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Abstract. Actor programs consist of a number of concurrent objects
called actors, which communicate by exchanging messages. Nondetermin-
ism in actors results from the different possible orders in which available
messages are processed. Systematic testing of actor programs explores
various feasible message processing schedules. Dynamic partial-order re-
duction (DPOR) techniques speed up systematic testing by pruning parts
of the exploration space. Based on the exploration of a schedule, a DPOR
algorithm may find that it need not explore some other schedules. How-
ever, the potential pruning that can be achieved using DPOR is highly
dependent on the order in which messages are considered for processing.
This paper evaluates a number of heuristics for choosing the order in
which messages are explored for actor programs, and summarizes their
advantages and disadvantages.

1 Introduction

Modern software has several competing requirements. On one hand, software
has to execute efficiently in a networked world, which requires concurrent pro-
gramming. On the other hand, software has to be reliable and dependable, since
software bugs could lead to great financial losses and even loss of lives. However,
putting together these two requirements—building concurrent software while en-
suring that it be reliable and dependable—is a great challenge. Approaches that
help address this challenge are in great need.

Actors offer a programming model for concurrent computing based on mes-
sage passing and object-style data encapsulation [1,2]. An actor program consists
of several computation entities, called actors, each of which has its own thread
of control, manages its own internal state, and communicates with other actors
by exchanging messages. Actor-oriented programming systems are increasingly
used for concurrent programming, and some practical actor systems include Ac-
torFoundry, Asynchronous Agents Framework, Axum, Charm++, Erlang, E,
Jetlang, Jsasb, Kilim, Newspeak, Ptolemy II, Revactor, SALSA, Scala, Singu-
larity, and ThAL. (For a list of references, see [16].)

A key challenge in testing actor programs is their inherent nondeterminism:
even for the same input, an actor program may produce different results based on
the schedule of arrival of messages. Systematic exploration of possible message
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arrival schedules is required both for testing and for model checking concur-
rent programs [3–5, 7, 10–12, 18, 21, 22]. However, the large number of possible
message schedules often limits how many schedules can be explored in practice.
Fortunately, such exploration need not enumerate all possible schedules to check
the results. Partial-order reduction (POR) techniques speed up exploration by
pruning some message schedules that are equivalent [7,10,12–14,18,22]. Dynamic
partial-order reduction (DPOR) techniques [10, 18, 19] discover the equivalence
dynamically, during the exploration of the program, rather than statically, by
analyzing the program code. The actual dynamic executions provide more pre-
cise information than a static analysis that needs to soundly over-approximate
a set of feasible executions. Effectively, based on the exploration of some mes-
sage schedules, a DPOR technique may find that it need not explore some other
schedules.

It turns out that pruning using DPOR techniques is highly sensitive to the
order in which messages are considered for exploration. For example, consider a
program which reaches a state where two messages, m1 and m2, can be delivered
to some actors. If a DPOR technique first explores the possible schedules after
delivering m1, it could find that it need not explore the schedules that first
deliver m2. But, if the same DPOR technique first delivers m2, it could happen
that it cannot prune the schedules from m1 and thus needs to perform the entire
exhaustive exploration. We recently observed this sensitivity in our work on
testing actor programs [16], and Godefroid mentioned it years ago [12]. Dwyer
et al. [8] evaluate the search order for different exploration techniques. However,
we are not aware of any prior attempt to analyze what sorts of message orders
lead to better pruning for DPOR.

This paper addresses the following questions:

– What are some of the natural heuristics for ordering scheduling decisions in
DPOR for message-passing systems?

– What is the impact of choosing one heuristic over another heuristic?
– Does the impact of these heuristics depend on the DPOR technique?
– Can we predict which heuristic may work better for a particular DPOR

technique or subject program?

