
Approximate Transformations
as Mutation Operators

Farah Hariri1, August Shi1, Owolabi Legunsen1, Milos Gligoric2, Sarfraz Khurshid2, Sasa Misailovic1
1 Department of Computer Science

University of Illinois at Urbana-Champaign, IL 61801, USA
{hariri2,awshi2,legunse2,misailo}@illinois.edu

2 Department of Electrical and Computer Engineering
The University of Texas at Austin, TX 78712, USA

{gligoric,khurshid}@utexas.edu

Abstract—Mutation testing is a well-established approach for
evaluating test-suite quality by modifying code using syntax-
changing (and potentially semantics-changing) transformations,
called mutation operators. This paper proposes approximate
transformations as new mutation operators that can give novel
insights about the code and tests. Approximate transformations
are semantics-changing transformations used in the emerging
area of approximate computing, but so far they were not
evaluated for mutation testing. We found that approximate trans-
formations can be effective mutation operators. We compared
three approximate transformations with a set of conventional
mutation operators from the literature, on nine open-source
Java subjects. The results showed that approximate transfor-
mations change program behavior differently fromconventional
mutation operators. Our analysis uncovered code patterns in
which approximate mutants survivedand showed the practical
value of approximate transformations for both understanding
code amenable to approximations and discovering bad tests. We
submitted 11 pull requests to fix bad tests. Seven have already
been integrated by the developers.

I. INTRODUCTION

Mutation testing is a well-established approach for evalu-
ating the quality of a test suite [33]. It produces modified
versions of the code, called mutants, using a set of syn-
tactic transformations that also potentially change program
semantics, called mutation operators. It then runs the test
suite on the mutants to quantify how well the suite detects
the program modifications. To provide insights about how to
improve the test suites, mutation testing requires both high-
quality and diverse mutation operators that lead to different
program behaviors.

This paper proposes approximate transformations as a new
class of mutation operators that lead to different program
behaviors from those produced by conventional mutation
operators. Approximate transformations were introduced in
the emerging area of approximate computing for changing
program semantics to trade the accuracy of results for im-
proved energy efficiency or performance. Researchers pro-
posed various approximate transformations at the level of
programming languages, compilers, and computer systems [5],
[21], [22], [26], [27], [49], [50], [56], [57], [59], [65], [67],
[73]. For example, loop perforation [49], [65] is a compiler-
level approximate transformation that causes amenable loops

to execute only a subset of iterations. Degrading floating-point
precision is another common language-level [57] and system-
level approximate transformation [5], [59], [73].

Mutation operators and approximate transformations both
aim to change program semantics. Hence, approximate trans-
formations are an attractive choice for new mutation operators
that can provide novel insights about tested code and test
suites. Our analysis of three approximate transformations—
loop perforation, integer-to-short precision degradation, and
double-to-float precision degradation—shows that they often
complement conventional mutation operators. Our evaluation
on nine open-source Java subjects focuses on the following
three research questions:

RQ1: How effective are approximate transformations as
mutation operators, compared to conventional mutation op-
erators?
RQ2: What code patterns do approximate transformations
as mutation operators reveal?
RQ3: How can approximate transformations as mutation
operators help software testing practice?

To evaluate the effectiveness of approximate transformations
as mutation operators, we use a combination of techniques
established in prior work on mutation testing:

● Mutation Score: We compare mutation scores [12], [33]
of three approximate transformations with the mutation
scores of 14 conventional mutation operators from the PIT
framework [3]. Mutation scores are percentages of mutants
detected, or killed, by the test suite [33].

● Minimal Mutants: We check whether approximate transfor-
mations generate mutants that are in the minimal mutants
set, computed across mutants from both approximate trans-
formations and conventional mutation operators. Minimal
mutants dynamically subsume all other mutants (defined
in III-B), and they are considered harder to kill than all
other mutants [11], [24].

● Sufficient Mutation Operators: We check whether approx-
imate transformations are in the set of sufficient mutation
operators, computed using selective mutation analysis [51],
[52]. Tests that kill mutants generated by sufficient mutation
operators also kill mutants generated by all other operators.

1

The results (Section IV) show that approximate transforma-
tions are effective mutation operators. Loop perforation has
similar mutation scores as conventional mutation operators.
However, we observe that mutation score alone is not sufficient
for evaluating the effectiveness of approximate transforma-
tions. While precision degradation operators have significantly
lower mutation scores, our analysis shows that their low
mutation scores are not due to the mutants being semantically
equivalent to the original code. Rather, the operators expose
bad tests that do not exercise the code with boundary values.
Approximate transformations also generate mutants in the
minimal mutant sets, and they are often in the sufficient
mutation operators sets.

To better understand the pattern of computations affected by
approximate transformations, we manually inspected a sample
of mutants from the approximate transformations (Section V).
For loop perforation, we identify four code patterns, e.g.,
reductions and conditional computation on elements. For
precision degradation, we identify three code patterns, e.g.,
when computed results are within a specified error bound.
Further, the identified patterns allow us to draw more general
comparisons with a broader set of mutation operators from
recent literature [34], [43], [60]. Our analysis (Section V-C)
shows that approximate transformations complement the con-
ventional mutation operators.

Based on our inspection (Section VI), we propose a new
way of reasoning about surviving (i.e., not killed) mutants
generated by approximate transformations. In traditional mu-
tation testing, a mutant can survive either because it is
semantically equivalent to the original code, or because of
bad (buggy, inadequate, or missing) tests. We discover that,
with approximate transformations, there is a third option—a
surviving mutant can indicate the presence of approximable
code. Code is approximable if it can be transformed to
produce results different from the original code, but such
results still meet the specification. (Note that this third way
of interpreting a surviving mutant may apply to other mutants
as well.) Our inspection shows that for loop perforation,
63.83% of surviving mutants indicate bad tests, and 19.15%
indicate approximable code. We find no equivalent mutants,
and the remaining 17.02% are hard to inspect. For precision
degradation, 53.13% of surviving mutants indicate bad tests,
14.58% indicate equivalent mutants, and 11.46% indicate
approximable code. The remaining 20.83% are hard to inspect.

We identify common testing practices that help to improve
bad tests: (i) achieving greater loop coverage, (ii) exercis-
ing loop conditions, (iii) exercising boundary values, and
(iv) checking correctness of all output elements. We identify
the instances of bad tests in all nine subjects. Even though
these insights are not new to the testing community, the real
value lies in the fact that the approximate transformations help
detect those problems and bring them to the attention of the
developer who might not have such considerations in mind.
We created 11 pull requests to improve the bad tests. The
developers already integrated seven pull requests in their code.

private void doSwapTest(AMatrix m) {
if ((m.rowCount()<2)||(m.columnCount()<2)) return;
m=m.clone();
AMatrix m2=m.clone();
m2.swapRows(0, 1);
assert(!m2.equals(m));
m2.swapRows(0, 1);
assert(m2.equals(m));
...}

Fig. 2: Test of the swapRows method in Fig. 1

The paper makes the following contributions:
● Concept: We are the first to study the interplay between ap-

proximate transformations and mutation testing operators.
● Framework: We developed ApproxiMate as an extension

to the PIT framework. It supports approximate transforma-
tions as mutation operators and integrates analyses from
studies on mutation testing.

