stack × Store× CallStack × Context

st ∈ Stack = (Var ⇀ Addr)∗

σ ∈ Store = Addr → P(Obj)
o ∈ Obj = HContext× (FieldName ⇀ Addr)

cs ∈ CallStack = (Stmt× Context×Addr)∗

a ∈ addr = (Var ×MethodName× Context) ∪ (FieldName×HContext)
Context = HContext = Lab

Figure 7 State space of the small-step state machine.

Note that passing only the type of the message or constructor parameter between actors
can result in unacceptable imprecision in our analysis. For example, a common case is that
an actor reference r is sent as a message to a recipient actor A; A receives r and then sends a
message to r. When resolving r in A, we only know that the type of r is ActorRef, but we
know nothing about the actor that lives in r. Thus, we have to conservatively assume all
actor classes in our system may live in r, and add a message-sending edge from A to every
actor class. To avoid such imprecision, we need to pass along the points-to sets of messages
and constructor parameters instead of their types. We next formally describe our analysis.

4.1 Analysis Semantics
We express the semantics of our analysis using small-step state machines, each modeling one
abstract actor. Communication between actors is modeled by global states shared across
state machines. The domain Ω of a state machine is defined in Figure 7. The reference map
γ stores the mappings between actor references and the actors created in the system. The
graph G records the actor-creation and message-sending events between actors. Specifically,
G maps a tuple of a source actor reference, a sink actor reference, and an operation type to
a list of points-to sets of messages or constructor parameters. Visually, an entry in the map
can be seen as a directed edge, with the label being the list of points-to sets. The ActorState
is similar to the one defined in concrete semantics of our language except that now the
ActorState is an abstract state: the store maps an address to a set of objects rather than
one object; the regular and heap contexts are a finite set of statement labels. An important
design decision made by our analysis is that we create only one abstract actor object per
actor class. That is, actors of the same class created in different sites are merged into one
abstract actor object by merging the points-to sets of the corresponding fields. In this way,
we only need to create one state machine per actor class, making our analysis faster and
more scalable. The incurred imprecision can be refined by the BSE in phase II because our
BSE distinguishes every concrete actor.
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Actor Creation(
(Jv = create(C.class,

−→
v′ );`K, st, σ,_ ), G, γ

)
⇒A

(
(succ(`), st, σ′,_ ), G′, γ′

)
, where

(γ′, r) = getRef(γ,C) σ′ = σ t [st(v) 7→ {r}] r′ ∈ σ(aself )
G′ = merge(G, [(r′, r, create) 7→ list(σ(st(v′i)))] )

Message Sending(
(Jv.send(v′);`K, st, σ,_ ), G, _

)
⇒A

(
(succ(`), st, σ,_ ), G′, _

)
, where

r ∈ σ(st(v)) r′ ∈ σ(aself ) G′ = merge(G, [(r′, r, send) 7→ list(σ(st(v′)))] )
Message Receiving(
(nil, st, σ, cs, c), G, _

)
⇒A

(
(s, st′, σ′, cs′, c′), G, _

)
, where

o0 ∈ σ(athis) Jvoid onReceive (C v) {
−−−→
C ′ v′;

−→
s′ }K = rec(cls(o0)) s = car(

−→
s′ )

(hc0,_) = o0 c′ = hc0 a = (v, onReceive, c′) a′i = (v′i, onReceive, c′)
st′ = cons([v 7→ a, v′i 7→ a′i], st) cs′ = cons((nop, c, nil), cs) r ∈ σ(aself )
Or = preds(G, r, send, γ) O ∈ {car(G((r′, r, send))) | r′ ∈ Or}
σ′ = σ t [a 7→ O, asender 7→ Or]

Self Reference(
(Jv = self;`K, st, σ,_ ), _

)
⇒A

(
(succ(`), st, σ t [st(v) 7→ σ(aself )],_ ), _

)
Sender Reference(
(Jv = sender;`K, st, σ,_ ), _

)
⇒A

(
(succ(`), st, σ t [st(v) 7→ σ(asender)],_ ), _

)
Figure 8 Abstract semantics for actor operations in MFG analysis.

The analysis semantics is defined by the transition relation (⇒A) ⊂ Ω× Ω. The analysis
semantics of local computations is precisely the 1-object-sensitive points-to analysis [27].
We provide the transition rules for local computations in the appendix. Figure 8 describes
transition rules for the actor operations. The getRef function checks if the given class C is
in the value set of γ. If found, it returns itself and the key of the value. If not found, it adds
an entry r 7→ (C, nil) to γ, where r is fresh, and returns the updated γ′ and r. Since only
one abstract actor object is created per actor class, an actor class can appear in at most one
tuple in the value set of γ. The merge function merges the labels of edges with the same
source and sink. The preds function finds all predecessors of a given type for a node r in the
graph G and returns the set of actor objects mapped by the predecessors in γ.

In the Actor Creation rule, instead of instantiating the actor object at the creation site,
an actor-creation event is recorded and merged into the graph. Subsequently, when a state
machine for this actor class is created, actor-creation events are used to instantiate the single
abstract actor object for this class. Similarly in the Message Sending rule, a message-sending
event is recorded and merged into the graph. The Message Receiving rule says that the
onReceive method of the actor is invoked upon receiving a message. The graph G is queried
to find the set of all possible senders Or, and the set of all possible messages received by O.
Note that when updating the call stack, we use nop instead of nil for the statement to return
to. nop indicates no operation to be performed and stops the state machine. Otherwise, the
state machine will not halt.



S. Li, F. Hariri, and G. Agha 8:13

Algorithm 1: Iterative MFG construction.
Input : An Actor system P , a raw graph G ∈ Graph, and an actor reference map

γ ∈ RefMap

Output : A message flow graph of P
1 worklist← [ ] factStore← [ ]
2 worklist.appendAll( γ.keySet() )
3 while worklist not empty do
4 r ← worklist.removeFirst()
5 beforeFacts← InEdges (r, G)
6 if factStore[r] 6= beforeFacts then
7 factStore[r]← beforeFacts

8 Mr ← CreateStateMachine (r,G, γ)
9 Mr.execute()

10 worklist.appendAll( Successors (r,G) )
11 end
12 end
13 return CollapseToMFG (γ,G)
14 Procedure CreateStateMachine (r, G, γ)
15 (C,_ )← γ(r)

−→
f ← F(C) ai ← (fi, `C)

16 o← (`C , [ai 7→ fi]) // actor allocation
17 γ ← γ + [r 7→ (C, o)] // ref map update

18
−→
O ← [∅, . . . , ∅] // a list of points-to sets

19 foreach (r′, r′′, create) 7→
−→
O′ in InEdges (r,G) do

20 Oi ← Oi ∪O′
i

21 end
22 σ ← [athis 7→ {o}, ai 7→ Oi, aself 7→ {r}]
23 ω0 ← ((nil, [ ], σ, [ ], nil), G, γ)
24 CreateMr with the initial state ω0

25 return Mr

26 End

4.2 MFG Construction Algorithm

Algorithm 1 shows our iterative algorithm to construct the MFG. The algorithm takes as
input an actor system P , a raw graph G, and a reference map γ, and outputs an MFG
graph. G and γ are initialized from the driver code that sets up the actor system. Initially,
G contains actor-creation and message-sending events by the external environment, and γ
contains the mappings for actors created by the external environment. For each actor class,
one state machine is instantiated to model the abstract actor of this class. The algorithm
maintains a worklist that keeps track of the abstract actors to be analyzed next as well as a
factStore that stores the relevant data facts for each abstract actor. The data facts for an
abstract actor are essentially the set of incoming edges of this actor node in G, and these
facts affect the initial state of the state machine for this actor.

