
Evaluation of a Feature Tracking Vision Application
on a Heterogeneous Chip

Rubén Gran
University of Zaragoza

C/ Marı́a de Luna, 3. Zaragoza, 50018, Spain
e-mail: rgran@unizar.es

August Shi, Ehsan Totoni, Marı́a J. Garzarán
University of Illinois at Urbana-Champaign
201 N. Goodwin. Urbana, IL 61801, USA

e-mail: {awshi2,totoni2,garzaran}@illinois.edu

Abstract—Consumers of personal devices such as desktops,
tablets, or smart phones run applications based on image or video
processing, as they enable a natural computer-user interaction.
The challenge with these computationally demanding applications
is to execute them efficiently. One way to address this problem
is to use on-chip heterogeneous systems, where tasks can execute
in the device where they run more efficiently.

In this paper, we discuss the optimization of a feature tracking
application, written in OpenCL, when running on an on-chip
heterogeneous platform. Our results show that OpenCL can
facilitate programming of these heterogeneous systems because it
provides a unified programming paradigm and at the same time
can deliver significant performance improvements. We show that,
after optimization, our feature tracking application runs 3.2, 2.6,
and 4.3 times faster and consumes 2.2, 3.1, and 2.7 times less
energy when running on the multicore, the GPU, or both the
CPU and the GPU of an Intel i7, respectively.

Keywords-Evaluation of algorithms and systems, SIMD,
Energy-aware systems, OpenCL.

I. INTRODUCTION

As personal devices, such as desktops, tablets or smart
phones become more powerful, the interaction between hu-
mans and computers are taking place through actions that are
more natural to human users, such as gestures. These more
natural interactions require the execution of applications based
on vision and video analytics algorithms, which are usually
highly computationally demanding, and so executing them
efficiently is of the utmost importance.

High-efficiency is very important in all types of computing
devices. For mobile devices, energy-efficiency is important be-
cause they operate under a very constraint power and energy-
budget, as they are usually battery-operated. For desktops, re-
ducing energy is important from an environmental perspective,
but also from a budget point of view. Vision and video analytic
applications are usually data parallel and adapt well to the
Graphic Processor Unit (GPU). Thus, manufacturers of mobile
devices are now deploying heterogeneous systems, where CPU
and GPU are integrated on the same chip. Examples of those
architectures include Intel Ivy Bridge [1], AMD Fusion [2],
NVIDIA Tegra 250 [3], Qualcomm Snapdragon 800 [4], and
Samsung Exynos 5 Octa [5], among others.

In this energy-constrained environment, both the CPU cores
and GPU need to be utilized. However, it is unclear how to
program these heterogeneous systems. One solution is to use

OpenCL, as this programming language is supported by both
the integrated GPUs and the CPU cores of these heterogeneous
systems. However, it is possible that the optimizations that
benefit performance when running in the GPU will hurt
performance when running in the CPU, or vice versa. Also,
most of the current multicores in these heterogeneous systems
include vector units that can significantly speed up vision and
video analytic applications. To use these vector units, OpenCL
supports vector data types that the compiler maps to the
underlying vector units in the computing device. These vector
data types can be used even when the underlying hardware
does not provide hardware support for vectorization, but it is
unclear how well the code will perform.

In this paper, we explore the effectiveness of OpenCL
as a unified programming paradigm for these heterogeneous
systems. For that, we take a feature tracking application from
the San Diego Visual Benchmark Suite (SD-VBS) [6] and
evaluate its performance when running on the CPU, the GPU,
and when both devices are used. We focus on a 2D-stencil or
convolution computation that dominates the execution time of
this application. Convolution-type computations are common
in many algorithms that run on mobile systems, such as de-
mosaic, mapping-in scale-invariant-feature-transforms (SIFT),
windowed histograms, or median filtering.

We have translated the feature tracking application into
OpenCL and optimized the 2D stencil computations by using
built-in vector data types to take advantage of the vector units
in the multicore. We have applied transformations such as
loop fusion and unrolling. However, the contribution of this
paper is not on the optimizations, which are well known in
the compiler community, but on the performance evaluation of
how effective OpenCL is as a unified programming paradigm
for these heterogeneous devices. We ran experiments on an on-
chip heterogeneous platform, an Intel i7 3770K with 4 cores
(8 threads) with an on-chip HD4000 GPU. Our performance
results show that the use of OpenCL built-in vector data types
that are converted by the compiler to the appropriate instruc-
tions in the target device produced significant performance
speedups, in both the multicores and the GPU.

After optimization, the 2D-stencil for a fullHD image runs
up to 33.7 times faster on the multicore and 13.3 times faster
on the GPU of the Intel i7. We also evaluate the performance
of the overall feature tracking application when running on

the multicore, on the GPU, or when both CPU and GPU are
used. Overall, our results show that the application can run
3.2, 2.6, and 4.3 times faster on the multicore, the GPU, and
both, respectively. When both CPU and GPU are used, the
applications consumes 2.7 times less energy.

The paper is organized as follows. Section II describes
the feature tracking application and the optimizations that we
apply. Section III presents our environmental setup. Section IV
presents our performance results. Section V discusses other
related works. Finally, Section VI concludes the paper.

II. OPTIMIZATION DESCRIPTION

In this section, we describe the feature tracking application
(Section II-A) and the optimizations that we applied (Sec-
tion II-B and Section II-C).

A. Application Description

The feature tracking application from SD-VBS is based on
the Kanade Lucas Tomasi (KLT) [7] algorithm. It has two
main parts. The first part processes the first image to extract the
initial features. The second part tracks these features across the
multiple frames in the video stream, computes the movement
of features, and updates the new feature positions. Profiling
numbers show that the application spends 98% of the time on
this second part. In this paper, we focus on this second part.

