An Empirical Analysis of
Flaky Tests

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi
and Darko Marinov

11/20/2014
FSE 22 f§ [LLINOIS
H on g K on g Bl UNVERSITY OF ILLINOIS AT URBANACHAMPAIGN

NSF Grant Nos. CNS-0958199 and CCF-
1012759
DARPA grant FA8750-12-C-0284

Typical Testing Scenario

Test Suite l \

Typical Testing Scenario

@)]

Tests
Outcomes

Typical Testing Scenario

Test Suite | \

Tests
Outcomes

@

Typical Testing Scenario

Test Suite l \

@

!

Tests
Outcomes

7/
|

-

No further inspection
needed

Typical Testing Scenario

Test Suite

@

I

Tests
Outcomes

0-@

<e-u

No further inspection
needed

Inspect and fix bugs

Typical Testing Scenario

l) No further inspection
@)/ @ needed

Tests

Outcomes

N Y
G)) Inspect and fix bugs
@

Key Assumption: Test outcomes are reliable

Typical Testing Scenario

- No further inspection
needed

‘ —) O Inspect and fix bugs

@
Key Assumption:

Outcomes

utcomes are reliable

Definition: Test Outcome Non-
determinism

Test outcome non-determinism:
e Same code revision

e Same input and configuration

e Passes/fails non-deterministically

Such tests are a.k.a. flaky tests.

Flaky Test Example HADOOP-6933

@Test
public void testDirectory() throws TIOException {

itor = fs.listFiles(DIR1, false);

assertEquals(fs.makeQualified(FILE2), stat.getPath());
itor.next();
assertEquals(fs.makeQualified(FILE3), stat.getPath());

}

“TestListFiles assumes a particular order of the files returned by
the directory iterator. There's no such guarantee made by the
underlying API, so the test fails on some hosts.”

Flaky Test Fix Example

+ Set<Path> filesToFind = new HashSet<Path=();
+ filesToFind.add(fs.makeQualified(FILE1));
+ filesToFind.add(fs.makeQualified(FILE2));
4 filesToFind.add(fs.makeQualified(FILE3));
=
itor = fs.listFiles(TEST_DIR, true);
stat = itor.next{}ﬂ
assertTrue(stat.isFile());
- assertEquals(fs.makeQualified(FILE2), stat.getPath());
+ assertTrue("Path " + stat.getPath() + " unexpected"”,
+ filesToFind.remove(stat.getPath()));
&
stat = itor.next();
assertTrue(stat.isFile());
- assertbEquals(fs.makeQualified(FILE3), stat.getPath());
+ assertTrue("Path " + stat.getPath() + " unexpected"”,
+ filesToFind.remove(stat.getPath()));
2
stat = itor.next();
assertTrue(stat.isFile());
- assertEquals(fs.makeQualified(FILE1), stat.getPath());
+ assertTrue("Path " + stat.getPath() + " unexpected"”,
+ filesToFind.remove(stat.getPath()));
assertFalse(itor.hasNext());
+ assertTrue(filesToFind.isEmpty()):;

Flaky Tests are Harmful

e Undermine the value of test suite
o Test failures no longer always indicate bugs

e Hide real bugs
o Flaky test failures often get ignored

e Hard to reproduce and debug

Flaky Tests are Everywhere

“If you do not have a flaky functional tests build,
you are not doing anything real”

-- A ThoughtWorks Developer

TAP system at Google has 1.6M test failures in
last 15 months, 73K (4.56%) are flaky failures

Our study found hundreds of distinct flaky tests
from Apache projects

Contributions of Our Work

e Raise awareness of flaky tests

e Provide 13 findings and implications for
avoiding/manifesting/fixing flaky tests

e Propose research for handling flaky tests

e Provide a public dataset of flaky tests
o Passed artifact evaluation
o mir.cs.illinois.edu/farah/studied_flaky commits.csv

How Did We Find Flaky Tests?

e Search commit logs of all 151 Apache projects

for “flak” and “intermit” keywords
o 1129 commit messages

e Manually label likely distinct fixed flaky tests
o 486 fixed flaky tests

e Sample and inspect 161 commits in more
detall

Research Questions

e Causes of flakiness:
o Q1: What are the root causes of flaky tests?

e Introduction of flakiness:
o Q2: How are flaky tests introduced?

e Manifestation:
o Q3: How to manifest flaky tests?

e Fix strategy:

o Q4: Does fixing flaky tests also change code under
test (CUT)?
o Q5: How to fix flaky tests?

More in our paper!

Q1:
What are the Root Causes

of Flaky Tests?