The paper makes two contributions. First, it presents eight ordering heuristics
(Sect. 5) and evaluates them on seven subject programs (Sect. 6). We compare
the heuristics for two DPOR techniques: one based on dynamically computing
persistent sets [10, 12] and the other based on dCUTE [18] (Sect. 2). As our
evaluation platform, we use the Basset system [16]. The results show that dif-
ferent heuristics can lead to significant differences in pruning, up to two orders
of magnitude. Second, the paper summarizes the advantages and disadvantages
of various heuristics. In particular, it points out what types of programs, based
on the communication pattern of the actors, may benefit the most from which
heuristics. This provides important guidelines for exploring actor programs in
practice: based on the type of the program, the user can instruct an exploration
tool to use a heuristic that provides better pruning, resulting in a faster explo-
ration and more efficient bug finding.
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2 Actor Language and Execution Semantics

For illustrative purposes, we describe an imperative actor language ActorFoundry
that is implemented as a Java framework [15]. A class that describes an actor
behavior extends osl.manager.Actor. An actor may have local state comprised
of primitives and objects. The local state cannot be shared among actors. An
actor can communicate with another actor in the program by sending asyn-
chronous messages using the library method send. The sending actor does not
wait for the message to arrive at the destination and be processed. The library
method call sends an asynchronous message to an actor but blocks the sender
until the message arrives and is processed at the receiver. An actor definition
includes method definitions that correspond to messages that the actor can ac-
cept and these methods are annotated with @message. Both send and call can
take arbitrary number of arguments that correspond to the arguments of the
corresponding method in the destination actor class. The library method create

creates an actor instance of the specified actor class. It can take arbitrary num-
ber of arguments that correspond to the arguments of the constructor. Message
parameters and return types should be of the type java.io.Serializable. The
library method destroy kills the actor calling the method. Messages sent to the
killed actor are never delivered. Note that both call and create may throw a
checked exception RemoteCodeException.

We informally present semantics of relevant ActorFoundry constructs to be
able to more precisely describe the algorithms in Sect. 3. Consider an Actor-
Foundry program P consisting of a set of actor definitions including a main
actor definition that receives the initial message. send(a,msg) appends the con-
tents of the message msg to the message queue of actor a. We will use Qa

to denote the message queue of actor a. We assume that at the beginning of
execution the message queue of all actors is empty.

The ActorFoundry runtime first creates an instance of the main actor and
then sends the initial message to it. Each actor executes the following steps in a
loop: remove a message from the queue (termed as an implicit receive statement
from here on), decode the message, and process the message by executing the
corresponding method. During the processing, an actor may update the local
state, create new actors, and send more messages. An actor may also throw an
exception. If its message queue is empty, the actor blocks waiting for the next
message to arrive. Otherwise, the actor nondeterministically removes a message
from its message queue. The nondeterminism in choosing the message models
the asynchrony associated with message passing in actors. An actor executing a
create statement produces a new instance of an actor.

An actor is said to be alive if it has not already executed a destroy statement
or thrown an exception. An actor is said to be enabled if the following two
conditions hold: the actor is alive, and the actor is not blocked due to an empty
message queue or executing a call statement.

A variable pca represents the program counter of the actor a. For every actor,
pca is initialized to the implicit receive statement. A scheduler executes a loop
inside which it nondeterministically chooses an enabled actor a from the set
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P. It executes the next statement of the actor a, where the next statement is
obtained by calling statement at(pca). During the execution of the statement,
the program counter pca of the actor a is modified based on the various control
flow statements; by default, it is incremented by one.

The concrete execution of an internal statement, i.e., a statement not of the
form send, call, create, or destroy, takes place in the usual way for imperative
statements. The loop of the scheduler terminates when there is no enabled actor
in P. The termination of the scheduler indicates either the normal termination
of a program execution, or a deadlock state (when at least one actor in P is
waiting for a call to return).

3 Automated Testing of ActorFoundry Programs

To automatically test an ActorFoundry program for a given input, we need to
explore all distinct, feasible execution paths of the program. A path is intuitively
a sequence of statements executed, or as we will see later, it suffices to have just a
sequence of messages received. In this work, we assume that the program always
terminates and a test harness is available, and thus focus on exploring the paths
for a given input. A simple, systematic exploration of an ActorFoundry program
can be performed using a näıve scheduler: beginning with the initial program
state, the scheduler nondeterministically picks an enabled actor and executes
the next statement of the actor. If the next statement is implicit receive, the
scheduler nondeterministically picks a message for the actor from its message
queue. The scheduler records the ids of the actor and the message, if applicable.
The scheduler continues to explore a path in the program by making these choices
at each step. After completing execution of a path (i.e., when there are no new
messages to be delivered), the scheduler backtracks to the last scheduling step
(in a depth-first strategy) and explores alternate paths by picking a different
enabled actor or a different message from the ones chosen previously.