The second part of feature tracking consists of a loop that
traverses the images of the video stream in sequence. In this
loop, each image is processed in two phases. During the
first phase, several filters are applied to each image: blurring,
sobelDx and sobelDy. All these filters are instances of 2D-
stencil or convolution computations. Thus, this first phase is
highly parallel, since for a given filter, each pixel of an image
can be processed independently of the others. The second
phase compares two images to compute the movement of each
feature and compute its new position. Profiling numbers show
that the first phase of this second part takes 89% of the time.

Next, we explain how we transformed the feature tracking
application. Section II-B describes the original 2D-stencil al-
gorithm used in the first phase and discusses how we optimized
it; Section II-C briefly describes the transformations applied
to exploit the parallelism available in the second phase.

B. 2D-Stencils in Tracking

Figure 1 shows a code snippet of the 2D-stencil algorithm
of feature tracking in the SD-VBS benchmark suite. All the
2D-stencil codes in this application are similar to the code
in Figure 1, and only differ in the number of neighbors and
the weights. As Figure 1 shows, for each pixel in the src
image, we compute the weighted average of its 4 neighbors
and store it into the dst image1. The original application
traverses the image two times, the first one across the elements
in a row and the second one across the elements in a column.
This implementation may not be very efficient because this
2D stencil can be computed with a single pass.

1The division operation was replaced by the multiplication of the reciprocal

1
2 float src[rows][cols],dst[rows][cols],tmp[rows][cols

],Div = 16.0f;
3 float K[kern_size] = {4.0f,6.0f,4.0f};
4 //pass along elements in a row
5 for (int i = 0; i < rows; i++){
6 for (int j = 0; j < cols; j++){
7 tmp[i][j] = (src[i][j-1]*K[0] + src[i][j]*K[1] +

src[i][j+1]*K[2])/Div;
8 } }
9 //pass along elements in a column

10 for (int j = 0; j < cols; j++){
11 for (int i = 0; i < rows; i++){
12 dst[i][j] = (tmp[i-1][j]*K[0] + tmp[i][j]*K[1] +

tmp[i+1][j]*K[2])/Div;
13 } }

Fig. 1: 2D-stencil in feature tracking from SD-VBS

1 float src[rows][cols],dst[rows][cols],tmp[rows][cols
];

2 float4 vK[kern_size] = {{4.0f,4.0f,4.0f,4.0f},{6.0f
,6.0f,6.0f,6.0f},

3 {4.0f,4.0f,4.0f,4.0f}},vDiv = {16.0f,16.0f,16.0f
,16.0f};

4 float4 previous, next, vtmp, current, c_minus1,
c_plus1;

5 //pass along elements in a row
6 for (int i = 0; i < rows; i++){
7 current = vload4(src[i][j]); //loads 4 float

starting at src[i][j]
8 previous = vload4(src[i][j-4]);
9 for (int j = 0; j < cols; j+=vector_size){

10 next = vload4(src[i][j+4];
11 c_minus1[0,1,2,3] = {previous[3], current[0,1,2]};
12 c_plus1[0,1,2,3] = {current[1,2,3], next[0]};
13 vtmp = (c_minus1*vK[0] + current*vK[1] + c_plus1*

vK[2])/vDiv;
14 tmp[i][j] = vstore4(vtmp);
15 previous = current; current = next;
16 } }
17 //pass along elements in a column
18 for (int j = 0; j < cols; j+=vector_size){
19 current = vload4(tmp[i][j]);
20 previous = vload4(tmp[i-1][j]);
21 for (int i = 0; i < rows; i++){
22 next = vload4(tmp[i+1][j]);
23 vtmp = (previous*vK[0] + current*vK[1] + next*vK

[2])/vDiv;
24 dst[i][j] = vstore4(vtmp);
25 previous = current; current = next;
26 } }

Fig. 2: OpenCL 2D-stencil using vector instructions

We optimized the code using OpenCL, so that the same
code can execute in the multicore and in the integrated GPU.
The first optimization that we applied is the use of vector
instructions. OpenCL supports built-in vector data types that
are converted by the compiler to the appropriate instructions
in the target device. Notice that OpenCL built-in vector data
are supported even if the underlying compute device does not
have hardware support.

There are two options to vectorize the loops that traverse
the image along the elements in the row. One is to perform
redundant loads, where the load addresses differ by the stride
of the stencil. In our example this would require 3 loads
of src[i][j], src[i][j-1], and src[i][j+1]. The
other option does not require redundant loads, but needs
shuffling instructions to move the data inter and intra registers
and place each data element in the appropriate position in the
vector register. The first option requires the use of unaligned

1 float src[rows][cols],dst[rows][cols],tmp[rows][cols];
2 float4 vK[kern_size] = {{4.0f,4.0f,4.0f,4.0f},{6.0f,6.0f,6.0

f,6.0f},
3 {4.0f,4.0f,4.0f,4.0f}}, vDiv = {16.0f,16.0f,16.0f,16.0f

};
4 float4 previous, next, vtmp[3], vaux, current, c_minus1,

c_plus1;
5 //pass along elements in a column
6 for (int j = 0; j < cols; j+=vector_size){
7 previous = vload4(src[0][j-4];
8 current = vload4(src[0][j]);
9 next = vload4(src[0][j+4]);

10 c_minus1[0,1,2,3] = {previous[3], current[0,1,2]};
11 c_plus1[0,1,2,3] = {current[1,2,3], next[0]};
12 vtmp[0] = (c_minus1*vK[0] + current*vK[1] + c_plus1*vK[2])

