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Abstract—Regression test selection (RTS) reduces regression
testing costs by re-running only tests that can change behavior
due to code changes. Researchers and large software organiza-
tions recently developed and adopted several RTS tools to deal
with the rapidly growing costs of regression testing. As RTS tools
gain adoption, it becomes critical to check that they are correct
and efficient. Unfortunately, checking RTS tools currently relies
solely on limited tests that RTS tool developers manually write.

We present RTSCHECK, the first framework for checking RTS
tools. RTSCHECK feeds evolving programs (i.e., sequences of
program revisions) to an RTS tool and checks the output against
rules inspired by existing RTS test suites. Violations of these rules
are likely due to deviations from expected RTS tool behavior, and
indicative of bugs in the tool. RTSCHECK uses three components
to obtain evolving programs: (1) AutoEP automatically generates
evolving programs and corresponding tests, (2) DefectsEP uses
buggy and fixed program revisions from bug databases, and
(3) EvoEP uses sequences of program revisions from actual
open-source projects’ histories. We used RTSCHECK to check
three recently developed RTS tools for Java: Clover, Ekstazi, and
STARTS. RTSCHECK discovered 27 bugs in these three tools.

I. INTRODUCTION

Regression testing is an important, widely used, but costly
approach for checking that code changes do not break pre-
viously working functionality. Regression testing costs arise
from running tests on each program revision; such costs have
been growing quadratically with the growth in the number of
tests and with increasing frequency of code changes [1]–[4].

Regression test selection (RTS) [5]–[8] reduces regression
testing costs by selecting to re-run, on each new program
revision, only a subset of tests that can change behavior due
to code changes, i.e., affected tests. A typical RTS technique
collects dependencies (e.g., methods, classes) for each test and
selects to re-run only tests whose dependencies changed. An
RTS technique is safe if it does not miss to select any affected
test and precise if it selects only affected tests.

To deal with the rapidly growing costs of regression test-
ing, several RTS tools were recently developed and adopted
by both industry and researchers. Industry examples include
Microsoft’s Test Impact Analysis for .NET [9], which ships
with Visual Studio to millions of developers, and Clover’s Test
Optimization for Java [10], which was recently open-sourced
to increase adoption. Researchers also developed several RTS
tools in the last five years alone [11]–[14]; some of these tools
have been adopted by large software organizations [15].

As RTS tools gain adoption and become more mainstream,
it becomes critical and timely to check their correctness and

efficiency. We say an RTS tool is correct if it is safe and
precise, subject to the implemented RTS technique. RTS tool
efficiency is measured by comparing its end-to-end time (i.e.,
test selection time plus execution time for selected tests) with
RetestAll, i.e., running all tests at each revision.

Unfortunately, there is no systematic approach for checking
correctness and efficiency of RTS tools. Checking RTS tools
currently depends solely on the limited sets of tests that each
RTS tool developer manually writes. Prior research established
a framework for analytically evaluating RTS techniques [16],
and several researchers semi-formally proved safety and com-
putational complexity of RTS techniques [17]–[19]. However,
these proofs and analyses may not carry over to the RTS tools
that implement those techniques; implementing a technique in
a tool requires engineering and, like any other software, RTS
tools may contain bugs. A framework for checking RTS tools
will (1) enable researchers to compare existing RTS tools and
check future RTS tools, and (2) provide greater confidence to
developers who are considering to adopt RTS tools.

We present RTSCHECK, a novel framework for checking
RTS tools. RTSCHECK feeds evolving programs, i.e., se-
quences of program revisions, to an RTS tool and checks the
output against rules that specify likely violations of expected
behavior. RTSCHECK currently uses seven hand-crafted rules,
inspired by developer-written tests for RTS tools; users can
extend the set of rules. RTSCHECK detects violations in three
categories. (1) RTSCHECK detects a likely safety violation if
an RTS tool does not select expected tests, e.g., not selecting
to run newly failed tests that fail in RetestAll. (2) RTSCHECK
detects a likely precision violation if an RTS tool selects un-
necessary tests, e.g., running all tests the second time when run
twice on the same program revision. (3) RTSCHECK detects
a generality violation if an RTS tool does not integrate well
with the program, leading to unexpected behavior, e.g., failing
more tests than RetestAll due to incorrect instrumentation.
RTSCHECK also generates an efficiency report, which shows
if an RTS tool takes longer to run (on average) than RetestAll.
RTSCHECK uses the common assumptions in RTS research
that tests are not flaky [20]–[22], and there is no test-order
dependency [23]–[25]. All violations RTSCHECK detects are
due to implementation issues or limitations of the underlying
RTS technique that were unknown a priori; currently, we map
violations to these two root-causes manually.