Note that the number of paths explored by the näıve scheduler is exponential
in the number of enabled actors and the number of program statements in all
enabled actors. However, an exponential number of these schedules is equivalent.
A crucial observation is that actors do not share state: they exchange data and
synchronize only through messages. Therefore, it is sufficient to explore paths
where actors interleave at message receive points only. All statements of an actor
between two implicit receive statements can be executed in a single atomic step
called a macro-step [2,18]. At each step, the scheduler picks an enabled actor and
a message from the actor’s message queue. The scheduler records the ids of the
actor and the message, and executes the program statements as a macro-step. A
sequence of macro-steps, each identified by an actor and message pair (a,m), is
termed a macro-step schedule. At the end of a path, the scheduler backtracks to
the last macro-step and explores an alternate path by choosing a different pair
of actor and message (a,m).

Note that the number of paths explored using a macro-step scheduler is
exponential in the number of deliverable messages. This is because the scheduler,
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scheduler(P )
pca1 = l

a1
0 ; pca2 = l

a2
0 ; . . . ; pcan = lan

0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i + 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s 6= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

// actor a′ “causes” s
path c[k].Sp.add((a′, ));

execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i− 1;
while j ≥ 0

if path c[j].Sp is not empty
path c[j].schedule =

path c[j].Sp.remove();
path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);
path c[i].Sp.add((a, ));

return (a,msg id);

Fig. 1. Dynamic partial-order reduction algorithm based on persistent sets.

for every step, executes all permutations of actor and message pairs (a,m) that
are enabled before the step. However, messages sent to different actors may be
independent of each other, and it may be sufficient to explore all permutations
of messages for a single actor instead of all permutations of messages for all
actors [18].

The independence between certain events results in equivalent paths, in which
different orders of independent events occur. The equivalence relation between
paths is exploited by dynamic partial-order reduction (DPOR) algorithms to
speed-up automatic testing of actor programs by pruning parts of the explo-
ration space. Specifically, the equivalence is captured using the happens-before
relation [9, 18], which yields a partial order on the state transitions in the pro-
gram. The goal of DPOR algorithms is to explore only one linearization of each
partial order or equivalence class.

We next describe two stateless DPOR algorithms for actor programs: one
based on dynamically computing persistent sets [10] (adapted for testing actor
programs), and the other one used in dCUTE [18].

DPOR based on Persistent Sets

Flanagan and Godefroid [10] introduced a DPOR algorithm that dynamically
tracks dependent transitions and computes persistent sets [12] among concur-
rent processes. They presented the algorithm in the context of shared-memory
programs. Figure 1 shows our adaptation of their algorithm for actor programs,
which also incorporates the optimization discussed by Yang et al. [23].

The algorithm computes persistent sets in the following way: during the ini-
tial run of the program, for every scheduling point, the scheduler nondetermin-
istically picks an enabled actor (call to the choose method, which is underlined)
and adds all its pending messages to the persistent set Sp. It then explores all
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scheduler(P )
pca1 = l

a1
0 ; pca2 = l

a2
0 ; . . . ; pcan = lan

0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i + 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s 6= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

path c[k].needs delay = true;
execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i− 1;
while j ≥ 0

if path c[j].next schedule 6= (⊥,⊥)
(a, m) =path c[j].schedule;
(b, m′) =path c[j].next schedule;
if a == b or path c[j].needs delay

path c[j].schedule =
path c[j].next schedule;

if a 6= b
path c[j].needs delay = false;

path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);

path c[i].next schedule = next(a,msg id);
return (a,msg id);

Fig. 2. Dynamic partial-order reduction algorithm for the dCUTE approach.

permutations of messages in the persistent set. During the exploration, if the
scheduler encounters a send(a, v) statement, say at position i in the current
schedule, it analyzes all the receive statements executed by a earlier in the same
execution path (represented as path c). If a receive, say at position k < i in
the schedule, is not related to the send statement by the happens-before rela-
tion (checked in the call to method canSynchronize), the scheduler adds pending
messages for a new actor a′ to the persistent set at position k. The actor a′ is
“responsible” for the send statement at i, i.e., a receive for a′ is enabled at k,
and it is related to the send statement by the happens-before relation.