The algorithm starts with pushing the initial actors onto the worklist (Line 2), and
iteratively analyzes these actors one at a time. Before the analysis, the algorithm computes
the relevant data facts for this actor from G (Line 5). It then checks whether the facts
are changed, by comparing the computed facts with the previous facts stored in factStore.
If changed, the algorithm updates the facts for this actor in factStore (Line 7), analyzes
this actor with these new facts by instantiating and running the state machine described in
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Section 4.1 (Lines 8-9), and pushes all the successors of this actor node onto worklist (Line
10). Otherwise, the algorithm skips this actor because the execution of its state machine will
yield the same result and will not change the global state G. This process continues until
worklist is empty, indicating a fixed point is reached. The CreateStateMachine procedure
is the only place where instantiations of abstract actors happen. The constructor parameters
of multiple actor-creation edges are merged (Lines 18-21) and the results are used to initialize
the fields of the abstract object (Line 22). Finally, the algorithm builds an MFG from G and
γ by collapsing the abstract objects of nodes and labels into classes. If an object is an actor
reference, we also encode the class of the underlying actor into the MFG.

4.3 Optimizations
Our analysis applies two lightweight yet effective optimizations to actor classes based on
the code pattern in actor programs. Since actors often receive multiple types of messages
and behave differently for each message type, a common code pattern in actors’ onReceive
methods is that an if statement is used at the top of its control flow to check the message
type and process one type of message in one branch. In our running example, both the
Client and the Server actors follow this pattern.

Our first optimization eliminates unreachable code based on the potential types of the
message in our analysis. Specifically, we compute the potential types from the points-to set of
the message and analyze only the branches of the top if statement that may be taken under
these message types. Our second optimization is based on the idea that when a message
must be of a certain type under some context, we can safely remove objects that are not
an instance of this type from the points-to set of this message. The optimization works as
follows: after entering a branch of the top if statement, we carry the corresponding type
constraint of the message (obtained from the condition of the if statement) with our analysis.
That is, whenever we query the points-to set of the message in this branch, an additional
filter function f : P(Obj)× ClassName→ P(Obj) is applied to the original points-to set to
filter out objects that are not an instance of the given type. Our evaluation shows that these
optimizations significantly reduce the size of the MFGs.

Example. Let us illustrate the optimizations using the Client actor in Figure 1. Suppose
that the points-to set of the message parameter in the onReceive method contains only one
DepositMessage message. Based on the first optimization, we only need to analyze the second
branch of the if statement (Lines 20 - 22) instead of the whole method. To illustrate our
second optimization, we now suppose that the points-to set of the message parameter contains
a WithdrawMessage message and a DepositMessage message. Then both branches of the if
statement must be analyzed. When analyzing its first branch (Lines 14-18), we know that the
message parameter must be of the type WithdrawMessage. With this type constraint, we can
remove the DepositMessage message from the points-to set in this branch because it is not an
instance of the type WithdrawMessage. Hence, we can conclude that at Line 17, message must
point to a WithdrawMessage message rather than may point to a WithdrawMessage message or
a DepositMessage message. Similarly, the optimization can be applied to the second branch
as well.

5 Test Generation

In phase II, we use backward symbolic execution to generate tests for the target. BSE starts
from the target, and performs a backward exploration, searching for a feasible path to the
entry points of the system. Constraints over the execution are collected and used to generate
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α ∈ ActorMap = ActorRef → ActorState

Event = SendingEvent ∪ CreationEvent

SendingEvent = ̂ActorRef × ̂ActorRef × V̂ ar × T̂ ime

CreationEvent = ̂ActorRef × ClassName× (V̂ ar)∗ × T̂ ime

ς ∈ ActorState = LocalState× T̂ ime×Requests

β ∈ LocalState = Stmt× CallStack × V̂ ar

cs ∈ CallStack = (Stmt× V̂ ar × V̂ ar)∗

Q ∈ Requests = V̂ ar × ̂ActorRef × T̂ ime

V̂ ar, ̂ActorRef, T̂ ime are sets of free variables in first order logic.

Figure 9 State space of the backward symbolic execution.

the test. The generated test consists of the messages sent to relevant actors as well as the
message receiving orders.

The semantics of BSE is formally defined as a transition relation ⇒S from one symbolic
configuration to another symbolic configuration. A symbolic configuration is a tuple,〈

α
∣∣ µ ∣∣ φ ∣∣ χ〉

where α represents relevant actors in BSE and is a map from a finite set of actor references
to actor states, µ is a finite set of pending events (including both actor creation and message
sending events). φ is the path condition collected over the transitions, and χ is the set of
external messages to the system. The domain of φ is the quantifier-free formulae in first-order
logic (FOL) with equality. The domain of the remaining configuration is described in Figure 9.
Note that V̂ ar, ̂ActorRef, T̂ ime are sets of free variables in FOL, which can hold values of
primitives and references. A message-sending event consists of the actor reference of the
sender, the actor reference of the recipient, the message, and the time when the message is
sent. An actor-creation event consists of the actor reference of the actor being created, the
type of the actor, and a list of constructor parameters, and the creation time. An actor state
consists of a local state, the current local time of the actor, and a set of message requests.

Since BSE goes backwards, a message request under this context indicates that a certain
message is required in order for the execution to reach this point, yet this message is not in
the mailbox of that actor. For each message request, BSE attempts to find an actor that
can send the corresponding message, and thus “fulfill” this request. The local state consists
of the current statement, the call stack, and a variable representing the receiver object of
the current method call. A message request consists of a message, an actor reference for the
sender, and the time of receiving the message. The call stack consists of a list of call frames,
and each call frame consists of the statement to return to, the variable of the return value,
and the variable of the caller object. T̂ ime is a set of integer variables.

To describe the BSE semantics, we add two additional types of statements to our language
as indicators of reaching the entry of a method. We use entryR; as the first statement for
every onReceive method, and use entry; as the first statement for all other methods. For
space considerations, the formal semantics of local computations in BSE is described in the
appendix.
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Actor Creation〈
α • r 7→ (( Jv = create(C.class,

−→
v′ );`K,_), t̂,_)

∣∣ µ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ (( pred(`),_), t̂′,_)

∣∣ µ′ ∣∣ φ′ ∣∣ _〉, where
t̂′, r̂′ are fresh φ′ = φ[r̂′/v̂] ∧ t̂′ < t̂ µ′ = µ ∪ {(r̂′, C,

−→
v̂′ , t̂)}

Message Sending〈
α • r 7→ (( Jv.send(v′);`K,_), t̂,_)

∣∣ µ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ (( pred(`),_), t̂′,_)

∣∣ µ′ ∣∣ φ′ ∣∣ _〉, where
t̂′ is fresh φ′ = φ ∧ t̂′ < t̂ µ′ = µ ∪ {(r̂, v̂, v̂′, t̂)}

Actor Entry-Existing Actor〈
α • r 7→ (( JentryR;`K,_), t̂, Q)