RTSCHECK has three components for obtaining the evolv-
ing programs (i.e., code and tests) for testing RTS tools. First,
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Fig. 1: An overview of the RTSCHECK framework

the AutoEP component automatically generates a code revi-
sion, randomly generates tests for that revision, and systemati-
cally modifies the old revision with a set of evolution operators
to obtain subsequent revisions of code and tests. Second, the
DefectsEP component obtains evolving programs with two
revisions from bug databases, using the fixed version as the
first revision and the buggy version as the second revision.
Finally, the EvoEP component obtains evolving programs by
extracting program revisions from software repositories.

Our current RTSCHECK implementation supports checking
and comparing RTS tools for Java. We used RTSCHECK to
check and compare three recent RTS tools: Clover [26], Ek-
stazi [12], and STARTS [18]. Clover is developed by industry,
while Ekstazi and STARTS are developed by researchers. We
used RTSCHECK to obtain a total of 31K evolving programs,
which have a total of 4M tests. RTSCHECK reported 24K
violations; we inspected a subset of these violations (207) and
mapped them to 20 implementation issues, seven limitations
of the underlying RTS techniques, and two false positives. We
reported all 27 bugs to the developers of these RTS tools,
four of which were already known to the developers. The
developers already confirmed 10 of the 23 previously unknown
bugs. Each RTSCHECK component contributed to discovering
several unique bugs, and we found at least six bugs in each
RTS tool that we checked.
This paper makes the following contributions:
• Framework: We present RTSCHECK, the first framework

for systematically checking RTS tools for likely violations
of expected behavior and for reporting efficiency. We are the
first to apply automatic generation of evolving programs and
existing bug databases for checking RTS tools.

• Implementation: We implement RTSCHECK to check RTS
tools for Java. RTSCHECK can be extended to check new
RTS tools, support new components for obtaining evolving
programs, or use different rules. RTSCHECK is available at
http://cozy.ece.utexas.edu/rtscheck.

• Evaluation: We deployed RTSCHECK to check three RTS
tools: Clover, Ekstazi, STARTS. RTSCHECK discovered 27
bugs, four of which were known. The RTS tool developers
so far confirmed 10 of the remaining 23 bugs.

II. THE RTSCHECK FRAMEWORK

Figure 1 shows an overview of RTSCHECK. RTSCHECK
takes two inputs: (1) a configuration file for setting up the
components that obtain evolving programs, and (2) the RTS

TABLE I: Rules for Detecting Violations from Running an
Evolving Program with RetestAll and at least One RTS Tool

Id Violation Description Type

R1 In some revision, the number of newly failed tests
when run with the tool is lower than with RetestAll safety

R2 In some revision, the tool selects zero tests but all
other tools select all tests

R3 In all revisions, the tool selects all tests

precision
R4 In some revision, the tool selects all tests but all

other tools select zero tests

R5 The first two revisions are the same, and the tool
selects one or more tests in the second revision

R6 In the first revision, the tool selects a different
number of tests than RetestAll

generality
R7 In some revision, the number of failed tests when

run with the tool is greater than with RetestAll

tools to check. Based on these inputs, RTSCHECK obtains
evolving programs; feeds these programs, one at a time, to
the RTS tools; and checks for likely violations (violations for
short). We first describe the rules that RTSCHECK uses to
detect violations, and then we describe each component for
obtaining evolving programs.