● Evaluation: Our results show that approximate transfor-
mations complement conventional mutation operators: they
generate mutants in the minimal mutants set and are often
in the sufficient mutation operators set.

● Insights: We present code patterns revealed by approximate
transformations. We discuss how to interpret the results
of mutation testing with approximate transformations and
improve bad tests. Developers already accepted seven out
of 11 pull requests that we submitted for fixing bad tests.

II. EXAMPLE

This section illustrates mutation testing and approximate
transformations and shows a surviving approximate transfor-
mation mutant that resulted in an accepted pull request.

A. Code and Test

The snippet in Figure 1a is from vectorz [4] (SHA:
9c688f1), one of the subjects in our study. The snippet shows
the instance method Matrix#swapRows; the class Matrix

represents m×n matrices of type double. swapRows takes
integers i and j, and then it changes the Matrix instance
by swapping rows i and j. A parametrized test that directly
covers swapRows is doSwapTest. It operates on instances of
AMatrix, a superclass of Matrix (Figure 2). doSwapTest
first makes a copy, m2, of the input m (when m is of type
Matrix, so is m2), swaps the first two rows in m2, and asserts
that m and m2 are not equal. Then, it swaps the first two rows
in m2 again and asserts that m2 is now equal to m.

B. Mutation Testing

Mutation testing proceeds in two steps; it generates mutants,
and then runs the tests on each mutant.
Generating mutants. Mutation testing generates mutants—
code that differ from the original by small syntactic changes,
specified by mutation operators, e.g., replacing multiplication
with division as in Figure 1b (dark background).
Executing mutants. Mutation testing executes the test suite
on each mutant. If a test exhibits different behavior when
running on a mutant than when running on the original code,
that mutant is considered killed. Typically, tests pass on the

2

1 public void swapRows(int i, int j) {
2 if (i == j) return;
3 int a = i * cols;
4 int b = j * cols;
5 int cc = columnCount();
6 for (int k = 0; k < cc; k++) {
7 int i1 = a + k;
8 int i2 = b + k;
9 double t = data[i1];

10 data[i1] = data[i2];
11 data[i2] = t;
12 } }

(a) Original code.

public void swapRows(int i, int j) {
if (i == j) return;
int a = i * cols;
int b = j / cols ;
int cc = columnCount();
for (int k = 0; k < cc; k++) {

int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

} }

(b) Killed mutant changes * to /.

public void swapRows(int i, int j) {
if (i == j) return;
int a = i * cols;
int b = j * cols;
int cc = columnCount();
for (int k = 0; k < cc; k+=2) {

int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

} }

(c) Surviving LPM mutant skips iterations.

Fig. 1: Code from vectorz [4], a mutation by a conventional mutation operator and a mutation by LPM

original code, so a mutant is killed when a test fails on the
mutant. For instance, when doSwapTest is run on the mutant
in Figure 1b, the mutant computes the index of the second
row in the swap as 0. The first row to swap is also 0, so no
swap happens. The non-equality assertion on m2 and m fails
when run on this mutant, suggesting that the test suite is good
enough to kill this semantically different mutant.
Mutation score. Mutation testing results in a mutation score—
the percentage of killed mutants. Higher mutation scores imply
higher-quality test suites; a test suite that is strong enough to
kill a larger percentage of mutants is likely strong enough to
detect more faults in the code under test [13], [35].

C. Approximate Transformations

Loop perforation. Loop perforation is an approximate
transformation [49], [65], which transforms loops like
for (int i = 0; i < len; i++) {...} to execute
only a subset of its iterations. In general, perforation
can change the value in the initialization expression,
the termination condition, or the increment. We consider
loop perforations that skip every other loop iteration.
Figure 1c shows an LPM (Loop Perforation Mutator)
mutant that changes the loop increment, k++, to k+=2

(light background). With this perforation, doSwapTest

executing on the mutant will only swap every other element
(at even-numbered indices) in the specified rows.
Precision degradation. Precision degradation is an approx-
imate transformation that changes the type of a numerical
expression or a variable. Specifically, we downcast results of
int or double arithmetic expressions.

The int-to-short (ITS) transformation changes result of
the expression to be of type short (values in the range
−32,768 to 32,767). An example ITS mutant is replacing a

+ k on line 7 of Figure 1a with (short)(a + k). ITS drops
higher-order bits, which may result in a large error magnitude.

If a is instead a double-precision variable, the double-
to-float (DTF) transformation changes the expression a +

k (where the type of k is automatically cast to double)
to (double)((float)(a + k)). The cast back to double

here is necessary in Java to preserve the type. The resulting
computation produces imprecise results, usually with a small

error magnitude, because it drops lower mantissa bits. Note
that our ITS and DTF transformations are finer-grained vari-
ants of the actual approximate transformations; we only cast
computations as opposed to types as performed by [57].

D. Analysis of Approximate Transformation for Mutation

For the LPM mutant in Figure 1c, doSwapTest swaps only
elements at even-numbered indices in the specified rows. Since
the assertions only check that m1 and m2 are not equal after
the first swap, and equal after the second swap, doSwapTest
passes. Since doSwapTest is the only test that covers this
mutant, the mutant survives, i.e., it is not killed. The survival
of this LPM mutant suggests that there is some weakness in
the test suite, i.e., some tests are “bad” (buggy, inadequate, or
missing). Specifically, this surviving mutant indicates that the
assertions are not strong enough to detect the skipping of every
other element during the swap. We submitted a pull request to
check whether elements in the swapped rows are as expected;
our pull request was accepted by the vectorz developers.
For the ITS mutant on line 7 (not shown in Figure 1 for lack
of space), doSwapTest is invoked only with small integers
(matrices with small dimensions), so the mutant survives. To
kill the mutant, one would write a test with large matrices
where the column count exceeds the range of short.

III. STUDY METHODOLOGY

ApproxiMate is our framework for evaluating approximate
transformations as mutation operators. In this section, we
describe ApproxiMate’s implementation and analyses, the mu-
tation operators studied, and our evaluation subjects.

A. The ApproxiMate Framework

The ApproxiMate framework extends PIT [3], implements
approximate transformations as mutation operators, and pro-
vides the matrix of tests to killed mutants, as it has been
done in previous studies [7], [62], [64]. We implement the
approximate transformations as follows:
● We implement the loop perforation mutator (LPM) to skip

every other iteration of loops, because other patterns of
skipped iterations have similar power to identify approx-
imable code [47]. We use SPOON [66] to find code locations

3

TABLE I: PIT operators

Type Name Acronym

Conditionals Boundary Mutator CBM
Increments Mutator IM
Invert Negatives Mutator INM

Default Math Mutator MM
Negate Conditionals Mutator NCM
Return Values Mutator RVM
Void Method Calls Mutator VMCM

Constructor Calls Mutator CCM
Inline Constant Mutator ICM
Member Variable Mutator MVM

Non-Default Non Void Method Calls Mutator NVMCM
Remove Conditionals Mutator RCM
Remove Increments Mutator RIM
Switch Mutator SM

of for loops that have increment (i++) or decrement (i--)
statements. These locations are passed to our modified PIT
extended with LPM, which uses the ASM library [14] to
change the iinc bytecode instruction so that increments
become i+=2 and decrements become i-=2.