∣∣ _ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((nil,_), t̂′, Q′)

∣∣ _ ∣∣ φ′ ∣∣ _〉, where
t̂′ is fresh φ′ = φ ∧ t̂′ < t̂ Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = method(`)

Q′ = Q ∪ {(v̂′, ˆrsender, t̂)}
Actor Entry-New Actor〈
α • r 7→ (( JentryR;`K,_), t̂, Q)

∣∣ _ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((nil,_), t̂′, Q′) • r′ 7→ ((nil, [ ], v̂′0), t̂′′, [ ])

∣∣ _ ∣∣ φ′ ∣∣ _〉, where
t̂′, t̂′′, r̂′, v̂′0 are fresh is fresh Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = method(`)

C ∈ predCls(AC(r)) Q′ = Q ∪ {(v̂′, ˆrsender, t̂)} φ′ = φ ∧ t̂′ < t̂ ∧ t̂′′ < t̂

Messaging Event Matching-Internal〈
α • r 7→ (_, Q • (v̂, ˆrsender, t̂))

∣∣ µ • (r̂′, r̂′′, v̂′, t̂′)
∣∣ φ ∣∣ χ〉⇒S〈

α • r 7→ (_, Q)
∣∣ µ ∣∣ φ′ ∣∣ χ〉,where

φ′ = φ ∧ r̂ == r̂′′ ∧ v̂ == v̂′ ∧ ˆrsender == r̂′ ∧ t̂′ < t̂

Messaging Event Matching-External〈
α • r 7→ (_, Q • (v̂, ˆrsender, t̂))

∣∣ _ ∣∣ χ〉⇒S

〈
α • r 7→ (_, Q)

∣∣ _ ∣∣ χ ∪ {(r̂, v̂)}
〉

Creation Event Matching〈
α • r 7→ ((nil,_, v̂0), t̂, [ ])

∣∣ µ • (r′, AC(r),−→v̂ , t̂′)
∣∣ φ ∣∣ _〉⇒S

〈
α
∣∣ µ ∣∣ φ′ ∣∣ _〉,where

−→
f = F(AC(r)) φ′ = φ ∧ r̂ == r̂′ ∧ read(v̂0, fi) == v̂i ∧ t̂′ < t̂

OnReceive Looping〈
α • r 7→ ((nil,_), _)

∣∣ _〉⇒S

〈
α • r 7→ ((last(−→s ),_), _)

∣∣ _〉,where
Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = rec(AC(r))

Self Reference〈
α • r 7→ (( Jv = self;`K,_), _)

∣∣ φ ∣∣ _〉⇒S 〈α • r 7→ (( pred(`),_), _)
∣∣ φ[r̂/v̂]

∣∣ _〉
Sender Reference〈
α • r 7→ (( Jv = sender;`K,_), _)

∣∣ φ ∣∣_〉⇒S 〈α • r 7→ (( prev(`),_), _)
∣∣ φ[ ˆrsender/v̂]

∣∣_〉
Figure 10 Transition rules for actor operations in backward symbolic execution.
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5.1 Semantics Of Actor Operations In BSE

Figures 10 shows the semantics of BSE for actor operations. We put a hat on a symbol to
represent a free variable in φ. For example, we use v̂ in φ to represent the corresponding
variable v is free. Note that for variables with the same name in different execution contexts,
we create distinct variables in φ to represent them. The notation φ[v̂′/v̂] means that every
occurrence of v̂ in φ is syntactically replaced by v̂′. It is important to note that whenever
such substitutions happen in φ, we also perform the corresponding substitutions in the rest
of the symbolic configuration. For readability, we omit these subsequent substitutions in our
transition rules. We use a number of helper functions in our transition rules. The function
pred returns the previous statement of a given label, and the function last returns the last
element of a given list. The function method returns the method that encloses the statement
with the given label. The function AC returns the class name of the actor object mapped
by the given actor reference. The function read takes as input a free variable representing
an object and the field name, and returns the variable representing the field. The function
predCls takes as input a class name, locates the node of this class in the MFG, finds the
predecessors of the node, and returns a set of class name of the predecessors.

The Actor Creation rule and the Message Sending rule say that upon an actor-creation
or message-sending operation, an actor-creation or a message-sending event is added to a
pool of pending events µ. Every actor keeps a local time t̂, and increases its local time when
an actor operation is performed. Hence, the constraint t̂′ < t̂ indicates that the operation at
t̂′ happens before the operation at t. The Actor Entry rules describe potential transitions
when BSE reaches the entry of the onReceive method of an actor. Reaching the entry of
the onReceive method implies that this actor must have been created and have received
a message. Thus, in both Actor Entry rules, a corresponding message request is added
to the set Q, indicating that the specific message is required in order for the execution to
reach this point, and BSE needs to find an actor that sends the message. There are two
possibilities concerning who may create this actor or send a message to this actor. The Actor
Entry-Existing Actor describes one possibility that this actor is created by an existing actor
in α, and the message is also sent from an existing actor; there is no need to introduce new
actors in α. The Actor Entry-New Actor describes the other possibility: either the actor
creation or the message send is done by actors not in α. As a result, a new actor is added
to α. The MFG is queried to obtain the predecessors of this actor class, which is the set
of actor classes that may create or send a message to this actor. Then an actor with the
default initial state is created in α with its type being one of the predecessors. This is the
only rule that introduces new actors to our exploration.

A message request is fulfilled either by a pending message event in µ sent from an actor
inside the system or, if the actor is a receptionist, by a message sent from the external
environment. The Messaging Event Matching-Internal rule describes the first case, in which
the matched request and event are remove from Q and µ respectively, and a happens-before
constraint between the message receive and send operations is added to φ. The Messaging
Event Matching-External rule describes the second case, in which the request is removed
from Q, and an external message is added to χ. The Creation Event Matching rule says that
a pending actor-creation event is matched with an actor in α. Note that to match a creation
event, the type of the actor must be the same as the type specified in the creation event, and
the message request set Q of the actor must be empty, indicating all message requests are
fulfilled. The Receive Looping rule says that an idle actor can start an execution from the
exit of the onReceive method.
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5.2 Path Exploration In BSE
The initial symbolic configuration is that the actor map α contains only one actor with the
statement being the target, and the event pool µ contains the actor-creation events from
the external environment. BSE starts with the initial configuration and takes one transition
at a step. The computation branches when multiple transition rules can be matched on
one configuration. BSE uses the depth-first search strategy for path exploration. At each
branching point, we pick one transition from all enabled transitions, and check if the path
constraints in the new configuration is satisfiable. If satisfiable, we continue the exploration
on the new configuration; otherwise, we backtrack. The final accepting configurations are
the ones with α being empty and φ being satisfiable. A system test can be constructed from
the model of φ, the transition path, and the set of external messages.

Because actors in the configuration proceed their computations concurrently, almost
any configuration has multiple enabled transitions. As a result, the search space in BSE is
intractable. To address this problem, we propose two search heuristics and a feedback-directed
search technique to efficiently find a feasible path in the huge search space.