/vDiv;
13 previous = vload4(src[1][j-4];
14 current = vload4(src[1][j]);
15 next = vload4(src[1][j+4]);
16 c_minus1[0,1,2,3] = {previous[3], current[0,1,2]};
17 c_plus1[0,1,2,3] = {current[1,2,3], next[0]};
18 vtmp[1] = (c_minus1*vK[0] + current*vK[1] + c_plus1*vK[2])

/vDiv;
19
20 for (int i = 1; i < rows; i++){
21 previous = vload4(src[i+1][j-4];
22 current = vload4(src[i+1][j]);
23 next = vload4(src[i+1][j+4]);
24 c_minus1[0,1,2,3] = {previous[3], current[0,1,2]};
25 c_plus1[0,1,2,3] = {current[1,2,3], next[0]};
26 vtmp[(i+1)%3] = (c_minus1*vK[0] + current*vK[1] + c_plus1

*vK[2])/vDiv;
27 vaux = (vtmp[(i-1)%3]*vK[0] + vtmp[i%3]*vK[1] + vtmp[(i

+1)%3]*vK[2])/vDiv;
28 dst[i][j] = vstore4(vaux);
29 } }

Fig. 3: OpenCL 2D-stencil with vector instr. and fused loops

loads, which have a significant overhead on some architec-
tures, such as IBM Power 7 or Intel Core 2. Unaligned loads
have lower penalties in some architectures like the Intel Core
i7, but they are still slower than their aligned counterparts.
The option that uses shuffling instructions only uses aligned
loads. The vectorization of the loops that traverse the image
along the elements in a column is easier, as the data elements
are in the appropriate register location and there is no need
to shuffle the data or perform redundant loads. Notice that
when the number of loads in an image is not a multiple of the
vector size, padding might be required to guarantee that data
are properly aligned. This, however, was not a problem for the
images that we used, with fullHD and VGA resolution.

Figure 2 shows the vector pseudo-code using OpenCL
vector data types, assuming a vector size of 4 floats and where
data are shuffled. The first two loops traverse the image along
the elements in a row. Each inner iteration computes the output
value of 4 elements in a row. We use three vector variables
(previous, current and next) that hold 12 consecutive
elements of a row. These vectors are used to build the vectors
c_minus1 and c_plus1, where c_minus1 contains the
same elements as current, but shifted one position to the left,
whereas c_plus1 is shifted to the right. The inner loop j in
line 9 only performs one load operation, and moves in steps
of vector_size, 4 in the example. The next two loops in
lines 18 and 21 of Figure 2 perform a pass through elements in
the same columns. They use the vector variables: previous,
current and next that hold 4 elements from the same

columns and 3 consecutive rows.
The code in Figure 2 performs two passes through the input

image, as the code in Figure 1. Thus, when images are large,
the intermediate tmp matrix does not fit in cache. Figure 3
shows the code where a single pass through the image is
required. In this figure, the fused loop traverses vectors that
are in the same column. Variable vtmp[3] is a circular
buffer that temporally holds the intermediate results of the
horizontal stencil computation to compute vaux in line 27.
The code in Figure 3 does not need the temporal image matrix
tmp[rows][cols]. In addition, the outer loop is parallel,
and no synchronization is needed between loops.

We have also unrolled the codes in Figures 2 and 3 and
searched for the best number of items per OpenCL workgroup.
Most previous works in the literature use loop tiling to increase
locality and facilitate parallelism. This is usually applied in
codes where the stencil is applied over several time steps. In
the context of feature tracking, several filters are applied to
the same image, and so loop tiling could be applied across the
multiple filters. However, the intermediate results produced by
each filter are needed, and so intermediate results still need to
be saved. In this paper, we focus on the optimizations inside
each filter, and we do not apply loop tiling.

C. Feature Updating

In this section, we describe the transformations we applied
in the second phase of the application. This second phase
consists of a loop that iterates over the valid set of features in
the video stream, where the number of features can vary from
dozens to hundreds, and changes during run-time. For every
feature, the algorithm calculates if each feature is still valid.
If it is, the algorithm updates the new position of that feature,
taking into account the current frame and the previous frame.
For that, the algorithm applies scaling/reduction operations in
the matrix of neighbor pixels of the feature, where matrix of
neighbors can be of size (8x8, 16x16, 32x32, 48x48).

In the OpenCL implementation, for the multicore CPU we
wrote vector code to speed up the calculations over the small
matrices of neighbors, and then we divided the problem into
features and executed one of these packets into one thread-
core. For the GPU, since its cores are less powerful than the
CPU cores, we assigned a set of GPU-threads to each feature.
Each set of threads operates over the neighbors matrix of each
feature.

III. ENVIRONMENTAL SETUP

In this section, we describe the environmental setup we
have used to run the experiments. Section III-A describes the
platform. Section III-B discusses the software development kit
and measurement methodology. Finally, Section III-C gives
some extra details about the feature tracking benchmark.

A. Hardware Platform

To collect our experimental results we used an Intel i7-
3770K. This processor includes an on-chip integrated Graphics
Processor Intel HD4000. Characteristics of the CPU and the
GPU are shown in Table I. The Intel i7 contains 4 cores and

i7-3770K HD4000
Clock Speed 3.4Ghz 650Mhz
Max Turbo Frequency 3.9Ghz 1.15Ghz
Peak Performance(single core) 125GFlops 147.4Gflops
Base Performance 112GFlops 44.8Gflops
of Cores/Execution Units 4(8 threads) 16
LLC cache size 8MB
L2 cache size 256KB
Bandwidth to memory 25.6GB/s 25.6GB/s
RAM type DDR3 DDR3
Instruction Set AVX,SSE4.1/4.2
LLC Ring connect 32B/cycle /Core 32B/cycle
MAX TDP 77W

TABLE I: Hardware Platform characteristics [8]

supports a total of 8 threads due to hyper-threading. Each
core supports AVX, which has 256-bit wide vector units and
operates on 8 floating-point numbers concurrently.

