
An Empirical Analysis of
Flaky Tests

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi
and Darko Marinov

11/20/2014
FSE 22

Hong Kong
NSF Grant Nos. CNS-0958199 and CCF-
1012759
DARPA grant FA8750-12-C-0284

Typical Testing Scenario

Test Suite

Typical Testing Scenario

Test Suite

Tests
Outcomes

Typical Testing Scenario

Test Suite

Tests
Outcomes

PASS

FAIL

Typical Testing Scenario

Test Suite

Tests
Outcomes

PASS

FAIL

No further inspection
needed

Typical Testing Scenario

Test Suite

Tests
Outcomes

PASS

FAIL Inspect and fix bugs

No further inspection
needed

Typical Testing Scenario

Test Suite

Tests
Outcomes

PASS

FAIL Inspect and fix bugs

Key Assumption: Test outcomes are reliable

No further inspection
needed

Typical Testing Scenario

Test Suite

Tests
Outcomes

PASS

FAIL

No further inspection
needed

Inspect and fix bugs

Key Assumption: Test outcomes are reliable

Definition: Test Outcome Non-
determinism

Test outcome non-determinism:
● Same code revision

● Same input and configuration

● Passes/fails non-deterministically

Such tests are a.k.a. flaky tests.

Flaky Test Example HADOOP-6933
@Test
public void testDirectory() throws IOException {

…
itor = fs.listFiles(DIR1, false);
…
assertEquals(fs.makeQualified(FILE2), stat.getPath());
itor.next();
assertEquals(fs.makeQualified(FILE3), stat.getPath());
...

}

“TestListFiles assumes a particular order of the files returned by
the directory iterator. There's no such guarantee made by the
underlying API, so the test fails on some hosts.”

Flaky Test Fix Example

Flaky Tests are Harmful

● Undermine the value of test suite
○ Test failures no longer always indicate bugs

● Hide real bugs
○ Flaky test failures often get ignored

● Hard to reproduce and debug

Flaky Tests are Everywhere

“If you do not have a flaky functional tests build,
you are not doing anything real”

-- A ThoughtWorks Developer

TAP system at Google has 1.6M test failures in
last 15 months, 73K (4.56%) are flaky failures

Our study found hundreds of distinct flaky tests
from Apache projects

Contributions of Our Work

● Raise awareness of flaky tests

● Provide 13 findings and implications for
avoiding/manifesting/fixing flaky tests

● Propose research for handling flaky tests

● Provide a public dataset of flaky tests
○ Passed artifact evaluation
○ mir.cs.illinois.edu/farah/studied_flaky_commits.csv

How Did We Find Flaky Tests?

● Search commit logs of all 151 Apache projects
for “flak” and “intermit” keywords
○ 1129 commit messages

● Manually label likely distinct fixed flaky tests
○ 486 fixed flaky tests

● Sample and inspect 161 commits in more
detail

Research Questions

● Causes of flakiness:
○ Q1: What are the root causes of flaky tests?

● Introduction of flakiness:
○ Q2: How are flaky tests introduced?

● Manifestation:
○ Q3: How to manifest flaky tests?

● Fix strategy:
○ Q4: Does fixing flaky tests also change code under

test (CUT)?
○ Q5: How to fix flaky tests?

More in our paper!

Q1:
What are the Root Causes

of Flaky Tests?

Async Wait

@Test
public void testRsReportsWrongServerName() throws Exception {
 MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster();
 MiniHBaseClusterRegionServer firstServer =
 (MiniHBaseClusterRegionServer)cluster.getRegionServer(0);
 HServerInfo hsi = firstServer.getServerInfo();
 firstServer.setHServerInfo(...);

 // Sleep while the region server pings back
 Thread.sleep(2000);
 assertTrue(firstServer.isOnline());
 assertEquals(2,cluster.getLiveRegionServerThreads().size());
 ... // similarly for secondServer
 }

Test makes async calls but doesn’t wait for the
result properly; example HBASE-2684:

Concurrency

● Flakiness caused by buggy thread
interleavings (excluding Async Wait)
○ Data races
○ Atomicity violations
○ Deadlocks

● Non-determinism could either come from
test code or code under test

Test Order Dependency
Dependency between tests and the result
depends on running order; example HBASE-
7113:

 @Test
 public void testGzipFilter() throws Exception {
 String path = "/" + TABLE + "/" + ROW_1 + "/" + COLUMN_1;
 ...
 Response response = client.put(path, headers, value_1_gzip);
 …
 }

 @Test
 public void testScannerResultCodes() throws Exception {
 ...
 Response response = client.post("/" + TABLE + "/scanner", headers,
 "<Scanner/>".getBytes());
 assertEquals(response.getCode(), 204);
 …
 }

Root Causes Distribution

78%

Other Root Causes

● Resource leak
● Network
● Time
● I/O
● Randomness
● Floating point operations
● Unordered collections

Implication 1:
Researchers Can Focus on
the Top Categories of Flaky

Tests First

Q2:
How are Flaky Tests

Introduced?