Search heuristics. Our first heuristic is that BSE always explores a message handler
atomically. In other words, once BSE starts a transition of local computations in a message
handler of an actor, all transitions on other actors are disabled and BSE will keep exploring
this message handler until reaching the entry of the message handler. As a result, the number
of enabled transitions on each symbolic configuration is reduced. This heuristic leverages the
atomicity of the macro-step semantics [8] in the Actor model–messages to a given actor are
processed one at a time without interleaving. Macro-step is also enabled by the fact that
the concurrent execution of message handlers on different actors need not be interleaved
(i.e., messages to different actors can be sequentialized). This is because actors do not share
states. Therefore, the heuristic is safe: it reduces the search space in BSE without missing
any tests that can potentially cover the target.

Our second heuristic keeps the number of actors in the generated test small in order
to avoid exploring unnecessary paths. This heuristic is based on the conjecture that most
concurrency bugs may be triggered by considering interactions of a small number of actors.
The conjecture is the result of a previous finding that most concurrency bugs in multi-
threaded programs can be triggered using two threads [23]. With this conjecture, we assign
different weights to transition rules for actor operations. When multiple transition rules are
enabled on a configuration, the probability of picking a rule is based on its weight (rules with
more weights have a higher chance of being picked). We give a much lower weight to the
ActorEntry−NewActor rule, which is the only rule to introduce new actors to a test. This
is because introducing a new actor opens up a whole new search space – BSE has to find a
feasible execution trace on this actor. In this way, we keep the number of actors in our test
small, and avoid fruitless explorations. In addition, we give more weights to transition rules
that consume pending events in the event pool µ so that message requests from actors can
be fulfilled as soon as possible. Recall that a test is generated only when BSE reaches a final
accepting configuration, where the actor map α must be empty. An actor is removed from α

only when all of its message requests are fulfilled. Hence, fulfilling these message requests
helps BSE find a test efficiently.

Feedback-directed search. Heuristics do not always work well. There are cases where a
large number of transitions are enabled, but only a few of them can lead to a feasible path. If
the heuristics do not bias towards these transitions, BSE will frequently hit infeasible paths.
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1 private int pingsLeft = 100;
2 public void onReceive (Object message) {
3 if(message instanceof PongMessage) {
4 pongActor.tell(new PingMessage(), getSelf());
5 pingsLeft --;
6 if(pingsLeft == 0) {
7 \\ target
8 } ...
9 } ...
10 }

Figure 11 An example from our subjects that illustrates the feedback-directed search technique.

The feedback-directed search technique guides BSE out from such undesirable situations by
leveraging the unsatisfiable cores of the path constraint from the previous infeasible paths.
An unsatisfiable core is a subset of clauses in the original constraint such that the conjunction
of these clauses is unsatisfiable. To make the path constraint feasible, the clauses in the
unsatisfiable core need to be changed. The idea of our feedback-directed technique is to drive
the execution towards the code that changes the values of the variables in the unsatisfiable
core, hoping that the changes will make the path constraint satisfiable.

Our feedback-directed technique has two steps. In the first step, we identify a set of code
instructions that can potentially change the unsatisfiable core. We obtain the unsatisfiable
core of the path constraint directly from the underlying SMT solver Z3 [14]. Then we
extract all the variables from the unsatisfiable core, and map these variables to corresponding
program variables. This can be done without additional overhead, because our symbolic
execution keeps track of the mapping between the variables in path constraints and program
variables. For each program variable, we identify a set of instructions that define this
variable (definition sites). In our implementation, BSE is performed on an IR that is in the
static-single-assignment form. Hence, there is only one definition site per variable. In the
second step, we drive the execution to the definition sites identified in the first step. To do
this, we compute the transitions that may lead to at least one of these definition sites. A
transition may lead to a definition site if the statement transited to is reachable from the
definition site in the inter-procedural control flow graph. We prioritize these transitions over
the others.

Figure 11 shows the message handler of the ping actor in the Ping-Pong example. The
pingsLeft field keeps track of the ping messages sent out, and is initially set to 100. To
cover the target at Line 7, the ping actor has to receive 100 pong messages. Suppose
that when BSE first reaches the entry of the message handler from the target, it chooses
to jump to the constructor of the ping actor, meaning that only one pong message is
received after creating this actor. Obviously, this path is infeasible. Its path constraint is
p = 100∧ p− 1 = 0∧ subType(type(m), PongMessage), where p and m map to the program
variables pingsLeft and message, respectively. The unsatisfiable core of this path constraint
is {p = 100, p − 1 = 0}, whose only variable maps to pingsLeft. Thus, Line 1 and Line 5
are identified as the definition sites for pingsLeft. Then BSE backtracks to the entry of the
message handler, and picks the transition that jumps to Line 8, because it may lead to the
definition site at Line 5. This transition indicates that the ping actor has received two pong
messages. Note that BSE does not pick the transition that may lead to Line 1 (i.e., the
transition that jumps to the constructor), because it has been explored previously, leading to
an infeasible path. This process iterates 100 times and BSE finds a feasible path in which
the ping actor receives 100 pong messages. Without this technique, in each iteration, BSE
may try other messages that do not affect pingsLeft, thus making the search inefficient.
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Table 1 Characteristics of the subjects in our evaluations.

Subjects LOC Description

Micro Bench. 50 - 200 8 well-known actor example programs
Concurrency Bench. 100 - 400 8 classic concurrency problems
Parallelism Bench. 200 - 1,000 14 realistic parallel applications
AkkaCrawler 715 A web crawler and indexer
Batch 1,309 A concurrent batch processing framework
Parallec 12,457 A parallel client firing requests and aggregating responses
Stone 20,935 An online game server framework

6 Implementation

We implement our method in a tool called Tap for actor systems developed with Java Akka.
Tap is built on top of Wala [5], a static analysis infrastructure for Java. Tap transforms
the Java bytecode of the system under test to Wala IR and performs analysis on Wala IR.
The benefit of working on Wala IR is that one can directly use the basic built-in analyses
provided by Wala. Tap uses multiple Wala built-in analyses such as class hierarchy analysis,
call graph analysis, and points-to analysis. Since Scala Akka programs are also compiled
to Java bytecode, Tap in principle may be used to analyze Scala Akka programs as well.
However, Scala Akka has a different set of interfaces, and substantial engineering work is
required to support Scala Akka. We plan to support Scala Akka in the future.

Tap consists of two major components, an MFG builder containing ∼4,000 lines of Java
code and a BSE engine containing ∼11,000 lines of Java code. The implementation of the
MFG builder closely follows the formalizations and the iterative MFG construction algorithm
described in Section 4. A key part for MFG construction is resolving recipients and messages
in message-sending sites. Tap maintains a map from an actor reference to a set of actor
objects that are possibly referenced by it. This map is used to resolve ActorRef pointers.
Tap queries Wala’s points-to analysis to resolve all other pointers.

The BSE engine includes a backward symbolic interpreter on Wala IR as well as the
search techniques. The interpreter implements a transition rule (similar to the semantic rules
in our BSE formalization) for each type of statements in Wala IR. The actor library calls
are interpreted using our semantic models so that Tap does not explore the actor library
methods. The BSE engine forks a new symbolic configuration whenever the computation
branches. Tap uses Z3 [14] as the off-the-shelf SMT solver for solving path constraints
and computing unsatisfiable cores. An important deviation from the formalizations is that
Tap implements the FIFO message delivery semantics, because our target actor framework,
Java Akka guarantees the FIFO semantics. To implement the FIFO semantics, Tap models
the pending messages as a set of lists rather than a multi-set. Each list models a FIFO
communication channel between a pair of actors so that the message sending order is
preserved.