DPOR in dCUTE

Figure 2 shows the DPOR algorithm that is a part of the dCUTE approach for
testing open, distributed systems [18]. (Since we do not consider open systems
here, we ignore the input generation from dCUTE.) It proceeds in the following
way: during the initial run of the program, for every scheduling point, the sched-
uler nondeterministically picks an enabled actor (call to the choose method,
which is underlined) and explores permutations of messages enabled for the ac-
tor. During the exploration, if the scheduler encounters a send statement of the
form send(a, v), it analyzes all the receive statements seen so far in the same
path. If a receive statement is executed by a, and the send statement is not
related to the receive in the happens-before relation, the scheduler sets a flag at
the point of the receive statement. The flag indicates that all permutations of
messages to some other actor a′ (different from a) need to be explored at the
particular point. The exploration proceeds in a nondeterministic fashion again
from there on. A more detailed discussion of the algorithm can be found in [18].
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Note that the algorithms discussed above re-execute the program from the
beginning with the initial state in order to explore a new program path. The
algorithms can be easily modified to support checkpointing and restoration of
intermediate states, since these operations do not change DPOR fundamentally.

4 Illustrative Example

To illustrate key DPOR concepts and how different message orderings can affect
the exploration of actor programs, we use a simple example actor program that
computes the value of π. It is a porting of a publicly available [17] MPI example,
which computes an approximation of π by distributing the task among a set of
worker actors.

Figure 3 shows a simplified version of this code in ActorFoundry. The Driver

actor creates a master actor that uses a given number of worker actors to carry
out the computation. The Driver actor sends a start message to the master
actor which in turn sends messages to each worker, collects partial results from
them, reduces the partial results, and after all results are received, instructs the
workers to terminate and terminates itself.

Figure 4 shows the search space for this program with master actor M and
two worker actors A and B. Each state in the figure contains a set of messages.
A message is denoted as XY where X is the actor name and Y uniquely identifies
the message to X. We assume that the actors are created in this order: A, B, M .
Transitions are indicated by arrows labeled with the message that is received,
where a transition consists of the delivery of a message up to the next delivery.

The boxed states indicate those states that will be visited when the search
space is explored using a DPOR technique, and when actors are chosen for
exploration according to the order in which the receiving actors are created.
Namely, the search will favor exploration of messages to be delivered to A over
those to be delivered to B or M , so if in some state (say, the point labeled
K) messages can be delivered to both A and B, the search will first explore
the delivery to A and only after that the delivery to B. To illustrate how this
ordering affects how DPOR prunes execution paths, consider the state at point
G. For this state, the algorithm will first choose to deliver the message B1. While
exploring the search space that follows from this choice, all subsequent sends to
actor B are causally dependent on the receipt of message B1. This means that
DPOR does not need to consider delivering the message MA before B1. This
allows pruning the two paths that delivering MA first would require. Similar
reasoning shows that DPOR does not need to consider delivering B2 before A2

at points S and T , and that it does not need to consider delivering B1 at point
K. In total, this ordering prunes 10 of 12 paths, i.e., with this ordering, only 2
of 12 paths are explored.

The shaded states indicate those states that will be visited when the search
space is explored using the same DPOR, but when actors are chosen for explo-
ration according to the reverse-order in which the receiving actors are created.
This means that the search will favor exploration of messages to be delivered
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class Master extends Actor {
ActorName[] workers;
int counter = 0;
double result = 0.0;
public Master(int N) {

workers = new ActorName[N]
for (int i = 0; i < N; i++)

workers[i] =
create(Worker.class, i, N);

}
@message void start() {

int n = 1000;
for (ActorName w: workers)

send(w,”intervals”, self(), n);
}
@message void sum(double p) {

counter++;
result += p;
if (counter == workers.length) {

for (ActorName w: workers)
send(w,”stop”);

destroy(”done”);
}

}
}

class Worker extends Actor {
int id;
int nbWorkers;
public Worker(int id, int nb) {

this.id = id;
this.nbWorkers = nb;

}
@message void intervals(ActorName master, int n) {

double h = 1.0 / n; double sum = 0;
for (int i = id; i <= n; i += nbWorkers) {

double x = h * (i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
send(master, ”sum”, h * sum);

}
@message void stop() {destroy(”done”);}

}

class Driver extends Actor {
static void main(String[] args) {

ActorName master =
create(Master.class, args[0]);

send(master, ”start”);
}

}

Fig. 3. ActorFoundry code for the pi example.
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to M over those to be delivered to B or A. This reverse-ordering causes DPOR
to prune execution paths differently. Consider the state at point H. For this
state, the algorithm will first choose to deliver the message MB . Following this
path, it comes to point J , where the delivery of message A1 results in message
MA being sent. This send to actor M is not causally dependent on the receipt
of message MB . This means that the DPOR also needs to consider delivering
the message A1 before MB at point H. As the search continues, it discovers
that it does not need to consider delivering A2 before B2 at points U , V , and
W ; and also it does not need to consider delivering A1 at point K. In total,
the reverse-ordering prunes 9 of 12 paths, which is one fewer than when the
messages are selected in the order in which the receiving actors are created. As
shown in Sect. 6, this difference in the number of paths pruned increases as the
number of worker actors increases.