● We implement precision degradation, DTF and ITS, using
casting. Recall (Section II-C) that ITS is the int-to-short
precision degradation operator; it casts results of int arith-
metic expressions to short. DTF is the double-to-float
precision degradation operator; it casts results of double

arithmetic expressions to float and then back to double

to preserve the type. The ITS and DTF implementations
perform casting at the bytecode level.
ApproxiMate uses all mutation operators available in PIT:

seven active-by-default operators and seven non-default oper-
ators (Table I), which we enabled to increase the variety of
mutation operators in our experiments. ApproxiMate computes
mutation scores using only mutants that are covered by the
tests. The comparative analyses require the exact mapping
from tests to mutants killed. Since PIT cannot capture the
test that killed a mutant because of memory or other runtime
errors, we exclude such mutants from the mutation score
computations and the comparative analyses.

B. Comparative Analyses in ApproxiMate

In mutation testing, it is desirable to use as few mutants
as possible while still resulting in the same confidence in
the mutation testing results. Prior research investigated means
to identify the subset of mutants that are harder to kill and
representative of the other mutants [11], [24], [51], [74]. If
approximate transformations generate mutants that are harder
to kill than mutants generated by conventional mutation op-
erators, it suggests that they are relatively effective as muta-
tion operators. We use two techniques from the literature to
compare the mutants from approximate transformations with
those from conventional mutation operators: minimal mutants
analysis [11], [24] and selective mutation analysis [46], [52].
Minimal mutants analysis. Minimal mutants [11], [24] are
used as proxies for finding what mutants are harder to kill

compared with the other mutants [9]. We use minimal mutants,
which are based on dynamic subsumption:
● Definition: A mutant m dynamically subsumes another

mutant m′ if the set of tests that kill m is a subset of the
set of tests that kill m′. Intuitively, m is harder to kill than
m′ because only some tests that kill m′ can kill m.

● Condition: If mutants generated from approximate trans-
formations are in the set of minimal mutants, then they
subsume (and are therefore harder to kill than) mutants from
some conventional mutation operators.

● Computation: We apply the algorithm proposed by
Gopinath et al. [24] to compute the set of minimal mutants.1

Selective mutation analysis. Selective mutation analysis is a
heuristic technique for reducing the number of mutants to be
run [46], [51], [52]. The general idea in selective mutation
analysis is to find a set of sufficient mutation operators:
● Definition: Sufficient mutation operators are a subset of

all mutation operators, such that tests which kill mutants
generated by the sufficient mutation operators also kill
all mutants generated by the operators that are in the
complement of the sufficient set.

● Condition: If approximate transformations are in the set of
sufficient mutation operators, it indicates that they are part
of operators that are representative of all mutation operators.

● Computation: We analyze only the mutants killed by the
existing tests, assuming that all other mutants cannot be
killed [23]. Our algorithm for selecting sufficient operators
is close to what was done in prior work using existing test
suites [23], but there are two main differences. First, we do
not restrict the number of iterations for removing mutation
operators. Second, we apply test-suite reduction on each
iteration to create a tailored test suite which is sufficient
to kill only mutants generated by the currently-selected
operators. This is close to previous studies on selective
mutation testing [51], [52] where, on each iteration, a test
suite is generated to kill only mutants from the selected
operators, and the generated tests are checked to see that
they kill all mutants.
Each iteration of the algorithm starts by finding and re-
moving the operator that generates the most number of
mutants. The second step in each iteration is to apply test-
suite reduction [75] to construct a reduced test suite which
kills only mutants generated from the remaining operators.
If the reduced test suite kills all mutants (not just mutants
generated from the remaining operators), the algorithm con-
tinues to the next iteration by greedily removing the operator
which generates the next highest number of mutants. If a
reduced test suite that kills all mutants cannot be generated,
we continue the same iteration by putting the removed
operator back in the set and removing the next highest
mutant-generating operator. The algorithm halts when we
cannot remove any more operators and still kill all mutants.
The operators that remain after the algorithm halts form the
set of sufficient mutation operators.

1Gopinath et al. refer to minimal mutants as surface mutants in their work.

4

TABLE II: Subjects Used in Our Study
Subject SLOC Tests Short Description

commons-imaging 31377 169 Imaging library
commons-io 9957 1098 IO library
HikariCP 4256 96 Database connectivity pool
imglib2 31839 337 Image processing library
vectorz 44009 453 Vector and matrix library
jblas 10356 39 Matrix library
OpenTripPlanner 64202 356 Trip planner
la4j 9368 801 Linear algebra library
meka 36512 306 Machine learning library

TABLE III: Number of Mutants Per Operator
Project Conv. Avg LPM ITS DTF

commons-imaging 1577.43 275 1097 362
commons-io 653.31 37 191 0
HikariCP 192.69 6 17 1
imglib2 646.54 264 296 245
vectorz 2426.93 1009 1991 1466
jblas 323.79 155 147 29
OpenTripPlanner 2265.71 160 623 478
la4j 644.93 311 569 487
meka 593.85 266 192 153

Average 1036.13 275.89 569.22 357.89

C. Evaluation Subjects

We use nine open-source Java subjects in our evaluation
of the approximate transformations as mutation operators. Ta-
ble II shows for each subject the source lines of code (SLOC)
it has, the total number of test methods, and a description.
The subjects vary widely in size and come from different
domains: image processing, machine learning, linear algebra,
and databases applications. The subjects are from GitHub and
are a mix of (1) subjects used in previous software testing
papers [39], [42], and (2) computationally-intensive subjects
that may have more opportunities for applying approximate
transformations because they come from domains (e.g., linear
algebra, image processing, machine learning) that may benefit
more from approximate computing techniques [18], [65].

IV. QUANTITATIVE ANALYSIS RESULTS

This section contains answers to RQ1: how effective are ap-
proximate transformations as mutation operators, compared to
conventional mutation operators, in terms of mutation scores,
minimal mutants analysis, and selective mutation analysis.