The GPU in the Intel i7-3770K is the HD4000, which
accesses memory through the GPU-specific L3 cache (256
KB) and the CPU and GPU Shared Last Level Cache (LLC).
Accesses to global variables go through the GPU L3 cache
and the LLC. Local memory (also referred as shared local
memory) is allocated directly from the GPU L3 cache (which
has a size of 64KB). Thus, the GPU L3 cache can be used
as a scratch-pad or as a cache. For the experiments reported
here, we did not use the GPU local memory. The GPU does
not have AVX-like support for vectorization. In the figures in
Section IV, we refer to three different platforms:

• SC: A single core of our Intel i7 processor. The default
code executed in SC is the original C code in SD-VBS.

• MC: The 4 cores (8 threads) of our Intel i7 processor.
Our experimental results show that our codes run faster
using 8 threads instead of 4.

• GPU: The HD4000 GPU.

B. Development Toolkit and Measurement Methodology

Experiments were done using the Windows 7 OS. We
used Microsoft Visual Studio 2010, but compiled using the
Intel Composer 2014 XE and the Intel SDK for OpenCL
2013. To generate code for the multicore we used the /O3,
/QAVX, /Qipo, /QPrefetch compilation flags, which by default
vectorize when possible. For the Intel OpenCL compiler we
used the default compilation flags.

Performance and energy metrics were collected using the
Intel Performance Counter Monitor v.2.5 (PCM) driver for
Windows. This driver reads the on-chip performance coun-
ters [9]. To estimate energy the hardware counters measure
three domains: the consumption of the whole package (includ-
ing CPU, GPU, memory controllers, etc), the consumption of
the CPU domain, and the consumption of the GPU domain.
For the evaluation on energy consumption in Section IV-B we
report numbers for the whole package. The reason is that for
this architecture, when the code is running in the multicore,
the GPU does not consume energy. However, when the code
runs in the GPU, the multicore is still consuming energy. This
is because the CPU and the ring interconnect are in the same
voltage and frequency domain [10] and the interconnect cannot
be idled, since the GPU needs to access the LLC. By reporting

0

10

20

30

40

50

60

70

G
F
lo
p
s

FullHD

VGA

Fig. 4: Performance (GFlops) for the Intel i7 MC. SC and
MC stand for the platform. 2P and 1P stand for the algorithm
of Figures 2 and Figures 3, respectively. NV stands for not
vectorized, V for vectorized and UR for unrolled.

the energy for the whole package, we are taking into account
the consumption of the CPU domain when executing on GPU.

For the measurements, we launched each kernel 10 times
and ran each kernel 100 times.

C. Tracking Benchmark

As explained in Section II, we used the feature tracking
application from the SD-VBS [6] that calculates the movement
of a set of features over the image-flow of a video stream.
We use two different image resolutions, fullHD (1920x1080)
and VGA (640x480). Each fullHD image needs about 8MB
of memory, which is the size of the Last Level Cache (LLC);
a VGA image needs about 1MB of memory, so it fits com-
fortably in the LLC. The original code of this application is
similar to the code shown in Figure 1. The only difference is
that the image is stored as a 1D array instead of 2D, as shown
in the figure. Thus, the SD-VBS benchmark access the pixel
[i][j] using the index [i*NumCols+j].

IV. EXPERIMENTAL RESULTS

In this section we present our experimental results. Sec-
tion IV-A shows the performance results for the optimizations
in Section II; Section IV-B evaluates the energy and power
dissipation; Section IV-C shows results for the whole applica-
tion; Section IV-D discusses about the ease of use of OpenCL
as a programming paradigm for heterogeneous platforms.

A. Performance

Multicore Performance: Figure 4 shows performance results
for SC and MC. The Figure shows the GFlops per second
achieved by the different code versions when running on the
SC or on the MC of the Intel i7. Results are shown for two
different image sizes, fullHD and VGA. The code versions
executed are similar to the ones shown in Section II, but
using a 2D stencil of 25 neighbors (which corresponds to the
ImageBlur filter in the original feature tracking application of
SD-VBS). This means that for each pixel we visit a 5x5 square
matrix of pixels centered on that pixel.
SC-2P-auto corresponds to the original C code from SD-

VBS, running in SC and compiled with /O3, which vectorizes

when possible. All the other versions are OpenCL codes that
run in the MC. The bars with 2P corresponds to the code that
perform two passes over the image, as in Figure 2, while the
bars with 1P correspond to the code that perform one pass, as
in Figure 3. NV indicates that the OpenCL code does not use
the vector data type, V indicates an OpenCL code that uses
the vector data type, as in Figures 2 and 32. V-UR indicates
that the OpenCL code uses the vector data type and has been
manually unrolled. For the unrolling we tried unrolls of 2, 4,
and 8 and selected the best.

The original C code SC-2P-auto performs very poorly,
as the compiler was not able to vectorize. We modified this
code by restricting the pointers with the restrict keyword
and using the #pragma ivdep in front of the loops to
tell the compiler that there are no data dependences. Then,
the compiler was able to vectorize the second loop, the one
that traverses the image along the elements in the columns in
Figure 1. However, the compiler could not vectorize the first
loop and reports that the subscript is too complex. The code
with the pragmas (not shown in the figure) achieves 2.3 Gflops
versus the 1.5 Gflops of the original non-vectorized code.