7 Evaluation

We evaluate Tap on a set of third-party benchmarks called Savina [21] as well as four
randomly selected open-source projects from GitHub. Our experiments consist of two parts:
1) the evaluation on the MFG construction analysis, measuring the size of the MFGs, analysis
time, and the effectiveness of the optimizations; 2) the evaluation on the effectiveness of our
test generation method.
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Table 2 Comparison between the baseline MFG analysis and the optimized MFG analysis. The
numbers for the three benchmark categories are averages.

Subjects Baseline Analysis Optimized Analysis
# Nodes # Edges # Labels Time (s) # Nodes # Edges # Labels Time (s)

Micro 2.5 4.3 6.5 45 2.5 4.3 6.2 45
Concurrency 3.8 10.4 16.5 56 3.8 9.3 14.4 59
Parallelism 4.5 17.5 24.9 79 4.5 15.8 19.2 72
AkkaCrawler 3 6 15 57 3 6 12 55
Batch 5 12 31 85 5 10 21 77
Parallec 8 16 67 190 8 13 46 131
Stone 38 74 173 243 38 58 121 169

Table 1 describes the subjects used in our evaluation. The Savina benchmarks consist
of 30 diverse programs written purely using actors. Savina has three categories: micro
benchmarks with 8 well-known actor examples, concurrency benchmarks with 8 classic
concurrency problems, and parallel benchmarks with 14 realistic parallel applications. Savina
has been used in the actor community for various evaluation purposes, such as performance
comparison of actor languages/frameworks [21, 12], actor profiling [31], and mapping from
message passing concurrency to threads [39]. The original Savina does not have a Java Akka
implementation. We transformed the Scala Akka implementation in Savina into Java Akka
and used the transformed version in our experiment because Tap currently supports only
Java Akka. We had at least two actor programmers double check that the transformed Java
version is equivalent to the Scala version.

All four open source projects are written in Java using the Java Akka library. Most
of their application logic is implemented in actors. AkkaCrawler is a parallel web crawler
and indexer. Batch is a framework for concurrent batch processing. Parallec is a scalable
asynchronous client, developed by eBay, for firing large numbers of HTTP/SSH/TCP/UDP
requests and aggregating responses in parallel. Stone is a framework for developing online
game servers. From all the actor-based Java Akka projects that we can find on Github,
Parallec and Stone are among the largest projects. Some projects mix the Actor model with
other concurrency models [36]. We exclude those projects from our evaluation because Tap
does not handle other concurrency models such as threads. All our experiments ran on a
quad-core machine with 16 GB of RAM, running a 64-bit Ubuntu 14 system.

7.1 Results on MFG Construction
To demonstrate the effectiveness of the optimizations described in Section 4.3, we compare
the optimized MFG analysis to the one without optimizations in terms of the size of the
MFGs and the time taken for MFG construction. We measure the size of an MFG using the
number of nodes, the number of edges and the number of labels on all edges. Overall, 92%
of the onReceive methods in our subjects match the code pattern for optimizations (i.e.,
the message handler has a top-level if statement that checks for the message type).

MFG Size. Table 2 shows the comparison results. The numbers for the three benchmark
categories are averages because there are multiple projects in each category. On average,
the optimized analysis reduces the number of edges by 11% and the number of labels by
23%. The number of nodes is not reduced because our analysis creates only one node per
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actor class. Recall that our optimizations are safe, indicating that all the reduced edges and
labels are false positives. The results show that our optimizations substantially improve the
precision of MFG analysis.

The results also show that the optimized analysis reduces a far larger percentage of edges
and labels on larger projects. Table 2 highlights (in bold) cases where our optimizations
significantly reduces the size of MFGs. For instance, the optimized analysis reduces edges
by 19% and labels by 31% for the Parallec project, and reduces edges by 22% and labels
by 30% for the Stone project. However, on small subjects such as the micro benchmarks,
our optimizations do not produce a significant difference. The reason is that the computed
points-to sets in larger projects are typically larger than those computed in smaller projects.
Our optimizations often reduces the points-to set to only one element or a much smaller
subset in a top-level branch. Therefore, the larger the points-to sets are, the more false
positives are reduced. In summary, the optimized analysis has a bigger impact on larger
projects.

Analysis Time. We ran the same experiment five times to obtain the average time taken
by each analysis on each subject. An interesting observation is that the optimized analysis
takes much less time than the baseline analysis does in projects where the optimized analysis
reduces the MFG size significantly. For instance, on both Parallec and Stone projects, the
analysis time drops about 30% with the optimizations. In other words, the optimized analysis
produces more precise results with less time. Our investigation indicates that with smaller
points-to sets, the iterative MFG construction algorithm reaches the fixed point faster: having
larger points-to sets implies more candidate actors or messages, and this often leads to more
iterations for the algorithm to converge. The overhead of our optimizations is negligible,
because the optimized analysis performs only a simple structural check on the control flow
graph of the onReceive method. As shown in the results, the two analyses take similar time
on small projects such as the micro benchmarks and the AkkaCrawler project.

7.2 Results on Test Generation

To evaluate the effectiveness of our test generation method, we randomly selected basic blocks
in actor classes as targets from all subjects, and for each target, we applied Tap to generate
tests to cover it. To avoid biases, we evenly distributed the targets based on the size of actor
classes in each project. In practice, the targets may be software patches [25], assertions, and
suspicious code locations. In total, we selected 500 targets for the Savina benchmarks and
500 targets for the four open source projects. The effectiveness of our method is measured by
the percentage of targets covered. A target is covered only when Tap finds a feasible path to
the target within the given timeout.

Our problem settings require the specification of receptionists for each actor system.
Unfortunately, such information is not specified in our subjects. Therefore, we manually
inferred receptionists for each project from its drivers and tests. We set a timeout of
ten minutes per target excluding the time for MFG construction. To compare our search
techniques, we ran Tap using the following five settings: 1) Random, pick a transition
randomly from all matched rules on a symbolic configuration; 2) H1, enable only the first
heuristic; 3) H2, enable only the second heuristic; 4) H1 + H2, enable both heuristics; 5)
H + F, enable both heuristics and the feedback-directed technique. All five settings used
the depth-first search strategy.
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Table 3 The target coverage results of running Tap with five settings.

Subjects Targets Random H1 H2 H1 + H2 H + F
# Cov (%) # Cov (%) # Cov (%) # Cov (%) # Cov (%)

Micro 97 52 (54%) 55 (57%) 59 (61%) 76 (78%) 82 (85%)
Concurrency 162 73 (45%) 91 (56%) 79 (49%) 114 (70%) 124 (77%)
Parallelism 241 86 (36%) 103 (43%) 143 (59%) 161 (67%) 173 (72%)
AkkaCrawler 39 21 (54%) 25 (64%) 28 (72%) 34 (87%) 35 (90%)
Batch 60 38 (63%) 43 (72%) 42 (70%) 51 (85%) 55 (92%)
Parallec 178 75 (42%) 81 (46%) 86 (48%) 91 (51%) 139 (78%)
Stone 223 64 (29%) 96 (43%) 107 (48%) 124 (56%) 167 (75%)
Total 1000 409 (41%) 494 (49%) 544 (54%) 651 (65%) 775 (78%)

Avg. time per target (s) 258 217 176 124 91

7.2.1 Target Coverage

Table 3 summarizes the results of running Tap with the five settings. Column 2 shows
the number of targets selected for each subject. Columns 3-7 show the number and the
percentage of the targets covered by the five settings, respectively. The last row shows the
average time (in seconds) taken for covering a target in each setting excluding the time for
MFG construction. Overall, the combination of heuristics and feedback-directed technique is
effective in covering targets. Search heuristics increase the target coverage from 41% to 65%.
The feedback-directed technique further increases the target coverage to 78%.