A. Rules for Detecting Violations

We define an evolving program as a sequence of n program
revisions (P0, P1, ..., Pn−1). Each program revision is a tuple
of code under test and a test suite. For a given evolving
program, RTSCHECK runs each program revision with the
RTS tools being checked; the results of test execution and
tool-specific intermediate data are stored as metadata. The
metadata is available when running the next program revision
and enables RTS tools to perform selection.

Our rules for detecting violations apply to one evolving
program at a time; the rules are defined over the metadata
available after executing the evolving program. Table I shows
our rules for detecting violations. We assume that RTSCHECK
executes the given evolving program with RetestAll and at
least one RTS tool, although rules R2 and R4 apply only if
more than one RTS tool is provided as the input. For each rule,
we show a unique Id, a short description of when the rule is
violated, and the type of the violation that the rule detects;
there are three types of violations: safety violations, precision
violations, and generality violations.



1) Safety Violations: Rules R1 and R2 detect safety vio-
lations. A safety violation occurs when the RTS tool may be
selecting fewer newly failed tests than should be selected; a
newly failed test passed in the old revision but fails in the
new revision. Violating rule R1 indicates a bug (we assume
no flaky tests and no test order dependencies). Not selecting a
newly failed test means that an RTS tool could cause users to
miss a fault in the code. Violating rule R2 may not indicate a
true bug, because it compares an RTS tool against other tools.
However, in such cases, the difference in selection (selecting
no tests versus all other tools selecting all tests) is extreme,
so it is highly likely there is a bug in the tool.

2) Precision Violations: Rules R3, R4, and R5 detect
precision violations. A precision violation occurs when the
RTS tool may be selecting too many tests, more than are
necessary. Of these rules, there is no guarantee that violating
rules R3 and R4 indicate actual bugs in the RTS tool; it may
be the correct behavior for the RTS tool to be selecting all the
tests as they may all be affected tests. However, again, such
scenarios are rather extreme and likely indicative of a bug
where all other tools select no tests, or if on every revision a
tool selects all tests. Violating rule R5 indicates a true bug: if
there is no change, there should be no affected tests.

3) Generality Violations: Rules R6 and R7 detect generality
violations. A generality violation occurs when using the RTS
tool with the code and tests leads to different behavior than
what is expected, such as crashing or failing more tests than
with RetestAll. Violating either of the two rules indicates
a true bug in the RTS tool. For rule R6, an RTS tool on
a fresh, first revision should always select all the tests, as
RetestAll does. Not selecting all the tests indicates the tool is
not working properly with the code/tests. While violating R6
means running fewer tests than should be run, it is not a safety
violation, as there is no change that leads to any affected tests.
For rule R7, if an RTS tool results in more failed tests than
RetestAll, the extra failed tests must be due to bad integration
with the tool, e.g, the tool caused tests to behave differently,
or the tool is crashing for some tests.

Our rules are inspired by the assertions from existing
manually written tests for RTS tools, capturing common
expected behaviors of RTS tools. Note that while assertions
from manually-written tests helped design the rules, RTS tool
developers usually check these assertions on very few, if any,
evolving programs. Starting with some of the base assertions
from existing tests, we modified them to only test extreme
cases. For example, instead of having a rule that is violated
when an RTS tool selects fewer tests than other RTS tools,
our rule R2 is a more extreme version of this rule. Intuitively,
having more extreme rules leads to fewer false positives. The
rules we use here do not necessarily find all bugs in RTS tools.
However, RTSCHECK has a modular design and provides a
way to extend the set of rules that can help detect more
violations that lead to finding more bugs. We plan to study
various extensions in the future.

B. The AutoEP Component
AutoEP obtains evolving programs via automated code

generation, test generation and code evolution. Our key idea is
to apply bounded exhaustive testing with randomly generated
tests and state comparison for checking RTS tools. Addition-
ally, we develop a novel set of program evolution operators.

AutoEP works in three main steps: (1) generate the first
revision in an evolving program, (2) generate tests for the first-
revision programs, and (3) evolve those first-revision programs
to obtain corresponding second-revision programs. A program
may evolve in multiple ways, so AutoEP obtains multiple
evolving programs from a first-revision program.