Collect Evolution Info

● Find out the first time the flaky test was
written in VCS

● Manually reason about whether the test was
flaky at that time

● If not, track changes in history to see how
the test became flaky

Flaky Tests Introduction

● Most (126 out of 161) flaky tests are flaky
the first time they are written

● Flakiness is later introduced when:
○ A new test introduces dependency on old tests
○ Patching a bug/refactoring/adding new functionality

Implication 2:
Researchers Can Focus on

Checking New Tests
Extensively for Flakiness

Q3:
How to Manifest Flaky

Tests?

Manifestation of Async Wait Flaky Tests

● Tests fail when the desired orderings are
violated
○ One ordering VS multiple orderings

● sleep/waitFor are used to enforce orderings
○ W/ time parameter VS w/o time parameter

● Waiting for external resources VS resources
controlled by the program

W/ Time Parameter VS W/O Time Parameter

Implication 3.a:
Many Async Flaky Tests

Can be Manifested by
Changing Time Parameters

to Order Enforcing
Methods

One Ordering VS Multiple Orderings

External Resources VS Internal Resources

One Ordering and Internal Resources VS
Others

Implication 3.b:
Most Async Wait Flaky

Tests Can be Manifested by
Adding One Time Delay in

Program

Manifestation of Test Order Dependency
Flaky Tests
● Various sources of dependency

● Existing techniques focus on in-memory
objects [Bell+Kaiser ICSE’14] or shuffling
test runs explicitly [Zhang et al. ISSTA’14]

Implication 3.c:
New Techniques for

Modeling/Checking External
Dependency Can be Useful

Q4:
Does Fixing Flaky Tests
Also Change Code under

Test (CUT)?

Fixing Code Under Test

● 24% (38 out of 161) flaky tests are fixed by
changing both test and CUT

● Changes to CUT:

Implication 4:
Flaky Tests Are Still Valuable

For Catching Bugs and
Should Not be Ignored or

Removed

Q5:
How to Fix Flaky Tests?

Flaky Tests Fixes

● We studied how flaky tests got fixed
○ Fix strategies for top three categories

● How effective was each fix?
○ Remove - remove its flakiness completely
○ Decrease - decrease probability of test flakiness

● Study outcome
○ Good practice for fixing flaky tests
○ Automated techniques for fixing flaky tests

Fix Async Wait Flaky Tests

Sleep and timed waitFor only decrease flakiness probability

Implication 5.a For
Developers:

Use waitFor to Fully
Synchronize Code

Implication 5.b For
Researchers:

Automatically Generate
Order Enforcing Code by
Comparing Events Order

Between Passing and Failing
Runs

Test Order Dependency Fixes

Implication 5.c For
Developers:

Identify Shared States in
Test Execution and

Maintain Them Clean

Implication 5.d For
Researchers:

Model and Compare Program
States and Automatically

Generate Code in
setUp/tearDown to Restore

Shared States

Threats to Validity

● Choice of projects
○ All Apache projects

● Selection criteria
○ Commit logs
○ Keywords “flak” and “intermittent”
○ Fixed flaky tests

● Manual inspection
○ Peer review for each flaky test

Related Work

● Non-deterministic bugs and tests
○ GUI flaky tests [Memon+Cohen ICSE’13]
○ Test order dependency [Zhang et al. ISSTA’14,

Bell+Kaiser ICSE’14]
○ Concurrency bugs study [Lu et al. ASPLOS’08]

● Bug fixes
○ Bug fixes study [Bachmann et al. FSE’10, Murphy-Hill

et al. ICSE’13]
○ Automatically fixing concurrency bugs [Jin et al. PLDI’

11]
● Test fixes

○ Automatically repair broken tests [Daniel et al. ASE’09]

Conclusions
● Flaky tests are harmful and pervasive in

practice
● We studied and summarized common

characteristics of flaky tests
○ Common root causes
○ Common manifestation methods
○ Common fixing strategies

● We believe our results provide both research
insights and practice guidelines