The Random setting does not work well. It times out in 228 out of 1000 cases. The
major problem with Random is that it often introduces many unnecessary actors to path
exploration. Introducing a new actor in a test is an expensive operation, because it opens up
additional search space for Tap to find a feasible execution trace on the new actor. As a
result, Random wastes lots of resources exploring traces for unnecessary actors, and takes
longer time to cover a target. In additional, the tests generated by Random are typically
larger in terms of the number of actors. The H1 setting suffers the same problem. However,
it reduces the search space by sequentializing the execution of message handlers. As a result,
the number of enabled transitions on each symbolic configuration in H1 is much smaller than
that in Random. Due to the space reduction, H1 improves the target coverage to 49%.

The H2 setting improves Random by keeping the tests as small as possible to avoid
exploring unnecessary space. Our experiment results show that in many cases, the target can
be reached with no more than three actors. For example, many subjects use the master-worker
pattern to implement parallelism. The workers proceed in parallel, and do not interact with
each other. In such cases, it suffices to cover any target in the worker with only two actors:
one master and one worker. Creating new workers only adds complexity to the problem. H2
is very efficient in covering such targets because it assigns a very low weight to transitions
that introduce new actors.

The feedback-directed technique is particularly useful when our heuristics do not work
well and BSE frequently hits infeasible paths. In our experiment, we find that there are
a number of cases where covering the target requires creating multiple actors of the same
class (e.g., comparing the IDs of actors). In these cases, the heuristics work poorly because
they prefer to reuse the existing actor rather than create a new actor of the same class. As
a result, the heuristics keep hitting infeasible paths in these cases. The feedback-directed
technique is quite effective in guiding BSE to find a feasible path. For instance, in the case
of checking for different IDs, it directly identifies that the ID field of the actor needs to be
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1 public void onReceive (Object message) {
2 if (message instanceof TokenMessage) {
3 TokenMessage token = (TokenMessage)message;
4 if(token.hasNext()) {
5 // bug: potential null de-reference on nextActor
6 this.nextActor.tell(token.next(), getSelf());
7 } ...
8 } else if (message instanceof DataMessage) {
9 this.nextActor = (ActorRef) ((DataMessage) message).data;
10 } ...
11 }

Figure 12 A bug caused by out-of-order message delivery in the ThreadRing benchmark.

changed, because the unsatisfiable core contains variables that map to this field. Since the
only way to change the ID field of the actor is through its constructor, the feedback-directed
technique prioritizes the transitions that introduce new actors to be explored first, and thus
quickly finds a feasible path.

We analyze the cases in which Tap fails to cover the targets in the H + F setting. More
than half of the cases are due to a lack of environment modeling (e.g., access to database
and network). Such issues can be mitigated by adding models for calls to the environment.
The rest of the cases are mainly due to timeouts for the exploration and complex constraints
that Z3 fails to solve.

7.2.2 Bug Detection
By running Tap to cover these 1,000 targets, we are able to find six distinct bugs in our
subjects. All six bugs are found in the Savina benchmarks in three projects. Five out of the
six bugs are crash bugs. One bug is less critical: a non-crash warning from Akka regarding
messages sent to actors that have been killed. We have confirmed that all bugs are triggered
in both the original benchmarks and the transformed versions with our generated tests. We
diagnose the six bugs and find that all five crash bugs are caused by out-of-order message
delivery. Such bugs are hard to reveal locally because out-of-order message delivery is unlikely
to happen locally. The other bug is caused by sending two stop messages to kill an actor,
and the recipient actor kills itself after receiving the first stop message.

Figure 12 shows one crash bug found in the ThreadRing benchmark. There is a potential
null de-reference on the nextActor field at Line 6. The ThreadRing system starts with a
coordinator sending a DataMessage to each token passer to inform them the next passer
and form a ring among them. The coordinator then sends a token to one passer in the ring,
and then the token is passed from one passer to another in the ring. The passer sets its
nextActor field at Line 9 upon receiving a DataMessage and sends the token at Line 6 upon
receiving a TokenMessage. The assumption is that every passer must set the nextActor before
sending the token (i.e., receive the DataMessage before the TokenMessage). Since the Akka
framework guarantees FIFO message delivery, this assumption holds for the first passer.
However, the assumption may not hold for the other passers. It is possible that the second
passer receives the TokenMessage from the first passer before receiving the DataMessage from
the coordinator. Although the DataMessage is sent before the TokenMessage, the two messages
are sent by different senders, and may be delivered out of order. In this case, a null pointer
exception is thrown in the second passer. Tap found this bug because the exceptional branch
of Line 6 (Wala IR contains exceptional branches for potential null dereferences) happened
to be chosen as a target. A simple fix to this bug is adding a null check on nextActor before
passing the token.
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8 Related Work

Testing Actors. The most related work on testing Actor systems is dCUTE [33]. dCUTE
differs from Tap in three aspects. First, dCUTE’s goal is to achieve overall coverage while
Tap aims at covering target code locations. They can be used to complement each other.
Second, dCUTE performs forward concolic execution while Tap does backwards symbolic
execution without a side-by-side concrete execution. Lastly, dCUTE handles only a subset of
actor operations. For example, it assumes that all actors have been created before execution,
and thus does not handle dynamic actor creation. However, we provide a rigorous definition
of the semantics of all actor operations in BSE.

Basset [22] leverages a model checker to systematically explore message schedules in an
actor system. Basset assumes that input messages are given, and aims at exploring as many
message schedules as possible on the given input. It uses state merging and dynamic partial
order reduction (DPOR) to reduce the search space of message schedules. Bita [38] also
explores possible message schedules for given input messages. It defines new schedule coverage
criteria, and uses these criteria to guide the exploration to expose bugs. TransDPOR [37]
proposes another DPOR technique that exploits the transitivity of the dependency relations
between actors for schedule space reduction. Tap not only explores message schedules,
but also generates message contents. These exploration techniques and space-reduction
techniques can be integrated into Tap for more efficient test generation.

Targeted Test Generation. A number of targeted test generation techniques have been
developed on sequential programs using both forward symbolic execution [24, 18, 16, 25, 10]
and backward symbolic execution [15, 29, 13]. However, they cannot be directly applied to
actor systems. Since an actor library often contains complex multi-threading and networking
code, direct exploration of these actor library methods is impractical and the execution often
fails to go across actors. Our work fills this gap by defining formal semantic models of actor
operations in our analysis, and thus preventing our analysis from exploring the actor library.

Feedback-Directed Test Generation. Previous research has proposed using information
from previous executions as feedback to guide test generation. Randoop [30] uses execution
feedback from previous tests to avoid generating redundant and illegal inputs. Garg et al. [17]
use the unsatisfiable cores from previous infeasible paths to generalize the reason for the
infeasibility, and thus rule out more infeasible paths. We also use the unsatisfiable cores
from infeasible paths, but we use them to guide BSE to efficiently find a feasible path.