To assess the benefits of parallelization, we can compare the
performance of SC-2P-auto versus that of MC-2P-NV. We
use 8 threads, as our experiments show that 8 threads perform
better than 4. Figure 4 shows that running in parallel gives us
a speedup of 7.4 for fullHD (1.6 Gflops versus 11.9 Gflops).
Similarly, if we compare the performance of MC-2P-NV
versus MC-2P-V, we can see the benefits of vectorization.
In this case, vectorization makes the code run almost 4 times
faster (from 11.9 Gigaflops to 39.0 Gigaflops for fullHD).
Although this is a significant improvement, it is still far from
the 8 times faster that can potentially be achieved using AVX
vector instructions, as they can perform 8 operations at a time.
Finally, the MC-2P-V-UR bars in Figure 4 show that unrolling
the vector code gives us additional benefit, as the compiler can
better schedule the memory and compute instructions.

If we compare the 1P with the 2P bars we can see the
benefit obtained by performing a single pass over the array. All
the 1P code versions perform better than their corresponding
2P counterparts. This benefit is more noticeable for fullHD
in the most optimized code version MC-1P-V-UR, as for
this resolution the image does not fit in the LLC cache, and
performing a single pass over the image has a higher benefit.
The most optimized code versions run at 54.0 and 58.6 Gflops
for fullHD and VGA, respectively. That is 43.2% and 47.6%
of the peak performance.

To understand the bottlenecks that limit the performance,
we ran several experiments. First, to asses the impact that
limited memory bandwidth has on these algorithms we run the
1P-V-UR and 2P-V-UR algorithms with an image that fits
into the L1 data caches. In this case, performance increased to
92.3 and 92.1 Gflops for 2P-V-UR and 1P-V-UR algorithms,
respectively. So, when memory bandwidth is not a problem,
these two algorithms perform similarly. Their performance

2We use vectors of size 8 (instead of size 4 shown in Figures 2 and 3) as
the Intel i7 has support for AVX that can hold 8 floats.

is significantly higher than the results shown in Figure 4,
reaching 73.8% of the peak performance of the machine.

Then, we noticed that the 2P algorithms require two passes
over the matrix, a row-major pass and a column-major one.
These passes perform the same number of floating-point op-
erations, but have different memory access patterns. The row-
major pass has a sequential memory access pattern that results
in good cache locality, but requires shuffling instructions to
shift elements inside the vector registers. The column major
pass, does not need shuffling instructions but has a strided
memory access pattern that can result in poor cache locality
(a data prefetcher can predict the memory address, but needs
to issue the prefetch ahead of time to hide the latency of
the memory access). Thus, when we measured separately
the performance of the row-major and column-major passes
for the fullHD size we observed that the row-major pass of
MC-2P-V-UR achieves 87.1 Gflops (69.7% of the peak) while
the column-major pass only reaches 29.3 Gflops (23.4% of the
peak). So, despite of the overhead of the shuffling instructions,
the row-major pass runs more than twice faster than the
column-major pass, due to the better memory access pattern.
If we reduce the image size to fit into the L1 data cache, the
performance results are just the opposite. For the L1-fitting
image size, the row-major and column-major reach 84.2 and
112.6 GFLops (67.4% and 90.1% of the peak), respectively.
Thus, these results show that the shuffling instructions are
the bottleneck for the row-major pass to achieve the peak
performance and that the performance of this row-major pass
is not limited by memory bandwidth (performance is similar,
87.1 Gflops versus 84.2 Gflops, independently on whether the
image fits or does not fit in the cache). However, the limited
memory bandwidth is the bottleneck for the column-major
pass, as this pass can achieve almost peak performance when
the data fit in the cache (see Table I).

The 1P algorithms have three drawbacks: first, the memory
access pattern is column-major, similar to the second pass of
the 2P algorithms; second, it requires the use of shuffling
instructions in order to perform vector shifts; and third, it
requires reading 12 elements from each row in order to
compute the stencil of only 8 elements that fit in an AVX
register. Our experimental results show that the factors that
limit the performance of these algorithms are the limited mem-
ory bandwidth and the overhead of the shuffling instructions.
However, the most optimized OpenCL code versions produce
highly efficient code, as shown by the high performance
obtained when the data fits in the L1 data cache.
GPU Performance: Figure 5 shows the performance in Gflops
per second obtained by the same code versions as in Figure 4
when running on SC and on the GPU of the Intel i7.

The code versions GPU-2P-V-UR in Figure 5 differ with
respect to their counterparts MC-2P-V-UR in Figure 4. The
reason is that in the first pass through the image in the code in
Figure 2 we access the elements in the same row. However, for
the GPU, it is more efficient to access the elements in the same
column. Thus, we changed the code to traverse the elements
along the columns, similar to the code shown in Figure 3.

0

5

10

15

20

25

30

35
G
F
lo
p
s

FullHD

VGA

Fig. 5: Performance (GFlops) for the Intel i7 GPU. SC and
GPU stand for the platform. 2P and 1P stand for the algorithm
of Figures 2 and Figures 3, respectively. NV stands for not
vectorized, V for vectorized and UR for unrolled

Results in Figure 5 have a similar shape as those in Figure 4.
However, although the peak performance of MC and GPU are
similar, the performance results are much lower for the GPU.
In fact, for VGA and 1P-V-UR (best performing version), the
performance of the GPU is 29.8 Gflops (versus 58.6 in MC);
for fullHD, the GPU’S performance is 21.3 Gflops (versus
54.0 in MC). The reason is that the memory hierarchy of the
MC has better bandwidth to LLC than that of the GPU. While
the MC has 4 ports to LLC and 1MB of private L2 cache,
the GPU has a single port to LLC and 256 KB of L3 cache.
In addition, GPU latencies are higher than the multicore ones,
since the GPU is designed to tolerate the memory latency with
large amounts of parallelism.