5 Heuristics

The example in Sect. 4 illustrates the idea that scheduling decisions may affect
the efficiency of DPOR techniques. In the algorithms presented in Sect. 3, the
scheduling choices are represented by the calls to the choose method (under-
lined). Observe that these DPOR algorithms first collect all possible messages
for an actor at a given state, and then explore some orders for processing this
set of messages. The key question, therefore, is how to order these messages for
a given state.

We present eight possible heuristics for ordering messages:

1. Earliest created actor (ECA) sorts the enabled actors by their creation time
in the ascending order. The intuition is to capture the “asymmetry” between
some actors in terms of the communication pattern.

2. Latest created actor (LCA) is similar to ECA but sorts the enabled actors
by their creation time in the descending order.

3. Queue (FIFO) sorts the actors based on the time of the earliest message
sent to them, in the ascending order. This heuristic captures the common
implementation order of choosing messages from a scheduling queue.

4. Stack (LIFO) sorts the actors based on the time of the last message sent to
them, in the descending order.

5. Lowest number of deliverable messages (LDM) sorts the actors by the number
of messages in their respective message queue, in the ascending order. The
intuition is that the actors that have received more messages are more likely
to receive more messages later in the computation.

6. Highest number of deliverable messages (HDM) sorts the actors by the num-
ber of messages in their respective message queue, in the descending order.

7. Highest average messages sent (HMS) prioritizes the actors which have been
sending the highest number of messages per received message, based on the
exploration history. The intuition is that the actors that have been sending
more messages in the past are more likely to send more messages in the
future.
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8. Send graph reachability (SGR) is based on information collected during prior
executions. Specifically, it maintains a directed graph where nodes represent
actors and edges indicate that a message was sent from the first node to the
second at some point in the exploration. Now, consider two messages: one to
actor A, and one to actor B. If actor B is reachable in the graph from actor
A and no such path exists from actor B to actor A, then SGR will prioritize
actor A over actor B. The intuition is that actor B is less likely to cause a
message to be sent to actor A.

These eight heuristics capture some intuition based on the functioning of
the DPOR algorithms and on the patterns of communication in actor programs.
While our list of heuristics is not complete by any means, we believe that it is
sufficiently representative to help us answer the questions raised by our study
(Sect. 1).

6 Evaluation

To evaluate the different heuristics for dynamic partial-order reduction, we con-
ducted experiments using two different DPOR techniques. The heuristics and
DPOR techniques are implemented in the Basset framework [16]. Basset pro-
vides an extensible environment for exploration of Java-based actor programs.
It is built on top of Java PathFinder (JPF), a popular explicit state model
checker for Java bytecode [20].

We first describe the subject programs used to quantitatively evaluate the
heuristics. We then present experimental results comparing the different heuris-
tics for the two DPOR techniques. All experiments are performed using Sun’s
JVM 1.6.0 16-b01 on a 2.80GHz Intel Core2 Duo running Ubuntu release 9.04.

6.1 Subject Programs

Our experiments use the seven actor programs listed in Table 1. All of these
subjects are either originally written using the ActorFoundry library [1, 2] or
ported to that environment.