A. Effectiveness by Mutation Scores

Table III shows the number of mutants generated and
covered by tests per mutation operator for all subjects. There,
the “Conv. Avg” column shows the average number of mutants
generated by conventional mutation operators for each subject.
Columns “LPM”, “ITS” and “DTF” show the number of mu-
tants generated by the approximate transformations. (We show
only averages for conventional mutation operators due to space
limits.) Figure 3 shows the average mutation score per operator
across all subjects. Each bar represents a mutation operator;
the rightmost three bars for approximate transformations—
LPM, ITS, and DTF. The y-axis shows average mutation score

CBM
CCM ICM IM INM MM

MVM
NCM

NVMCM
RC

M RIM RV
M SM

VMCM LP
M ITS DTF

0

20

40

60

80

100

M
ut

at
io

n
Sc

or
e

(%
)

Fig. 3: Mutation scores per operator

per operator across all subjects. The red horizontal line is the
average mutation score of all conventional mutation operators
across all subjects. The error margin on each bar shows the
standard deviation.
Loop perforation. On average, LPM generates only 275.89
mutants, compared with 1036.13 for conventional mutation
operators. This is because there are much fewer loops (the
only locations that LPM can mutate) relative to the number
of locations that conventional mutation operators can mutate.
The average mutation score for LPM (72.78%) is slightly
lower than that of conventional mutation operators (79.65%)
but it is not a low outlier, compared to other operators.
Precision degradation. The number of mutants generated
by ITS and DTF are similar to that of LPM, relative to
conventional mutation operators—an average of 569.22 and
357.89, respectively. These are significantly fewer than the av-
erage number of mutants generated by conventional mutation
operators (1036.13). The average mutation scores for ITS and
DTF are 15.49% and 27.39%, respectively (Figure 3). These
are significantly lower than the average score of 79.65% for
conventional mutation operators. In fact, ITS and DTF scores
are the lowest among all operators (including LPM).
Discussion. The LPM mutation scores are closer to the muta-
tion scores of conventional mutation operators, suggesting that
LPM mutants are as easy/hard to kill as mutants generated
from conventional mutation operators. The mutation scores
for ITS and DTF are very low compared to the scores for
conventional mutation operators. A further analysis of survived
mutants in Section VI shows that this is not due to a high
number of equivalent mutants, but rather to bad tests that do
not exercise the code with large values crossing the precision
boundaries. We perform a more detailed qualitative analysis
on LPM, ITS, and DTF mutants in Section V.

B. Effectiveness by Minimal Sets of Mutants

We compute minimal mutant sets, as described in Sec-
tion III-B, to see if mutants generated by approximate trans-
formations are in the minimal mutant set, meaning they are not
subsumed by other mutants. Table IV shows, for each subject,
the breakdown of the counts of the minimal mutants. The
column “Conv. Avg” shows the average number of minimal
mutants generated from conventional mutation operators; the
remaining columns show the number of minimal mutants for

5

TABLE IV: Minimal Mutants Per Operator
Project Conv. Avg LPM ITS DTF

commons-imaging 6.79 1 0 0
commons-io 37.07 1 1 0
HikariCP 4.57 1 0 0
imglib2 13.79 4 5 3
vectorz 18.36 14 1 9
jblas 2.21 2 0 1
OpenTripPlanner 15.29 2 0 1
la4j 13.57 17 3 17
meka 7.00 2 2 2

Average 13.18 4.89 1.33 3.67

TABLE V: Selective Mutation Operator Analysis
Project # Conv. Approx

Operators Operators

commons-imaging 7 n/a
commons-io 9 ITS
HikariCP 8 n/a
imglib2 9 LPM,DTF
vectorz 10 LPM,ITS,DTF
jblas 4 DTF
OpenTripPlanner 8 n/a
la4j 9 LPM,ITS,DTF
meka 5 LPM,DTF

each approximate transformation. (We show only averages for
conventional mutation operators due to the space constraints.)
Approximate transformations show up in the minimal set of
mutants—at least one of the last three columns, LPM, ITS,
and DTF, is not 0—for all subjects The average numbers of
mutants contributed by LPM, ITS, and DTF to the set of
minimal mutants are 4.89, 1.33, and 3.67, respectively. We
conclude that, when used as mutation operators, approximate
transformations can generate mutants that are not subsumed
by mutants generated from conventional mutation operators.

C. Effectiveness by Selective Mutation Analysis

Table V presents the sets of sufficient mutation operators
computed using the greedy selective mutation analysis algo-
rithm presented in Section III-B. For each subject, we show the
number of conventional mutation operators (“# Conv. Opera-
tors”) and the selected approximate transformations (“Approx
Operators”) that are in the sufficient mutation operator set.

Approximate transformations appear among the sufficient
mutation operators in six of the nine subjects (commons-io,
imglib2, vectorz, jblas, la4j, and meka). The fact that
approximate transformations end up in the sufficient mutation
operator sets shows that they are important, since sufficient
mutation operators are meant to be representative of all oper-
ators; tests good enough to kill these mutants are good enough
to kill the mutants from all the other operators (Section III-B).
Furthermore, when we perform selective mutation analysis
with only conventional mutation operators, we find that the
sufficient mutation operators for most subjects are the same
as those corresponding to the number of conventional mutation
operators from the “# Conv. Operators” column in Table V;
the only exception was meka. From these subjects where ap-
proximate transformations are in the set of sufficient mutation

Set<Integer> toSet() {
TreeSet<Integer> ss=new TreeSet<Integer>();
for (int i=0; i<data.length; i++) {
ss.add(data[i]);

}
return ss; }

void testSetCreate() {
Index ind=Index.of(1,3,3,3,5);
Set<Integer> s=ind.toSet();
assertEquals(3,s.size());
assertEquals(Index.createSorted(ind.toSet()),

Index.of(1).includeSorted(s)); }

Fig. 4: Initialization Loop LPM code pattern from
vectorz [4] and its corresponding test

operators, it seems approximate transformations are necessary
to represent themselves, as the conventional mutation operators
do not subsume the approximate transformations.

V. CODE PATTERNS

This section provides answers to RQ2, on code patterns that
approximate transformations reveal. We describe the results of
our qualitative analysis to answer these questions:

RQ2.1: What code patterns do LPM mutants reveal?
RQ2.2: What code patterns do ITS/DTF mutants reveal?
RQ2.3: How are approximate transformations different
from conventional mutation operators and how can they help
mutation testing?

Answers to these questions help with understanding the type of
computations affected by the proposed operators. Further, the
answers guide the analysis in Section VI on practical impact.
Methodology. For LPM, we randomly sampled and inspected
5% of killed mutants and 5% of surviving mutants for each
subject. ITS and DTF generate significantly higher numbers
of mutants than LPM in some subjects, so we sampled and
inspected only 1% (121 mutants) of their killed and surviving
mutants. Table VI shows code patterns we found during in-
spection. Sections V-A and V-B further explain these patterns.

A. RQ2.1 Code patterns for LPM mutants

Initialization loop. When a loop is used to initialize elements
in a data structure, an LPM mutant that skips loop iterations
may leave some elements uninitialized. Mutants of this pattern
are killed by tests that rely on all elements to be initialized.
However, we also find cases where such mutants survived, e.g.,
in method Index#toSet() of vectorz, shown in Figure 4.
LPM skips some iterations in the loop that initializes elements
of set ss. The only test for this method, testSetCreate,
passes when LPM skips an iteration that adds a duplicated
value to ss. The mutant produces the same result as the
original code and reasoning about its survival can help improve
the test suite with tests that kill this mutant by not having
duplicated data.
Conditional computation on elements. As a loop it-
erates over all elements in a data structure, the loop
body checks whether a property holds before performing
some computation. We find examples of this pattern in
commons-imaging, vectorz, and jblas. Consider the ex-
ample in class DoubleMatrix of jblas shown in Figure 5.