We have also measured the GPU performance when the
image fits into the GPU L3 cache (the first level cache
automatically managed in hardware like the multicore caches).
In this case, we measured a performance of 36.7 Gflops
for GPU-1P-V-UR, which is only 24.9% of the peak-
performance. Since the GPU L3 latency is much higher than
the multicore L1 latency, it needs larger amounts of parallelism
to hide that latency, which is not available in this case. The
overhead of the shuffling instructions and the need of reading
12 elements to only compute 8 are also related to the poor
performance observed.

All the 1P code versions are the same for the GPU and
the CPU. Only the 2P versions differ, as explained above. To
evaluate the impact of this change, we executed the OpenCL
code MC-2P-V-UR that we ran in the MC in the GPU, and
found that in that case the code runs 26.0% slower than
the GPU-2P-V-UR shown in Figure 5. This would be the
performance penalty of using a single code version for both
the CPU and the GPU. However, the most optimized version
MC-1P-V-UR is the same for both CPU and GPU.

B. Energy Consumption and Power Dissipation

In this section, we evaluate the energy consumption and
power dissipation of the different code versions when running
on the two hardware platforms. Table II shows the total
energy consumed (Joules) and the dissipated power (Watts).
Figure 6 shows for each platform and code version, two

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

2P✄NV 2P✄V 2P✄V✄UR 1P✄NV 1P✄V 1P✄V✄UR

M
F
lo
p
/J

J*s

MC✄MFlps/J

GPU✄MFlps/J

MC✄J*s

GPU✄J*s

Fig. 6: MFlops/J and EDP(J*s) on fullHD. GPU and MC stand
for the platform. 2P and 1P stand for the algorithm of Figures 2
and Figures 3, respectively. NV stands for not vectorized, V
for vectorized and UR for unrolled.

MC-2P GPU-2P
NV V V-UR NV V V-UR

Energy(J) 26.3 8.3 7.7 31.5 13.4 10.0
Power(W) 67.7 71.1 72.4 43.1 37.1 36.1

MC-1P GPU-1P
NV V V-UR NV V V-UR

Energy(J) 20.7 8.1 7.0 10.7 8.7 8.0
Power(W) 74.7 81.4 82.7 39.1 33.0 38.9

TABLE II: Average Energy Consumption and Power Dissipa-
tion for fullHD for the Intel i7 per kernel. Each kernel runs
100 times.

metrics: MFlops per Joule consumed on the left-Y axis and the
Energy Delay Product (EDP) [11] in Joules × Seconds on the
right-Y axis. We do not plot values of EDP for the *-2P-NV
algorithms (GPU: 2300 and MC:1000 J*s) on behalf of clarity.
As discussed in Section III-B, for all the experiments, we
report the energy consumed by the whole chip.

The Figure 6 shows that all code optimizations have a
positive impact on these metrics. Thus, higher performance
(GFlops) translates into higher energy-efficiency. The figure
also shows that although the GPU is an architecture intended
to leverage data-parallelism, the MC has higher Flops/Watt
ratios and lower J*s than the GPU. The reason is that our
implementations are not exploiting the GPU efficiently, as
the performance of the GPU implementations is far from the
GPU peak performance. In addition, when the codes run on
the GPU, a non-negligible component of the GPU energy
measured comes from the MC, since the MC and the LLC ring
interconnect are in the same voltage and frequency domain. In
Figure 6, the exception for this inverted behavior corresponds
to *-1P-NV, probably because of the poor performance of
this code on MC.

Table II shows that as the optimizations increase, the energy
decreases. There are two reasons: first, we are better utilizing
the hardware resources and second, we finish the work earlier.
With respect to the dissipated power we observe that for MC,
as performance increases, the dissipated power also increases
(SIMD units consume more power than scalar units). However,
for the GPU, energy reduces more than time, and so the power
remains constant or decreases. This behavior is critical for
devices limited by a power budget (battery operated).

i7-3770K SC GPU MC MC+GPU
FPS 17.0 44.4 54.4 72.4
Energy(J) 510.2 162.2 234.7 188.7
FPS/Watt 0.4 1.2 0.8 1.1
EDP 6002.3 729.8 863.8 521.6

TABLE III: Entire Tracking application results for a stream of
200 fullHD images

C. Entire Application Results

In this section, we show how the code optimizations affect
the performance of the entire feature tracking application. As
we presented in Section II, the tracking application kernel has
two phases. In the previous subsections we have focused on the
first phase (it represents 89% of time of the whole application).
The second phase has also been parallelized and implemented
for both MC and GPU. Table III shows the performance of
the whole application running only on a single core (SC),
only on the multicore (MC), only on the GPU (GPU) or
using both the multicore and the GPU (MC+GPU). When
running on SC or MC the GPU is idle, while when running
on the GPU, the multicore is idle. However, for MC+GPU,
we have implemented a pipeline where the first phase runs
on the MC on one frame, and the second phase runs on the
GPU and works on the results produced by the first phase
(we also tested the case where the first phase runs on the
GPU and the second one on MC, but the results were worse –
running times increased by 46.2%). Notice that other mappings
are possible and might work better for this application, but
that exploration is outside the scope of this paper. SC runs
the original feature tracking application from SD-VBS and
compiled with /O3+auto-vect compiler flags. The rest run our
most optimized code versions 1P-V-UR.