The pi subject is the example described in Sect. 4. However, the results shown
here are for a configuration using five worker actors. Two of the subjects imple-
ment more complex algorithms previously used in the dCUTE study [18]: leader
is an implementation of a leader election algorithm; and shortpath is an imple-
mentation of the Chandy-Misra’s shortest path algorithm [6]. The shortpath

subject appears twice in the results: once for a graph with 4 nodes (shortpathA),
and again for a graph with 5 nodes (shortpathB). Note that the two graphs are
dissimilar. The fibonacci subject computes the n-th element in the Fibonacci
sequence. quicksort is an implementation of a distributed sorting algorithm
that use a standard divide-and-conquer strategy to carry out the computation.
pipesort is a modified version of the sorting algorithm used in the dCUTE
study [18]. chameneos is an implementation of the chameneos-redux benchmark
from the Great Language Shootout (http://shootout.alioth.debian.org).
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Table 1. Comparison of different ordering heuristics. (The best result is bold.)

dCUTE Persistent dCUTE Persistent

# of time # of time # of time # of time
Heur. Subject Paths [sec] Paths [sec] Subject Paths [sec] Paths [sec]

ECA 3821 300 19683 1474 288 22 288 23
LCA 216 19 216 20 5970 441 5970 453
FIFO 972 75 3240 267 1794 128 1791 138
LIFO chameneos 2031 142 4899 320 pipesort 1080 77 1080 78
LDM 753 67 3375 279 size=4 384 33 384 32
HDM 3821 312 19683 1626 2072 154 1480 126
HMS 3691 301 19683 1639 307 25 307 26
SGR 3821 280 19683 1422 288 24 288 24

ECA 684 65 327 31 7038 514 3822 327
LCA 16 5 16 5 32 6 32 6
FIFO 68 9 40 7 572 48 368 31
LIFO fib(5) 81 12 81 13 quicksort 243 26 243 25
LDM 508 51 261 28 size=6 6390 512 2502 206
HDM 526 59 263 31 5118 424 2804 250
HMS 82 12 66 10 195 21 183 21
SGR 684 70 327 34 7038 514 3822 325

ECA 101 9 101 9 516 32 392 25
LCA 188 16 188 15 680 43 640 33
FIFO 122 12 119 12 360 24 238 18
LIFO leader 125 11 125 11 shortpath 859 48 750 36
LDM 133 12 133 12 graph A 585 42 492 33
HDM 88 9 88 9 562 39 419 30
HMS 141 14 126 12 540 35 453 32
SGR 101 9 101 10 516 33 392 25

ECA 120 25 120 22 7216 397 2658 127
LCA 945 142 19845 2921 7462 570 1865 109
FIFO 120 22 120 22 3488 244 528 41
LIFO pi 945 149 19845 2833 shortpath 6472 489 2638 167
LDM 5 workers 120 23 120 24 graph B 7326 509 1178 71
HDM 706 120 3424 614 13438 1111 2756 273
HMS 945 179 19845 3542 3618 268 783 44
SGR 153 29 567 77 7940 493 3349 186

6.2 Results and Observations

Table 1 shows the results of experiments comparing the different heuristics for
both the DPOR based on persistent sets and the one used for dCUTE. For each
heuristic, we tabulate the total number of paths executed and the total explo-
ration time in seconds. The results suggest that the efficiency of the two DPOR
techniques is greatly dependent on the order in which messages are selected for
exploration.
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Recall the four research questions posed in Sect. 1. The first question is
discussed in Sect. 5 where we describe some intuitive ordering heuristics to guide
DPOR algorithms. We address the remaining three questions now by making
observations on the results in Table 1.

1. What is the impact of choosing one heuristic over another heuristic?

The table shows that for 6 out of 8 experiments, one of the heuristics (but
not necessarily the same) performs the best, i.e., there is no tie for the best
performing heuristic. In the case of pipesort the tie between ECA and SGR
is due to the relationship between the two heuristics. Specifically, ECA is the
tie-breaking heuristic for SGR.

SGR performs the same as ECA for 6 out of 8 experiments. However, for the
remaining two experiments, SGR performs worse than ECA. This suggests that
the SGR heuristic, despite its usage of additional information, does not offer any
advantage over ECA.

We also observe that the difference between the best and the worst heuristic
can be very large. For example, for the quicksort subject sorting an array of size 6
and dCUTE DPOR, the best heuristic (LCA) has 2 orders of magnitude (more
precisely, 220X) fewer executions than the worst performing heuristic (ECA).
Note that both these heuristics are natural orders on the scheduling queue. In
fact, the dCUTE DPOR algorithm as originally presented [18] employs the ECA
ordering. The second best performing heuristic (HMS) for quicksort still explores
6 times as many executions as the best heuristic. For the other subjects, the ratio
between the number of executions in the worst and the best case ranges from
2X (for leader) to 91X (for chameneos).