6

TABLE VI: Code Patterns for Killed and Survived Loop Perforation and Precision Degradation Mutants

Approximate
Transformation Surviving Code Patterns #Mutants Killed Code Patterns #Mutants

Loop Perforation

Initialization loop 3 Initialization loop 2
Conditional computation on elements 14 Conditional computation on elements 22
Computation on all elements 17 Computation on all elements 56
Reduction 2 Reduction 9

Precision Degradation
Result is within a precision range 95 Result is outside a precision range 15
Computing large values 1 Computing large values 8

Indexing beyond the size of short 2
Total 132 114

public int argmin() {
if (isEmpty()) { return -1; }
double v = Double.POSITIVE_INFINITY;
int a = -1;
for (int i = 0; i < length; i++) {
if (!Double.isNaN(get(i)) && get(i) < v) {
v = get(i); a = i;

} }
return a; }

@Test
public void testArgMinMax() {
A = new DoubleMatrix(4, 3, 1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0);
assertEquals(0, A.argmin(), eps);
assertEquals(11, A.argmax(), eps); }

Fig. 5: Conditional Computation on Elements LPM code
pattern and its corresponding test from jblas [2]

The LPM mutant is not killed by testArgMinMax(), because
the index with the minimum element is not skipped. The test
suite can be improved by adding more tests with input data
where the minimum element(s) are in a variety of different
indices. In general, mutants that involve checking a property
(or searching for a value) and potentially exiting the loop
early tend to survive when tests do not check for both the
cases when the property holds and when it does not (e.g., they
only assertTrue but do not have some assertFalse for a
different input). We find such surviving mutants in vectorz,
jblas, meka, and OpenTripPlanner. Killed mutants of this
pattern often modify data structures where most elements
satisfy the property; skipping iterations misses important com-
putations that affect test outcomes.

Computation on all elements. As a loop iterates over the
elements in a data structure, its body performs an independent
computation on each element. For example, the computation
may involve setting values at corresponding indices in another
array, or modifying the current element in the input array.
Tests tend to kill LPM mutants for this code pattern when the
test assertion iterates over all elements in the resulting array
to check that the value at each index is correct. We observe
loops of this pattern often in image-processing applications,
which process matrices of pixels (e.g., commons-imaging

and imglib2). In math applications with vector and matrix
operations (e.g., jblas, la4j, and vectorz), these LPM
mutants are commonly killed because the assertions check that
every element has the expected value.

public double reduce(double init, double[] data,
int offset, int length) {

double result=init;
for (int i=0; i<length; i++) {
result=apply(result,data[offset+i]);

}
return result;

}

Fig. 6: Reduction LPM code pattern from vectorz [4]

Reduction. As a loop iterates over all elements in a data struc-
ture, the loop body applies a “reduce” operation, aggregating
all values in the data structure to one representation. This
pattern commonly occurs in math applications (e.g., vectorz
and jblas). An example in class Op2 of vectorz is shown
Figure 6. The reduce method applies an operation apply to
each element in a subarray of the data array. Tests typically
kill such LPM mutants because the final result is a single
value and the tests assert that the resulting value is equal to
an expected value. It is also uncommon that the input array is
such that the elements skipped are all identity elements w.r.t
the applied operation. Most mutants of this pattern are killed;
the few that survived are such that test inputs exercise only
one loop iteration; therefore applying LPM is of no effect. To
kill these mutants, developers need to add tests that execute
the loop with more than one iteration.

B. RQ2.2 Code patterns for ITS & DTF mutants

Result is within/outside a precision range. When the spec-
ification of the operation is such that, for all allowed inputs,
the result is always going to be within the degraded precision
range, then such mutants should always survive. An example
of a surviving DTF mutant is in ColorConversions#conve

rtHSLtoRGB in commons-imaging, which converts HSL to
RGB pixels by multiplying each pixel (a double between 0.0
and 1.0) by 255. Degrading precision only slightly changes
the accuracy of the result, within the tolerance bound of the
test. On the other hand, when the test execution leads to
values that go outside the precision range, such mutants are
killed. We find surviving mutants of this pattern for DTF in
vectorz, OpenTripPlanner, and la4j. We find instances
where mutants of this pattern are killed in meka, la4j,
OpenTripPlanner, jblas, and imglib2.

7

Computing large values. When computations involve large
numbers, degrading the precision easily leads to different
results, e.g., due to overflow. Hence, ITS mutants involving
such computations tend to be killed by tests that expect
a much larger value than the mutant returns. However, in
OpenTripPlanner, we find an ITS mutant of this pattern
that survived because the tests do not check that computed
hash code values are correct and there is no collision in the
hash codes computed at lower precision.
Indexing beyond the size of short. ITS mutants get killed
when they cause the indices of data structures to exceed
their bounds when large int values are cast to short values
that overflow. For instance, class CRSMatrix in la4j has
a method set. The test that kills the ITS mutant creates
a matrix with dimensions greater than Short.MAX_VALUE.
When the ITS mutant is run on the input matrix, the int

to short precision degradation causes overflow, leading to
an ArrayOutOfBoundsException (AOOBE). Also, in class
CellRandomAccess of imglib2, an overflow occurs when
an int value used to walk through all positions in a large
matrix is cast to a short, causing an AOOBE.

C. RQ2.3 Comparing approximate transformations with con-
ventional mutation operators

LPM vs. conventional mutation operators. We check
whether mutants generated by conventional mutation operators
apply to each loop header on which an LPM mutant was gen-
erated. In total, seven conventional mutation operators (CBM,
ICM, IM, NCM, NVMCM, RIM, RCM) can be applied on
the same lines as LPM. Only two of these seven conventional
mutation operators generate mutants that behave somewhat
similarly to LPM mutants: Inline Constant Mutator (ICM)
and Negate Conditionals Mutator (NCM). ICM changes the
constant of the loop initialization to skip only the first iteration.
NCM changes the loop condition to skip the entire loop body.
LPM falls between the ICM and NCM in terms of the number
of skipped iterations.