Table III shows four rows: Frame per Second (FPS), total
energy consumed by the whole chip, the ratio FPS per Watt,
and the Energy Delay Product (EDP) of the total energy by the
elapsed time in seconds. The table shows that all the configu-
rations run faster than SC and that while the SC processes less
than 33 FPS (real-time processing) the other three platforms
(GPU, MC, MC+GPU) can process significantly more.

Results show that optimization pays off. When compared to
SC, GPU, MC and GPU+MC perform 2.6, 3.2 and 4.3 times
better, respectively. With respect to the energy, GPU, MC and
MC+GPU consume 3.1, 2.2 and 2.7 less energy than SC.

If we consider performance and energy-consumption, the
EDP metric is better for the GPU than for the CPU; MC+GPU
has an even better EDP behavior than any of them individually.
As Table III shows, MC+GPU processes more FPS than the
others: 72.4 versus 54.4 and 44.4, while power-dissipated for
every FPS is almost the same (1.1 FPS/Watt of MC+GPU
versus 1.2 FPS/Watt of the best, which is the GPU). Thus, MC
performs better than GPU, and MC+GPU performs better than
MC. In addition, the programming effort required was not too
high thanks to the OpenCL unified programming paradigm.

D. Ease of Use

OpenCL seems to be an effective programming model for
the stencil computations and the feature tracking application

that we studied. It allows us to write a single code version that
runs well in both platforms, the multicore and the GPU, or in
both platforms concurrently. Although we tuned the degree
of unroll and block size differently for each platform, it is
possible to use the same version for both platforms with a
small penalty in performance (less than 2.3% for full HD
image size and 16.8% for VGA image size). Our experimental
results show that the optimizations (vectorization and loop
fusion) that we applied worked well for both platforms. While
we are sure that it is possible to find optimizations that work
for one platform and do not work for the other one, the
optimizations we applied to the feature tracking application
are effective for both, MC and GPU.

To compare the performance of our OpenCL code, we wrote
a C code version using AVX Intel intrinsics that implemented
the code in Figure 3 and executed in a single core. We found
that its performance is about 3.2 times faster than the original
SC-2P-auto, but it is significantly slower than its coun-
terpart 1P-V, even discounting the effect of parallelization.
Our intrinsic-based implementation is an optimized version
which required a reasonable amount of effort. Thus, our expe-
rience with this experiment was that it is significantly easier
to generate high-performing code with OpenCL than with
intrinsics because of three reasons: first, the performance of the
OpenCL code was higher; second, with OpenCL, there is no
need to know the specific intrinsics of the target platform; and
third, the code is portable across devices (CPU and GPU) and
manufacturers. Thus, we think that the OpenCL programming
paradigm can be a good option for vision applications running
in these on-chip heterogeneous systems.

V. RELATED WORK

The problem of optimizing stencil computations for multi-
core platforms [12], [13], [14], [15], [16] and GPUs [17], [18],
[19] has extensively been studied in the past. However, those
works do not evaluate the performance of an OpenCL stencil
implementation that runs on a multicore and an on-chip GPU.
We also analyze the performance benefit of the optimizations,
in the context of whole feature tracking application where
these stencils execute. The only other work that is close to ours
is the work by Totoni et al [20] that also shows how to optimize
an object detection application to run on a heterogeneous chip.
However, their application is significantly different from ours.

Many previous works focus on stencils that solve partial
differential equations, such as in climate, weather or ocean
modeling [21] and where the stencil is applied for each grid
point over many time steps. In this context, loop tiling has been
applied to enable data locality and efficient parallelization [22],
[23], [24], [25]. The works by Zhou et al. [26] and Meng et
al. [17] propose the use of redundant computations to reduce
the amount of synchronization when parallelizing across these
timesteps. These techniques could be useful for our feature
tracking application, but in our work we did not consider
parallelization across the several filters applied to an image.

Previous works discuss the execution of stencil computa-
tions on the much larger discrete GPUs [19], [13]. These works

evaluate the performance impact of the thread block size, loop
tiling, degree of unroll, overheads of data transfer or use of
local (shared) memory. We also search the best number of
items per OpenCL workgroup and considered unrolling in our
experiments. For the on-chip GPU that we use and the size
of our images, data transfer was not a problem. In this paper,
we also evaluate the use of the OpenCL built-in vector data
types when running in the CPU and the GPU.

Others propose a data layout transformation to solve the
alignment and avoid the redundant loads or shuffling [16].

Heterogeneous on-chip architectures are becoming popular.
Examples of those architecture include Intel Ivy Bridge [1],
AMD Fusion [2], NVIDIA Tegra 250 [3], Qualcomm Snap-
dragon 800 [4], and Samsung Exynos 5 Octa [5]. Due to
the novelty of these platforms, few studies have evaluated
the performance of these applications. A recent work close to
ours is the evaluation of an object removal application using
OpenCL and running on a Snapdragon processor [27].

VI. CONCLUSIONS

In this paper, we evaluated the effectiveness of OpenCL as
a unified programming paradigm for both the CPU and the
GPU. For that, we took a feature tracking vision application
and optimized it using the OpenCL built-in vector data types,
loop fusion, and unrolling. Our performance numbers show
that the optimized OpenCL codes run significantly faster than
the non-optimized versions, and that the optimizations that
were effective for one platform (multicore) were also effective
for the other platform (GPU) and viceversa.