Async Wait

Test makes async calls but doesn’t wait for the
result properly; example HBASE-2684:

@Test
public void testRsReportsWrongServerName() throws Exception {
MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster():
MiniHBaseClusterRegionServer firstServer =
(MiniHBaseClusterRegionServer)cluster.getRegionServer(0);
HServerInfo hsi = firstServer.getServerInfo():
firstServer.setHServerInfo(...);

Thread.sleep(2000);
assertTrue(firstServer.isOnline());
assertEquals(2 cluster.getLiveRegionServerThreads().size())

}

Concurrency

e Flakiness caused by buggy thread

interleavings (excluding Async Wait)
o Data races

o Atomicity violations

o Deadlocks

e Non-determinism could either come from
test code or code under test

Test Order Dependency

Dependency between tests and the result
depends on running order; example HBASE-
7113:

@Test

public void testGzipFilter() throws Exception {
String path ="/" + TABLE +"/" + ROW_1 +"/" + COLUMN_1;

Eesponse response = client.put(path, headers, value_1_gzip):

=

@Test
public void testScannerResultCodes() throws Exception {

Response response = client.post("/" + TABLE + "/scanner”, headers,
"<Scanner/>".getBytes());
assertEquals(response.getCode(), 204);

Root Causes Distribution

80

60

40

20

Async Wait

Concurmency

Test Order
Dependency

Resource
Leak

78%

Metwaork

Time

1o

._-_-_—_—_—

Randomness

Floating
Point
Operations

Unordered
Collections

Other Root Causes

Resource leak

Network

Time

/O

Randomness

-loating point operations
Jnordered collections

Implication 1:
Researchers Can Focus on
the Top Categories of Flaky

Tests First

Q2:
How are Flaky Tests
Introduced?

Collect Evolution Info

e Find out the first time the flaky test was
written in VCS

e Manually reason about whether the test was
flaky at that time

e |[f not, track changes in history to see how
the test became flaky

Flaky Tests Introduction

e Most (126 out of 161) flaky tests are flaky
the first time they are written

e Flakiness is later introduced when:
o A new test introduces dependency on old tests
o Patching a bug/refactoring/adding new functionality

Implication 2:
Researchers Can Focus on
Checking New Tests
Extensively for Flakiness

Q3:
How to Manifest Flaky
Tests?

Manifestation of Async Wait Flaky Tests

Tests fail when the desired orderings are

violated
o One ordering VS multiple orderings

sleep/waitFor are used to enforce orderings
o W/ time parameter VS w/o time parameter

Waiting for external resources VS resources
controlled by the program

W/ Time Parameter VS W/O Time Parameter

B w/ time parameter [w/o time parameter

Implication 3.a:

Many Async Flaky Tests
Can be Manifested by
Changing Time Parameters
to Order Enforcing

Methods

One Ordering VS Multiple Orderings

B Multiple Orderings [l One Ordering

External Resources VS Internal Resources

B External Resources | Internal Resources

One Ordering and Internal Resources VS
Others

B One ordering and internal resources [l Others

Implication 3.b:

Most Async Wait Flaky
Tests Can be Manifested by
Adding One Time Delay in
Program

Manifestation of Test Order Dependency
Flaky Tests
e Various sources of dependency

B Static Field in
Test

B Static Field in
cuT

External
Dependency

e Existing techniques focus on in-memory
objects [Bell+Kaiser ICSE'14] or shuffling
test runs explicitly [Zhang et al. ISSTA14]

Implication 3.c:
New Techniques for
Modeling/Checking External
Dependency Can be Useful

Q4:
Does Fixing Flaky Tests
Also Change Code under
Test (CUT)?

Fixing Code Under Test

e 24% (38 out of 161) flaky tests are fixed by
changing both test and CUT
e Changes to CUT:

B Deterministic Bug

B Non Deterministic
Bug

. Non Deterministic
No Bug

Implication 4;

Flaky Tests Are Still Valuable
For Catching Bugs and
Should Not be Ignored or
Removed

y Q5:
ow to Fix Flaky Tests?

Flaky Tests Fixes

e \We studied how flaky tests got fixed

o Fix strategies for top three categories

e How effective was each fix?

o Remove - remove its flakiness completely
o Decrease - decrease probability of test flakiness

e Study outcome

o Good practice for fixing flaky tests
o Automated techniques for fixing flaky tests

Fix Async Wait Flaky Tests

B Add/modify
waitFor

B Add/modify
sleep

! Reorder
execution

B Other

Sleep and timed waitFor only decrease flakiness probability

Implication 5.a For
Developers:
Use waitFor to Fully
Synchronize Code

Implication 5.b For
Researchers:
Automatically Generate
Order Enforcing Code by
Comparing Events Order
Between Passing and Failing
Runs

Test Order Dependency Fixes

B Setup/clean
up state

B Remove
dependency

| Merge tests

Implication 5.c For
Developers:
Identify Shared States in
Test Execution and
Maintain Them Clean

Implication 5.d For
Researchers:

Model and Compare Program
States and Automatically
Generate Code In
setUp/tearDown to Restore
Shared States

Threats to Validity

e Choice of projects
o All Apache projects

e Selection criteria
o Commit logs
o Keywords “flak” and “intermittent”
o Fixed flaky tests

e Manual inspection
o Peer review for each flaky test

Related Work

e Non-deterministic bugs and tests
o GUI flaky tests [Memon+Cohen ICSE’'13]

o Test order dependency [Zhang et al. ISSTA'14,
Bell+Kaiser ICSE’14]
o Concurrency bugs study [Lu et al. ASPLOS08]

e Bug fixes
o Bug fixes study [Bachmann et al. FSE'10, Murphy-Hill
et al. ICSE’13]

o Automatically fixing concurrency bugs [Jin et al. PLDI’
11]

e Testfixes
o Automatically repair broken tests [Daniel et al. ASE’09]

Conclusions

e Flaky tests are harmful and pervasive in
practice
e \We studied and summarized common

characteristics of flaky tests

o Common root causes
o Common manifestation methods
o Common fixing strategies

e \We believe our results provide both research
iInsights and practice guidelines