Backward Symbolic Analysis. Snugglebug [11] uses backward symbolic analysis for
computing inter-procedural weakest preconditions. The symbolic reasoning in their work is
similar to ours except that their analysis works on all possible program paths to the target
while our BSE aims at finding one feasible path.

Static Analysis of Actors. There has been previous work [28] on static analysis of actor
programs to infer the ownership transfer of messages. This analysis works on individual actors
(i.e., intra-actor), and does not model interactions between actors. Our MFG construction is
a more complex whole-system analysis that requires modeling actor interactions.
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9 Conclusion

We have presented a method for targeted test generation for actor systems based on BSE.
Our method first constructs an MFG to capture the potential interactions between actors.
Guided by the MFG, it starts BSE directly from the target to find a feasible path to the
entry point of the actor system. We have provided high-level models for all actor operations
and formally defined their semantics in our analysis to avoid analyzing the complex code in
the actor library. To efficiently navigate the huge search space in BSE, we have proposed
two heuristics and a feedback-directed search technique. We have implemented our method
in Tap, and evaluated it on Savina and four open source projects. The evaluation results
have shown that Tap is effective in targeted test generation for actor systems.

In the future, we plan to further improve our search techniques in BSE. One direction is to
reduce the state space of message schedules using partial order reduction. The happens-before
relation used in previous work is fairly coarse-grained. We plan to define a finer-grained
partial order relation based on program analysis to further reduce the search space. Another
direction is to leverage dynamic traces from existing tests to guide our explorations.

References
1 Erlang Introduction. http://erlang.org/faq/introduction.html.
2 Java Akka. https://doc.akka.io/docs/akka/current/actors.html?language=java.
3 Orleans. https://dotnet.github.io/orleans/index.html.
4 Scala Akka. https://doc.akka.io/docs/akka/current/index-actors.html?language=scala.
5 Wala. http://wala.sourceforge.net.
6 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
7 Gul Agha. Concurrent Object-oriented Programming. Commun. ACM, 33(9):125–141,

1990.
8 Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(1):1–72, 1997.
9 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-

shelf, 2007.
10 Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. Statically-

directed dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages 12–22. ACM, 2011.

11 Satish Chandra, Stephen J Fink, and Manu Sridharan. Snugglebug: a powerful approach
to weakest preconditions. ACM Sigplan Notices, 44(6):363–374, 2009.

12 Dominik Charousset, Raphael Hiesgen, and Thomas C Schmidt. Caf-the C++ actor frame-
work for scalable and resource-efficient applications. In Proceedings of the 4th International
Workshop on Programming based on Actors Agents and Decentralized Control, pages 15–28.
ACM, 2014.

13 Florence Charreteur and Arnaud Gotlieb. Constraint-based test input generation for java
bytecode. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Sym-
posium on, pages 131–140. IEEE, 2010.

14 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg, 2008.

15 Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete back-
ward execution. In Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 31–36. ACM, 2014.



S. Li, F. Hariri, and G. Agha 8:27

16 Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Guided dynamic symbolic exe-
cution using subgraph control-flow information. In International Conference on Software
Engineering and Formal Methods, pages 76–81. Springer, 2016.

17 Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
Feedback-directed unit test generation for C/C++ using concolic execution. In Proceedings
of the 2013 International Conference on Software Engineering, pages 132–141. IEEE Press,
2013.

18 Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In USENIX Security
Symposium, pages 49–64, 2013.

19 Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial intelli-
gence, 8(3):323–364, 1977.

20 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

21 Shams Imam and Vivek Sarkar. Savina-an actor benchmark suite. In 4th International
Workshop on Programming based on Actors, Agents, and Decentralized Control, AGERE,
2014.

22 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A Framework for State-
Space Exploration of Java-Based Actor Programs. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, pages 468–479,
Washington, DC, USA, 2009.

23 Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In ACM Sigplan Notices,
volume 43, pages 329–339. ACM, 2008.

24 Kin-Keung Ma, Khoo Yit Phang, Jeffrey Foster, and Michael Hicks. Directed symbolic
execution. Static Analysis, pages 95–111, 2011.

25 Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of software patches.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages
235–245. ACM, 2013.

26 Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the
k-CFA paradox: illuminating functional vs. object-oriented program analysis. In ACM
Sigplan Notices, volume 45, pages 305–315. ACM, 2010.

27 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(1):1–41, 2005.

28 Stas Negara, Rajesh K Karmani, and Gul Agha. Inferring ownership transfer for efficient
message passing. In ACM SIGPLAN Notices, volume 46, pages 81–90. ACM, 2011.

29 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Detecting and exploiting second order denial-
of-service vulnerabilities in web applications. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 616–628. ACM, 2015.

30 Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
Directed Random Test Generation. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007.

31 Andrea Rosà, Lydia Y Chen, and Walter Binder. Profiling actor utilization and communic-
ation in Akka. In Proceedings of the 15th International Workshop on Erlang, pages 24–32.
ACM, 2016.

32 Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing Active Objects to Concur-
rent Components. In Theo D’Hondt, editor, ECOOP 2010 – Object-Oriented Programming,
pages 275–299, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

ECOOP 2018



8:28 Targeted Test Generation for Actor Systems

33 Koushik Sen and Gul Agha. Automated systematic testing of open distributed programs.
In International Conference on Fundamental Approaches to Software Engineering, pages
339–356. Springer, 2006.

34 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a Concolic Unit Testing Engine for
C. In Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005.

35 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In ACM SIGPLAN Notices, volume 46, pages 17–30.
ACM, 2011.

36 Samira Tasharofi, Peter Dinges, and Ralph E Johnson. Why do scala developers mix the
actor model with other concurrency models? In European Conference on Object-Oriented
Programming, pages 302–326. Springer, 2013.

37 Samira Tasharofi, Rajesh K Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and
Gul Agha. TransDPOR: A novel dynamic partial-order reduction technique for testing
actor programs. In Formal Techniques for Distributed Systems, pages 219–234. Springer,
2012.

38 Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson. Bita: Coverage-guided,
automatic testing of actor programs. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 114–124. IEEE, 2013.

39 Ganesha Upadhyaya and Hridesh Rajan. Effectively mapping linguistic abstractions for
message-passing concurrency to threads on the Java virtual machine. ACM SIGPLAN
Notices, 50(10):840–859, 2015.

40 Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with
salsa. SIGPLAN Not., 36(12):20–34, 2001.

A Semantics of Local Computations in MFG Analysis

Figure 13 shows the transition rules for local computations in the MFG analysis. Since
local computations concern only the actor state ς in ω, we omit other states in ω in our
transition rules for better readability (the other states are the same on both sides of the
rules). The operator t is used to merge two maps by merging the values of the same key
in both maps. The dispatch function takes as input an object and a method name, and
returns the dispatched method3. The transition rules describe precisely the 1-object-sensitive
points-to analysis [27]. The Object Allocation rule says that the heap context of an object is
the label of its allocation site. The Method Invocation rule describes the context sensitivity.
The rule says that the context used for analyzing a method is the heap context of the receiver
object, which is the label of its allocation site.