We conclude that LPM is complementary to conventional
mutation operators; reasoning about their killed/surviving mu-
tants helps developers generate new tests that exercise the code
in new ways, improving their test suites (Section VI). Our
conclusion holds for mutation operators in three other Java
mutation tools: MuJava [43], Javalanche [60], and Major [34].
Replace Constant from Javalanche and Constant Value Re-
placement from Major produce similar effects as PIT’s ICM;
Negate Jump, and Unary Operator from Javalanche, and
Unary Operator Replacement, and Branch Condition Manipu-
lation from Major have similar effects as PIT’s NCM. Our
understanding of code patterns exercised by LPM mutants
enable us to perform such an analysis on mutation operators
from other frameworks.
ITS/DTF vs. conventional mutation operators. We do not
compare the precision degradation operators with the conven-
tional mutation operators because the mutants they generate
are not matched by any of the conventional mutation oper-

ators that modify arithmetic expressions. As our inspection
in Section VI shows, these mutants provide guidance towards
writing better tests that exercise boundary values.
Patterns for approximate transformations and tailored
mutation. The patterns we identified open up a research op-
portunity to achieve additional savings in mutation testing. Our
findings related to code patterns can enable performing tailored
mutation testing [10] or specialized selective mutation [37] to
find (parts of) applications where approximate transformations
can be effective as mutation operators.

VI. IMPACT ON SOFTWARE TESTING PRACTICES

This section answers RQ3, on the practical impact on
software testing of approximate transformations as mutation
operators. We describe the results of our qualitative analysis
to answer these questions:

RQ3.1: How often do surviving mutants from approximate
transformations indicate that tests are bad, mutant is equiv-
alent, or code is approximable?
RQ3.2: Do insights from inspecting surviving mutants from
approximate transformations help developers?

A. RQ3.1 Bad test, equivalent mutant, or approximable code?

Surviving mutants are traditionally regarded as either
(1) signaling buggy, inadequate, or missing tests (BadTest) or
(2) semantically equivalent to the original code, i.e., equivalent
mutants. However, inspecting mutants generated from approx-
imate transformations, we discovered a third possibility: the
mutant survived because the original code is approximable
(ApproxCode). That is, the mutant is semantically different
from the original code but produces acceptable outcomes that
are within a tolerable range. This third interpretation applies
to mutants from all operators, not just the ones generated
by approximate transformations, changing the way mutation
testing results should be interpreted in general.

Of our inspected LPM mutants, 63.83% indicate bad tests
(BadTest) and 19.15% indicate approximable code (Approx-
Code); we find no equivalent mutants, and the remaining
17.02% are hard to inspect. Of our inspected ITS and
DTF mutants, 53.13% indicate bad tests, 14.58% are equiva-
lent, 11.46% indicate approximable code, and the remaining
20.83% are hard to inspect. Section V discussed the pat-
terns that approximate transformations reveal, explaining the
contexts in which those patterns signal approximable code.
Section VI-B describes how BadTests inspired better testing,
and describes some pull requests we made to fix BadTests.

We find mutants indicating ApproxCode in vectorz,
la4j, jblas, and meka. An example from la4j is method
Matrix#shuffle(), which makes a copy of an input ma-
trix and uses a loop to randomly shuffle elements in the
copy. Applying LPM to the shuffling loop is practically not
observable, since the specification of the expected output is
non-deterministic [63]. For ITS the surviving mutants for
ApproxCode are equivalent, while for DTF the surviving
ApproxCode mutants are within the precision range defined
in the application.

8

Determining whether code is approximable is not an easy
task. It is highly dependent on the quality of the oracles in
the test suites that determine the ranges of acceptable output.
Approximate computing often relies on the usage context
(i.e., specific applications and application-level requirements)
to determine if code is approximable. Such usage context is
not available for the developers of general-purpose libraries
(like most of our subjects) that can be used in a myriad of
contexts. Therefore, the tests for these libraries are written
in a conservative way, and consequently, our set of identified
approximable patterns are necessarily conservative as well.

B. RQ3.2 Do insights from surviving mutants help improve
testing practice?

We find that surviving mutants of the BadTest category can
be killed by adding tests that (1) achieve better loop coverage,
(2) achieve better coverage of the loop condition, (3) exercise
the code with larger inputs that cross the precision boundaries,
or (4) check all output elements. Even though these insights are
not new to the testing community, the real value lies in the fact
that the approximate transformations are able to detect those
problems, bringing them to the attention of the developer who
might not have such considerations in mind. We also submitted
pull requests that fix bad tests, to evaluate whether these
insights can help developers improve their test suites. Seven of
the 11 pull requests that we submitted were already integrated
by developers into vectorz, HikariCP, commons-imaging,
imglib2 and commons-io. We next discuss the categories
and the pull requests.
Achieve better loop coverage. 11 out of 30 LPM BadTest
cases have tests that do not achieve full loop coverage, i.e.,
they do not have tests that exercise zero, one, and more than
one loop iterations. As Table VII shows, the tests frequently
cover either zero or one iteration. We discover the lack of
full loop coverage while inspecting surviving LPM mutants
in vectorz, jblas, OpenTripPlanner, and commons-io.
The causes of low loop coverage that we observed are when
(1) a test exercises the code with small inputs (e.g., one
dimensional matrices) and (2) a test searches for a value that
always happens to be the first element in the input data, so
that the loop iterates only once before exiting. For example,
in jblas, the method argmin() returns the index of the
minimum element in a matrix. All tests that cover argmin()
use input that is sorted in ascending order, so argmin()

always returns 0.
Achieve better coverage of loop condition. While inspecting
the 14 surviving LPM mutants for the code pattern “Condi-
tional computation on elements” (Section V-A), we find 12
of them are cases of BadTest in two categories: either the
conditional check on the elements is never performed, or
the conditional check is only performed on even-numbered
iterations. In several cases the tests exercise the loop with
only valid inputs, so the conditional check for errors that
happen in the loop body is never performed. LPM helps
direct the developer’s attention into those critical parts of
the code. An example from commons-io (SHA:733dc26)

TABLE VII: Lessons Learned For Better Testing Practices
From LPM BadTest Cases

Bad Testing Pattern #Cases Learned Testing Practice

Zero iterations 7 Better loop coverage
One iteration 4 Better loop coverage
Loop condition (LC) Not Taken 8 Better coverage of LC
LC taken on even iterations 4 Better coverage of LC
Weak or no assertion 6 Check all output elements
Small Inputs 51 Exercise boundary values
Other2 1 -

Total 81

protected Class<?> resolveProxyClass(final String[] ints) {
final Class<?>[] iClasses = new Class[ints.length];
for (int i = 0; i < ints.length; i++) {
iClasses[i] = Class.forName(ints[i], false, loader);

}
try {
return Proxy.getProxyClass(loader, iClasses);

} catch (final IllegalArgumentException e) {
return super.resolveProxyClass(ints);

} }

@Test
public void testResolveProxyClass() throws Exception {
...
ClassLoaderObjectInputStream c =
new ClassLoaderObjectInputStream(...);

String[] i = new String[]{Comparable.class.getName()};
Class<?> r = c.resolveProxyClass(i);
assertTrue("...", Comparable.class.isAssignableFrom(r));
c.close(); }