In general, the exploration time strongly correlates with the number of exe-
cuted paths. This observation suggests that the better heuristics do not have a
significant computation cost, and thus their reduction in the number of execu-
tions directly translates into savings in the exploration time. There are excep-
tions: for the subject shortpathB, the exploration time does not correlate with
the number of paths executed as closely as other experiments. We believe that
this is due to our experiments using Basset which is built on top of JPF and uses
checkpointing and restoring to explore different paths, rather than re-execution.
Hence, the time may relate more to the number of states visited instead of the
number of executions, or stated differently, the time may depend more strongly
on the length of executions instead of the number of executions.

2. Does the impact of these heuristics depend on the DPOR technique?

Although the results differ between the two DPOR algorithms for the exper-
iments, the results exhibit a similar ranking of heuristics for both algorithms.
In other words, for a given subject, heuristics that perform well for one DPOR
technique tend to perform well for the other. Similarly, a heuristic that performs
poorly typically does so for both DPOR algorithms.



13

It is evident from the table that for all 8 experiments, the best heuristic
exactly matches for both DPOR algorithms. Moreover, even the worst heuristic
matches for 7 out of 8 experiments.

3. Can we predict which heuristic may work better for a particular DPOR tech-
nique or subject program?

We found that which heuristic performs the best relates to the communication
patterns employed by the program. For example, in a pipelined computation, it
is more efficient to schedule first the actors that represent the early stages in the
pipeline. On the other hand, in a divide-and-conquer tree, it is more efficient to
schedule child actors before the parent actor.

Indeed, the ECA heuristic is the best performing heuristic for pipesort. ECA
prioritizes actors in the early stages of a pipeline, and this enables the DPOR
algorithms to collect all possible messages for actors in the later stages of the
pipeline.

For 3 out of 8 subjects, the LCA heuristic performs the best among all heuris-
tics. Two of these subjects—fib and quicksort—employ a divide-and-conquer
approach. The remaining subject, chameneos, has a request-reply pattern be-
tween a broker and many clients. LCA allows the DPOR algorithm to collect
all possible messages sent from the clients to the broker before exploring all the
permutations of this set of messages.

For subjects with arbitrary graphs and communication patterns, the FIFO
heuristic outperforms the remaining heuristics. For instance, the input graphs
for shortpathA and shortpathB are dissimilar, and the effectiveness of several
heuristics varied between the two experiments. Yet, the FIFO heuristic is the
most effective heuristics for both inputs.

We performed some additional experiments for shortpath (not shown in the
table) to identify how much the choice of heuristic depends on the program input
rather than program code. In particular, the input to shortpath is a graph, and
the messages exchanged depend on the topology of this graph. We considered
seven more graphs (all with four or five nodes) in addition to the two for which
the results are shown. While there is some variation of the results, in all the cases,
FIFO is the best heuristic, either by itself, or together with some other heuristics
(e.g., for a graph that is a list, there is only one execution path for any heuristic).
These results are not conclusive, but they strongly suggest that the choice of
heuristic depends on the program (and its communication pattern) more than
on the input. Ideally, we would like to evaluate how shortpath performs for all
graphs of a given size (but some explorations time out after an hour even for
graphs of size just four). We would also like to evaluate sensitivity of heuristics
to the inputs for other programs. We leave that as future work.

In summary, the results suggest the following set of guidelines for selecting
a heuristic before the exploration of a program. (1) If there is no well-defined
topology and communication pattern in the program (or if this communication
pattern is not known a priori), then the default heuristic should be FIFO, since it
is never the worst and sometimes is even the best heuristic. (2) If the communi-



14

cation pattern is a pipeline, then ECA should be used. (3) If the communication
pattern is a divide-and-conquer tree, then LCA should be used.

7 Conclusions

Systematic exploration of message schedules is a viable approach to address the
important but challenging problem of testing actor programs. Dynamic partial-
order reduction (DPOR) techniques can significantly speed up systematic explo-
ration, but they are highly sensitive to the order in which messages are explored.
We described and compared several heuristics that can be used for ordering mes-
sages. Our results show up to two orders of magnitude difference in the number
of executions explored. Moreover, our analysis of the results discovered guide-
lines that, based on the type of program, can aid selection of a good heuristic
before the exploration. There has been recent work on combining DPOR tech-
niques with stateful exploration [24,25], and we plan to evaluate the effectiveness
of heuristics for such approaches. Similarly, we plan to evaluate the impact of
heuristics on DPOR algorithms based on sleep sets [12].
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