1) Program Generator: AutoEP uses JDolly [27] to gener-
ate the first-revision programs. JDolly systematically generates
Java programs up to specified bounds and was originally
developed for testing Java refactoring engines [28]. We choose
JDolly because it exhaustively generates programs with com-
plex relations among code elements (e.g., class inheritance).
Table II shows the user-specifiable constraints we use to tune
program generation for JDolly. The table shows a unique
identifier for each constraint (Id) and a short summary of
each constraint (Summary (see [27])). More details about the
constraints are available elsewhere [29].
TABLE II: Program Generation
Constraints Used in AutoEP

Id Summary (see [27])

JD1 NoConstraints
JD2 ClzWithMethodAndSuperClz
JD3 ClzWithMethodAndSubClz
JD4 ClzWithFieldAndSuperClz
JD5 ClzWithMethodAndField
JD6 SomeInheritance
JD7 SomeMethod
JD8 SomeField
JD9 SomeCaller
JD10 SomeFieldSomeFieldAccess

Note that programs
generated by JDolly may
not compile. Therefore,
AutoEP contains a post-
processing step to re-
move programs that do
not compile.

2) Test Generator:
AutoEP uses the Ran-
doop tool [30], [31]
to generate tests. Each
test method generated by
Randoop is a sequence

of method calls. The method sequence length and the number
of test methods to generate can be specified as AutoEP inputs;
we evaluate with maximum sequence lengths of {1, 2, 4, 100}
and (up to) 50 tests per length. The other input to Randoop is
the set of classes for which to generate tests. The list of classes
we provide to Randoop are the first-revision classes generated
by JDolly. Randoop starts with an empty set of sequences and
randomly chooses, in each step, a method to invoke from one
of the first-revision classes. The call sequence is extended until
the specified limit is reached or invoking the current sequence
causes an exception so that further extension of the sequence
is not beneficial. The arguments for each method call in the
sequence are selected either from a predefined pool for each
type (e.g., null for reference types) or from the results of
prior method calls in the same method call sequence.

Oracles in Randoop tests are limited, so we additionally cap-
ture program state as new oracles for the tests. Specifically, the
program state contains objects of all classes in the generated
program, including values of all primitive (inherited) fields
and information about their type (i.e., the class hierarchy).



We capture the program state at the end of a test run by a
lightweight heap traversal. We treat the state captured at the
end of a test run in the first-revision program as the expected
value of the state. Essentially, one can manually create an
assertion that fails if the state captured at the end of a test run
does not match this expected value of the state. If running the
test later, e.g., after evolution, the state does not match this
expected state, then this assertion fails. Dynamic instrumen-
tation that we use to capture program state is lightweight: it
only adds a single line to each constructor. We confirmed on
a large number of examples that our instrumentation does not
conflict with that used by the dynamic RTS tools in our study,
nor do they impact dependencies collected by the RTS tools.

3) Program Evolver: Automatically checking RTS tools
requires at least two revisions of an evolving program, which is
unlike prior work on program (and test) generation for testing
compilers [32]–[36], refactoring engines [27], [37], [38], etc.,
which generate many single-revision programs. Our approach
for evolving the first revision of an evolving program into the
second revision uses mutations, similar in spirit to how the
EMI approach [39]–[42] creates program variants for compiler
testing. The differences with EMI are the set of program
evolution operators used for evolving the initial revision and
the goal of generating programs. The goal of many operators
in AutoEP is to change the behavior of the code under test in
ways that affect test outcomes. To generate second-revision
programs, AutoEP mutates first-revision programs using a
set of program evolution operators that we define based on
the literature on developing safe RTS techniques for object
oriented programming languages [17], [43], [44].