Fig. 7: Bad test example from commons-io [1]

is shown in Figure 7. The method resolveProxyClass()

from the class ClassLoaderObjectInputStream is only
exercised by the test testResolveProxyClass. The test
passes only one interface (Comparable.class) to the loop in
resolveProxyClass. Thus, applying LPM to that loop will
not cause testResolveProxyClass to fail, i.e., the resulting
mutant survives, unless more than one interface is passed to
resolveProxyClass(). Our pull request containing such a
test was accepted by the commons-io developers.
Exercise boundary values. All BadTest cases for ITS and
DTF are due to tests using small inputs. This means that
the current tests do not use values that exceed the precision
bounds of short for ITS and float for DTF, and we can
write a test that can kill the mutant. A DTF example from
vectorz is in the class Quaternions, which represents
numbers from the quaternions number system using double

precision. The method mul() computes the product of two
quaternions. Mutants casting any of the arithmetic operations
involved in the computation survive because the numerical
values are very small.
Check all output elements. Multiple mutants are not killed
because of the weakness or absence of assertions in the tests.
For example, meka is a machine learning library. The tests
cover the mutants, but most of the tests do not have assertions,

2This is a case in meka; a setter method resets the values in a matrix, but
the new values are almost equal to the old values, so the effect of skipping
iterations is not observable. A better test would exercise the function such
that the difference between the new and old values is observable.

9

and coming up with strong assertions is non-trivial. Another
example is in vectorz (shown in Figure 1a). The only test
that covers the method Matrix#swapRows() does not check
that all elements in the swapped rows are as expected (detailed
discussion is in Section II). We submitted a pull request to add
assertions and it has been accepted.

VII. THREATS TO VALIDITY

The conventional mutation operators we use in comparison
may not be representative of all mutation operators. Since
ours is an initial study of the effectiveness of approximate
transformations as mutation operators, we have used the set
of conventional mutation operators that are available in PIT,
which are used in both research and practice. Furthermore, in
our qualitative analysis we examine mutation operators from
three other popular mutation frameworks [34], [43], [60] and
find our conclusions to still hold for those.

The approximate transformations that we evaluated are
a subset of all approximate transformations and they may
not be representative. To mitigate that, we model popular
transformations that have been widely used in the approximate
computing literature. Each transformation that we implement
models some key properties of the original approximate trans-
formations, i.e., dropping parts of computation (LPM), large
magnitude errors (ITS), and small magnitude errors (DTF).

VIII. RELATED WORK

A. Approximate computing

Approximate computing is an emerging area of research
focusing on trading off (slightly) inaccurate results for per-
formance gains (e.g. for energy usage). Some approximate
computing techniques involve approximate hardware [40],
[48], data types [58], sampling [6], [41], or code perfora-
tion [49], [65], all of which obtained significant performance
with tolerable errors in specific domains. However, most of
the existing work in approximate computing does not make
explicit connections to software testing research. While our
recent position paper argues in favor of using approximate
computing to improve various software testing tasks [22],
this work shows that approximate transformations are indeed
useful in mutation testing.

Researchers also proposed sensitivity profilers [16], [48],
[49], [56], [69], [72], which transform code, run it using
representative input/output pairs, compare any differences, and
suggest which parts of computations are approximable. Like
sensitivity profiling, our approach transforms code and runs
them on a set of tests, but our goal is different in several
ways: (1) we study approximate transformations for mutation
testing and compare with conventional mutation operators,
(2) we execute programs on finer-grained unit tests, not coarse-
grained integration tests, and (3) our results provide hints for
improving tests, not just code.

B. Mutation testing

Mutation testing has been widely-studied for decades [20],
[76]; Jia and Harman [33] provide a thorough background.

Multiple techniques were developed for mutation testing
at different levels and for different languages (e.g., source
code [13], [24], [32], [60], intermediate representation [3],
[28], [61]), etc. Many tools were also introduced for mul-
tiple programming languages, e.g., including C [19], [32],
C++ [38], Java [36], [44], [45], [60], and others [15], [17],
[29]. Many optimizations have been developed for mutation
testing, including mutant schemata [70], weak mutation [54],
and higher-order mutation [32]. Researchers have also pro-
posed new mutation operators for different domains and use
cases, such as for GUI-based applications [8], [53], embedded
systems [68], class diagrams [25], Android applications [71],
or fault-localization tasks [30]. We are the first to study
approximate transformations in the context of mutation testing.

Researchers have studied how to improve the efficiency of
mutation testing by techniques to only use the mutants that are
hard-to-kill and representative of all mutants. Some heuris-
tics for finding hard-to-kill mutants include minimal mutant
analysis [11], [24], static analysis [55], or use of historical
data [31]. Offutt et al. [51], [52] empirically found the set
of sufficient operators, operators whose generated mutants are
representative of mutants generated by the other operators,
and others have extended this idea to various languages and
paradigms, like concurrent code [23]. While these works have
the goal to improve the efficiency of mutation testing, that
is not the goal of our paper. We are focused on improving
the quality of mutation testing by utilizing new mutation
operators that give different insights into improving the test
suite. We do, however, use the established existing techniques
to evaluate how effective approximate transformations are
compared against conventional mutation operators.

IX. CONCLUSIONS

We propose approximate transformations as mutation op-
erators, and we compare them with conventional mutation
operators. Specifically, we integrated loop perforation and
precision degradation into an existing mutation testing frame-
work, and we compared and analyzed the quality of those
transformations when used as mutation operators. Our results
show that approximate transformations generate mutants that
are not subsumed by mutants generated by conventional mu-
tation operators. Our qualitative analysis of a number of killed
and surviving approximate transformations uncovered several
code patterns that developers could use to enhance their test
suites. The surviving mutants inspired proposing better testing
practices and helped us submit 11 pull requests to fix bad tests.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back and the participants of CS 591SE at the University of
Illinois for constructive discussions on the material presented
in this paper. This work was partially supported by the
US National Science Foundation under Grants Nos. CCF-
1409423, CCF-1421503, CCF-1566363, CCF-1629431, CCF-
1652517, CCF-1703637, and CCF-1704790.

10

REFERENCES

[1] Commons-io. https://github.com/apache/commons-io.
[2] Jblas. https://github.com/mikiobraun/jblas.
[3] Real world mutation testing. http://pitest.org.
[4] Vectorz. https://github.com/mikera/vectorz.
[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: Queries with bounded errors and bounded response times on
very large data. In EuroSys, pages 29–42, 2013.

[7] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen. Can
testedness be effectively measured. In FSE, pages 547–558, 2016.

[8] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon. Conceptualization and
evaluation of component-based testing unified with visual GUI testing:
An empirical study. In ICST, pages 1–10, 2015.

[9] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce.
Evaluating non-adequate test-case reduction. In ASE, pages 16–26, 2016.

[10] M. Allamanis, E. T. Barr, R. Just, and C. Sutton. Tailored mutants fit
bugs better. arXiv preprint arXiv:1611.02516, 2016.

[11] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing theoretical
minimal sets of mutants. In ICST, pages 21–30, 2014.

[12] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

[13] J. Andrews, L. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In ICSE, pages 402–411, 2005.