B Semantics Of Local Computations In BSE

Figure 14 and Figure 15 show respectively the semantics of intra-procedural BSE and
the semantics of inter-procedural BSE for local computations in an actor. Since local
computations concern only the local state β and the path condition φ, we omit other states in
the symbolic configuration in our transition rules for better readability. Note that subType is
a predicate in FOL to check the sub-type relation, and type and field are functions in FOL.

3 Our language does not support method overloading, and thus a method can be dispatched based on the
given object and its method name
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Variable Reference
(Jv = v′;`K, st, σ,_ )⇒A (succ(`), st, σ′,_ ), where σ′ = σ t [st(v) 7→ σ(st(v′))]
Field Reference
(Jv = v′.f;`K, st, σ,_ )⇒A (succ(`), st, σ′,_ ), where

(_, [f 7→ af ]) ∈ σ(st(v′)) σ′ = σ t [st(v) 7→ σ(af )]
Object Allocation

(Jv = new C(
−→
v′ );`K, st, σ,_ )⇒A (succ(`), st, σ′,_ ), where

hc = `
−→
f = F(C) ai = (fi, hc) o = (hc, [fi 7→ ai])

σ′ = σ t [st(v) 7→ {o}, ai 7→ σ(st(v′i))]
Method Invocation

(Jv = v0.m(
−→
v′ );`K, st, σ, cs, c)⇒A (s, st′, σ′, cs′, c′), where

M = JC m(
−−−→
C ′ v′′) {

−−−−→
C ′′v′′′;

−→
s′ }K = dispatch(o0,m) o0 ∈ σ(st(v0)) (hc0,_) = o0

c′ = hc0 ai = (v′′i ,m, c′) a′i = (v′′′i ,m, c
′) st′ = cons([v′′i 7→ ai, v

′′′
i 7→ a′i], st)

s = car(
−→
s′ ) σ′ = σ t [ai 7→ σ(st(v′i))] cs′ = cons((succ(`), c, st(v)), cs)

Return
(Jreturn v;`K, st, σ, cs, c)⇒A (s, cdr(st), σ′, cdr(cs), c′),where

(s, c′, aret) = car(cs) σ′ = σ t [aret 7→ σ(st(v))]
Casting
(Jv = (C) v′;`K, st, σ,_ )⇒A (succ(`), st, σ′,_ ), where σ′ = σ t [st(v) 7→ σ(st(v′))]

Figure 13 Abstract semantics for local computations in MFG analysis.

We also use a number of helper functions in our transition rules. The function pred returns
the previous statement of a given label, and the function last returns the last element of a
given list. The function method returns the method that encloses the statement with the
given label. The function callee takes as input the label of a call site s, and returns the set
of all possible callees. Specifically, it retrieves the signature sig of the called method from s,
locates the enclosing method M of s in the call graph, and returns the set of all callees of
M that match sig. The function callsites returns the set of all possible call sites of a given
method.

In what follows, we explain the inter-procedural rules, which are more interesting. We
assume that our language uses the call-by-value evaluation strategy. To perform inter-
procedural BSE, a context-insensitive call graph is used to guide the execution. The entry
point of the call graph is the message handler of the actor. As we execute a method m

backwards, there are two possible cases regarding the target: 1) the target is outside m,
indicating that BSE has previously reached the call site of m and has jumped from that call
site to m, and the current call stack must be not empty; 2) the target is inside m, indicating
that BSE starts from m and the current call stack must be empty. The first three rules
in Figure 15 apply to the first case. The Method Invocation rule says that upon a method
invocation, BSE queries the call graph for all possible callees of the invocation, jumps to
the last statement of a possible callee, and adds the constraint that every parameter must
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Variable Reference
((Jv = v′;`K,_), φ)⇒S ((pred(`),_), φ[v̂′/v̂])
Binary Expression
((Jv = v′ op v′′;`K,_), φ)⇒S ((pred(`),_), φ′), where φ′ = φ[(v̂′ op v̂′′)/v̂]
Field Reference
((Jv = v′.f;`K,_), φ)⇒S ((pred(`),_), φ[read(v̂′, f)/v̂])
Field Update
((Jv.f = v′;`K,_), φ)⇒S ((pred(`),_), φ[update(f, v, v′)/f ])
Casting
((Jv = (C) v′;`K,_), φ)⇒S ((pred(`),_), φ[v̂′/v̂] ∧ subType(type(v̂), C))
Object Allocation

((Jv = new C(
−→
v′ );`K,_), φ)⇒S ((pred(`),_), φ′), where

v̂′′ is fresh
−→
f = F(C) φ′ = φ[v̂′′/v̂, update(fi, v

′′, v′i)/fi] ∧ type(v̂′′) == C

If-True

((Jif (e) −→s else
−→
s′ ;`K,_)φ)⇒S ((last(−→s ),_), φ ∧ ê)

If-False

((Jif (e) −→s else
−→
s′ ;`K,_)φ)⇒S ((last(

−→
s′ ),_), φ ∧ ¬ê)

Figure 14 Transition rules for intra-procedural backward symbolic execution.

Method Invocation

((Jv = v′.m(
−→
v′′);`K, cs, v̂0), φ)⇒S ((s, cs′, v̂′), φ′), where

M = JC m(
−−−→
C ′ v′′′) {

−→
s′ }K M ∈ callees(`) s = last(

−→
s′ )

cs′ = cons((pred(`), v̂, v̂′), cs) φ′ = φ ∧ v̂′′′i == v̂′′i

Return-CallStack Not Empty
((Jreturn v;`K, cs,_), φ)⇒S ((pred(`), cs,_), φ[v̂/v̂′]), where (_, v̂′,_) = car(cs)
Method Entry-CallStack Not Empty

((Jentry;`K, cs, v̂0), φ)⇒S (s, cdr(cs), v̂′0), φ), where (s,_, v̂′0) = car(cs)
Return-CallStack Empty
((Jreturn v;`K, [ ],_), φ)⇒S ((pred(`), [ ],_), φ)
Method Entry-CallStack Empty
((Jentry;`K, [ ], v̂0), φ)⇒S ((pred(`′), [ ], v̂′), φ′),where

s = Jv = v′.m(
−→
v′′);`′

K `′ ∈ callsites(M)

M = JC m′(
−−−→
C ′ v′′′) {

−→
s′ }K = method(`′) φ′ = φ ∧ v̂′′′i == v̂′′i

Figure 15 Transition rules for inter-procedural backward symbolic execution.
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be equal to its corresponding argument of the callee (call-by-value). The Return-CallStack
Not Empty rule says that the variable to which the return value is assigned at the call site
is replaced with the return value in the path constraint. The Method Entry-CallStack Not
Empty rule says that the execution returns to the call site, and the top frame is popped from
the call stack. The last two rules in Figure 15 apply to the second case. The Return-CallStack
Empty rule does not update the path constraint, because the caller is unknown at this point,
so is the variable that would hold the return value. The Method Entry-CallStack Empty says
that BSE queries the call graph for all possible callers of the current method, jumps back to
a possible call site, and adds the constraint that every argument of the callee are equal to its
corresponding parameter in the call site. Note that no constraint over the variable v that
holds the return value is added to the path constraint, because once the execution returns to
the call site, it moves backwards and will never use the variable v. The constraints over v do
not affect covering the target, and thus need not be added.
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