TABLE III: Program Evolution
Operators Available in AutoEP
Id Description

E1 Add extends
E2 Copy field
E3 Copy field and replace
E4 Copy method
E5 Copy method and replace
E6 Evolve to next program
E7 Increase constants
E8 Remove extends
E9 Remove method

Table III shows the pro-
gram evolution operators
supported in AutoEP. The
first column shows Id for
each operator that will be
used later in this document,
and the second column
briefly describes each op-
erator. “Add extends” (E1)
adds an extends keyword
to a class and systematically
chooses a superclass. “Copy
field” (E2) copies a field
from one class to another. “Copy field and replace” (E3)
copies a field from one class to another and changes its initial
value (if primitive). “Copy method” (E4) copies a method
from one class to another. “Copy method and replace” (E5)
copies a method from one class to another and changes a
constant in its body. “Evolve to next program” (E6) evolves
a program to a subsequent program, considering the order in
which the programs were generated. “Increase constant” (E7)
replaces a constant with a larger value. “Remove extends”
(E8) removes an extends keyword. “Remove method” (E9)
removes a method.

Operators E1, E2, E3, E4, E5, E8, and E9 impact class
relationships. E6 corresponds to a random program evolution.

Finally, E7 modifies various code elements where constants
can appear, e.g., field initialization or return statement. Each
operator may be applied to several locations in a first-revision
program, resulting in many evolving programs. AutoEP’s
operators are related to operators in mutation testing [45]–
[49], which are used to evaluate test-suite quality. For example,
“Increase constant” is available in most mutation testing
tools. However, other AutoEP operators have no equivalent
previously-proposed mutation operator.

C. The DefectsEP Component

The DefectsEP component obtains evolving programs by
extracting fixed and buggy revisions from bug databases. Our
goal is to use a real bug-introducing change and a failing
test for checking RTS tools. Several bug databases follow a
similar structure: there are two program revisions for each bug,
one revision corresponding to the buggy program revision and
the other corresponding to the fixed program revision. These
programs are usually (large) open-source projects and the bugs
are actual bugs fixed by developers of those projects. There is
usually at least one test that fails in the buggy revision (i.e.,
the bug-revealing test) and passes in the fixed revision.

The main idea behind DefectsEP is to reverse the order of
the buggy and fixed revisions to simulate a program change
that leads to failing tests. If an RTS tool is integrated in such
an evolving program, the tool should always select the failing
test(s). Although our original motivation is to check for safety
violations, we still check all applicable rules. For the case
of rule R5, because there cannot be two revisions that are
the same (otherwise, there cannot be a buggy and a fixed
revision), we also run the fixed revision twice to have the
first two revisions be the same and see if R5 is violated.

In our current version of RTSCHECK, the DefectsEP uses
the Defects4J bug database [50]. Defects4J includes a large
number of bugs and it has been used for many software
engineering research tasks [51]–[53]. We are the first to use
Defects4J for evaluating RTS tools.

D. The EvoEP Component

The EvoEP component obtains an evolving program by ex-
tracting program revisions from existing software repositories.
Furthermore, like with DefectsEP, we run the first revision
twice to ensure the first two revisions are the same, which
helps us check if R5 gets violated. The main motivation
for having EvoEP is to evaluate RTS tools with evolving
programs with more than two revisions (the previous two
components use only two revisions). Thus, EvoEP may po-
tentially discover bugs that require more than two revisions
to expose. Moreover, checking an RTS tool with EvoEP
can be seen as integration testing. EvoEP extracts evolving
programs from projects with complex setups, so it also has
the potential to discover bugs that manifest only with specific
program configurations. Additionally, the best way to evaluate
efficiency is likely by observing execution time on longer-
running evolving programs. Finally, is is important to check
RTS tools on actual program changes over a period of time.



TABLE IV: Number of Generated Programs (Base) and Number of Generated Evolving Programs (#G - Total and #C -
Compilable) for Various Modes using AutoEP