[14] ASM. http://asm.ow2.org/.
[15] T. A. Budd, R. J. Lipton, R. DeMillo, and F. Sayward. The design

of a prototype mutation system for program testing. In AFIPS, pages
623–629, 1899.

[16] M. Carbin and M. C. Rinard. Automatically identifying critical input
regions and code in applications. In ISSTA, pages 37–48. ACM, 2010.

[17] W. Chan, S. C. Cheung, and T. Tse. Fault-based testing of database
application programs with conceptual data model. In QSIC, pages 187–
196, 2005.

[18] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis
and characterization of inherent application resilience for approximate
computing. In DAC, page 113. ACM, 2013.

[19] M. E. Delamaro and J. C. Maldonado. Proteum-A tool for the assessment
of test adequacy for C programs users guide.

[20] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
1978.

[21] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe. Autotuning algorithmic choice for input sensitivity. In
PLDI, 2015.

[22] M. Gligoric, S. Khurshid, S. Misailovic, and A. Shi. Mutation testing
meets approximate computing. In ICSE NIER, pages 3–6, 2017.

[23] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation
testing for concurrent code. In ISSTA, pages 224–234, 2013.

[24] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce. Measuring
effectiveness of mutant sets. In ICSTW, pages 132–141, 2016.

[25] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor.
Mutation operators for UML class diagrams. In CAiSE, pages 325–341,
2016.

[26] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
Impact: imprecise adders for low-power approximate computing. In
Proceedings of the 17th IEEE/ACM international symposium on Low-
power electronics and design, pages 409–414. IEEE Press, 2011.

[27] J. Han and M. Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In Test Symposium (ETS), 2013
18th IEEE European, pages 1–6. IEEE, 2013.

[28] F. Hariri, A. Shi, H. Converse, S. Khurshid, and D. Marinov. Evaluating
the effects of compiler optimizations on mutation testing at the compiler
IR level. In ISSRE, pages 105–115, 2016.

[29] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, and M. Kim.
MUSEUM: debugging real-world multilingual programs using mutation
analysis. IST, 82:80–95, 2017.

[30] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim.
Mutation-based fault localization for real-world multilingual programs
(t). In ASE, pages 464–475, 2015.

[31] L. Inozemtseva, H. Hemmati, and R. Holmes. Using fault history to
improve mutation reduction. In ESEC/FSE 2013, pages 639–642, 2013.

[32] Y. Jia and M. Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In TAIC PART, pages
94–98, 2008.

[33] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. TSE, 37(5):649–678, 2011.

[34] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA, pages 433–436, 2014.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In FSE,
pages 654–665, 2014.

[36] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In ASE,
pages 612–615, 2011.

[37] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe. Analyzing the validity of selective mutation with dominator
mutants. In FSE 2016, pages 571–582, 2016.

[38] M. Kusano and C. Wang. CCmutator: A mutation generator for
concurrency constructs in multithreaded C/C++ applications. In ASE,
pages 722–725, 2013.

[39] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In FSE, pages 583–594, 2016.

[40] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving
DRAM refresh-power through critical data partitioning. In ASPLOS,
pages 213–224, 2011.

[41] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes. Image perforation:
Automatically accelerating image pipelines by intelligently skipping
samples. SIGGRAPH, 35(5):153:1–153:14, 2016.

[42] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang.
How does regression test prioritization perform in real-world software
evolution? In ICSE, pages 535–546, 2016.

[43] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An automated class
mutation system. STVR, 15(2):97–133, 2005.

[44] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: a mutation system for
Java. In ICSE, pages 827–830, 2006.

[45] L. Madeyski and N. Radyk. Judy-A mutation testing tool for Java. IET
software, 4(1):32–42, 2010.

[46] A. P. Mathur. Performance, effectiveness, and reliability issues in
software testing. In COMPSAC, pages 604–605, 1991.

[47] S. Misailovic. Exploring the Effectiveness of Loop Perforation for
Quality of Service Profiling. Technical report, MIT, 2010.

[48] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels. In OOPSLA, pages 309–328, 2014.

[49] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. In ICSE, pages 25–34, 2010.

[50] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi. Phase-aware
optimization in approximate computing. In CGO, 2017.

[51] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. TOSEM,
5(2):99–118, 1996.

[52] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of
selective mutation. In ICSE, pages 100–107, 1993.

[53] R. A. P. Oliveira, E. Algroth, Z. Gao, and A. Memon. Definition and
evaluation of mutation operators for GUI-level mutation analysis. In
ICSTW, pages 1–10, 2015.

[54] M. Papadakis and N. Malevris. Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based
testing. Software Quality Control, 19(4):691–723, 2011.

[55] M. Patrick, M. Oriol, and J. A. Clark. Messi: Mutant evaluation by
static semantic interpretation. In ICST, pages 711–719, 2012.

[56] P. Roy, R. Ray, C. Wang, and W. F. Wong. Asac: Automatic sensitivity
analysis for approximate computing. In SIGPLAN/SIGBED LCTES,
2014.

[57] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning
assistant for floating-point precision. In SC, page 27, 2013.

[58] A. Sampson, W. Dietl, E. Fortuna, and D. Gnanapragasam. EnerJ:
Approximate data types for safe and general low-power computation.
In PLDI, pages 164–174, 2011.

11

[59] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of
floating-point programs with tunable precision. ACM SIGPLAN Notices,
49(6):53–64, 2014.

[60] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for Java.
In FSE, pages 297–298, 2009.

[61] E. Schulte. llvm-mutate. http://eschulte.github.io/llvm-mutate/.
[62] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov. Balancing

trade-offs in test-suite reduction. In FSE, pages 246–256, 2014.
[63] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions

on deterministic implementations of non-deterministic specifications. In
ICST, 2016.

[64] A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and combining
test-suite reduction and regression test selection. In FSE, pages 237–247,
2015.

[65] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In FSE, pages
124–135, 2011.

[66] Spoon. http://spoon.gforge.inria.fr/.
[67] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive control of

approximate programs. In ASPLOS, 2016.
[68] A. Sung, B. Choi, W. E. Wong, and V. Debroy. Mutant generation

for embedded systems using kernel-based software and hardware fault
simulation. IST, 53(10):1153–1164, 2011.

[69] A. Thomas and K. Pattabiraman. Llfi: An intermediate code level fault
injector for soft computing applications. In SELSE, 2013.

[70] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using
mutant schemata. In ISSTA, pages 139–148, 1993.

[71] M. L. Vásquez, G. Bavota, M. Tufano, K. Moran, M. D. Penta, C. Ven-
dome, C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling mutation
testing for android apps. In ESEC/FSE, pages 233–244, 2017.

[72] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency. In MICRO, pages
1–14. IEEE, 2016.

[73] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Quality programmable vector processors for ap-
proximate computing. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 1–12. ACM, 2013.

[74] X. Yao, M. Harman, and Y. Jia. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In ICSE, pages
919–930, 2014.

[75] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2):67–120, 2012.

[76] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. CSUR, 29(4):366–427, 1997.

12