We found that the use of the OpenCL built-in vector
data types and unrolling produced significant performance
improvements in both, the multicore and the GPU of the Intel
i7. After all optimizations, the multicore and GPU version ran
33.7 and 13.3 times (fullHD) faster than the original version.
Our 25-point 2D-stencil computation can reach 54.0 and 58.6
Gflops for fullHD and VGA, respectively, when running on
the multicore of an Intel i7 and 21.3 and 29.8 Gflops when
running on the Intel HD4000 GPU. In all cases, performance
became limited by bandwidth to some level of the memory
hierarchy. In the case of the multicore, when the source image
fits in the L1 cache, performance reaches 92.1 Gflops, which
is 73.8% of its peak performance.

With respect to energy, we observed that the more optimized
a code is, the less energy it consumes. For the multicore we
observed that time reduced more than energy, which meant a
higher power dissipation. For the GPU, energy reduced more
than time, and so the power remained constant or decreased.

Overall, after optimization, the entire application runs 3.2
times faster when running on the multicore of the Intel i7 and
2.6 times when running on its GPU. Moreover, when both the
multicore and the GPU are used, the overall feature tracking
application run 4.3 times faster than the non-optimized ver-
sion. In terms of EDP, the OpenCL more optimized code runs
11.5 times more efficiently than the baseline C code.

ACKNOWLEDGEMENTS

This work was supported in part by Grants TIN2010-
21291-C02-01 and TIN2013-64957-C2-1-P (Spanish Govern-
ment and European ERDF), gaZ: T48 research group (Aragon
Government and European ESF), HiPEAC-3 NoE (European
FET FP7/ICT 287759), by the NSF grant CNS 1319657, and
by the Illinois-Intel Parallelism Center at the University of
Illinois at Urbana-Champaign, which is sponsored by the Intel
Corporation. We also thank Mert Dikmen for the help on the
early stages of this work.

REFERENCES

[1] S. Damaraju et al., “A 22nm ia multi-cpu and gpu system-on-chip,” in
Proc. of Solid-State Circuits Conference, 2012, pp. 56–57.

[2] D. Foley et al., “A low-power integrated x86-64 and graphics processor
for mobile computing devices,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 1, pp. 220–231, 2012.

[3] NVIDIA, “Bringing High-End Graphics to Handheld Devices,” 2011.
[Online]. Available: http://www.nvidia.com

[4] Qualcomm, “Snapdragon,” http://www.qualcomm.com/snapdragon/.
[5] “Samsung Exynos,” http://www.samsung.com/exynos.
[6] S. K. Venkata and et al., “Sd-vbs: The san diego vision benchmark

suite,” in Proc. of IISWC, 2009, pp. 55–64.
[7] B. D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision.” in Proc. of IJCAI, vol. 81, 1981,
pp. 674–679.

[8] P. Gepner, D. Fraser, and V. Gamayunov, “Evaluation of the 3rd
generation of intel core processor focusing on hpc applications,” in Proc.
of PDPTA, 2012.

[9] H. David et al., “Rapl: Memory power estimation and capping,” in Proc.
of ISLPED, 2010, pp. 189–194.

[10] E. Rotem et al., “Power-management architecture of the intel microar-
chitecture code-named sandy bridge,” Micro, IEEE, vol. 32, no. 2, pp.
20–27, March-April 2012.

[11] R. Gonzales and M. Horowitz, “Energy dissipation in general purpose
microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9,
1996.

[12] W. Augustin, V. Heuveline, and J.-P. Weiss, “Optimized stencil compu-
tation using in-place calculation on modern multicore systems,” in Proc.
of Euro-Par, 2009.

[13] K. Datta et al., “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in Proc. of SC, 2008.

[14] H. Dursun et al., “Hierarchical parallelization and optimization of
high-order stencil computations on multicore clusters,” The Journal of
Supercomputing, vol. 62, no. 2, pp. 946–966, 2012.

[15] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Ef-
ficient temporal blocking for stencil computations by multicore-aware
wavefront parallelization,” in Proc. of COMPSAC, 2009, pp. 579–586.

[16] T. Henretty et al., “Data layout transformation for stencil computations
on short-vector simd architectures,” in Proc. of CC, 2011, pp. 225–245.

[17] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on gpus,” in Proc. of SC,
2009.

[18] P. Micikevicius, “3d finite difference computation on gpus using cuda,”
in Proc. of GPGPU, 2009, pp. 79–84.

[19] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris, “Autotuning
stencil-based computations on gpus,” in Proc. of Cluster, 2012.

[20] E. Totoni, M. Dikmen, and M. J. Garzarán, “Easy, fast, and energy-
efficient object detection on heterogeneous on-chip architectures,” ACM
Trans. Archit. Code Optim., vol. 10, no. 4, pp. 45:1–45:25, Dec. 2013.

[21] A. Sawdey, M. O’Keefe, R. Bleck, and R. W. Numrich, “The design, im-
plementation, and performance of a parallel ocean circulation model,” in
Proc. of the Workshop on the Use of Parallel Processors in Meteorology,
1994, pp. 523–550.

[22] S. Krishnamoorthy et al., “Effective automatic parallelization of stencil
computations,” in Proc. of PLDI, 2007, pp. 235–244.

[23] Y. Tang, R. A. Chowdhury, and K. et al., “The pochoir stencil compiler,”
in Proc. of SPAA, 2011, pp. 117–128.

[24] Z. Li and Y. Song, “Automatic tiling of iterative stencil loops,” TOPLAS,
vol. 26, no. 6, Nov. 2004.

[25] D. Wonnacott, “Achieving scalable locality with time skewing,” Journal
of Parallel Programming, vol. 30, p. 2002, 1999.

[26] X. Zhou et al., “Hierarchical overlapped tiling,” in Proc. of CGO, 2012,
pp. 207–218.

[27] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating computer
vision algorithms using opencl on mobile gpu - a case study,” in Proc.
of ICASSP, 2013.