Base E1 E2 E3 E4 E5 E6 E7 E8 E9

#G #C #G #C #G #C #G #C #G #C #G #C #G #C #G #C #G #C

JD1 88 264 0 352 352 0 0 528 58 528 58 88 29 264 264 176 0 264 0
JD2 390 1404 159 0 0 0 0 3120 1950 3120 1950 390 230 1074 1074 702 293 1560 293
JD3 377 1317 158 0 0 0 0 3016 2421 3016 2421 377 240 1039 1039 692 109 1508 273
JD4 199 512 512 199 199 199 199 85 85 85 85 199 199 199 199 142 142 85 85
JD5 85 224 26 0 0 0 0 60 47 60 47 85 57 60 60 58 42 60 0
JD6 399 1374 101 0 0 0 0 2394 1873 2394 1873 399 230 1066 1066 739 289 1197 277
JD7 399 1341 58 0 0 0 0 2349 2043 2349 2043 399 247 1197 1197 730 84 1197 0
JD8 251 885 793 1004 1004 1004 1004 502 459 502 459 251 226 502 502 458 420 251 223
JD9 365 1248 153 0 0 0 0 2190 1826 2190 1826 365 189 826 826 679 174 1095 80
JD10 80 280 115 158 158 158 158 474 370 474 370 80 39 160 160 144 73 240 96

III. EXPERIMENT SETUP

In this section, we describe the RTS tools used in the evalua-
tion and present evolving programs obtained by RTSCHECK.
We make a replication package for our evaluation publicly
available on our website [54].

A. The RTS Tools Under Evaluation

We use three RTS tools in our evaluation: Clover [26],
Ekstazi [12], [55] and STARTS [18], [56]. All the tools work
for Java. Further, Ekstazi and STARTS are developed by
researchers. Clover was developed in industry and started life
as a proprietary product but is now open-source.
Clover. In Clover [26], the Test Optimization feature [10]
performs RTS. Clover performs source-code instrumentation
prior to compilation. Then, at runtime, it records in a database
a mapping from each method under test to the set of test meth-
ods that use the method under test. After a change, Clover first
finds the methods under tests that changed, then it queries its
database to find which tests used the changed methods. Clover
re-instruments the files that contain changed methods and
keeps the same instrumentation for unchanged files. Clover
re-runs tests that it found to use changed method(s) from the
previous revision, plus any test(s) not already in its database,
e.g., newly added tests. Finally, after running the tests, Clover
updates the method-to-tests mapping in its database with
information from the current run, in preparation for a future
run. We use Clover 4.2.0 and the default configuration.
Ekstazi. Ekstazi [12], [55] uses dynamic binary instrumen-
tation to track the class dependencies of test classes. More
specifically, Ekstazi tracks, as test dependencies, the classes
(i.e., underlying compiled .class files) that are used while
executing each test class. Ekstazi computes and stores a
checksum for each test dependency in a revision. Then, after a
code change, Ekstazi recomputes the checksum of all the test
dependencies to see which ones have changed. The affected
tests computed by Ekstazi are all test classes for which at least
one dependency has a different checksum in the previous and
current revision, plus any newly added test(s). Finally, while
running the affected tests in the current revision, Ekstazi uses
its instrumentation to track and update the dependencies of the
affected tests, in preparation for a future run. We use Ekstazi
5.1.0 and the default configuration.

STARTS. STARTS [18], [56] statically computes the depen-
dencies of each test class and does not require any instrumenta-
tion. First, STARTS uses jdeps [57] to extract the dependencies
of each class in the application. STARTS computes as test
dependencies the reflexive and transitive closure for each node
that represents a test class in the dependency graph. Note
that (1) STARTS can be imprecise because the dependencies
found by jdeps are only potentially used classes and are not
necessarily runtime dependencies, (2) the constant pool in
a .class file contains the list of fully qualified names of
all classes that are used in the source file, and (3) STARTS
can miss dependencies when the relationship between classes
happens only via reflection. STARTS computes changes and
computes/stores checksums in the same way as Ekstazi. We
use STARTS 1.3 and the default configuration.

B. Evolving Programs

1) AutoEP: Table IV shows the number of generated
evolving programs using different AutoEP modes, i.e., a
combination of a program generation constraint and a program
evolution operator. Each row of the table shows the constraints
used in program generation, and each column shows one way
to evolve those programs.

We configured AutoEP to generate 400 programs (i.e., first
revisions of evolving programs) for each mode; we limit
the number of programs to make the experiments feasible.
Table IV shows, in the “Base” column, the number of those
programs (out of 400) that successfully compile. AutoEP
evolves only the programs that can be compiled. For each
program evolution operator, we show the number of generated
evolving programs (#G) and the number of those that can
be successfully compiled in the second revision (#C); the
following sections use only compilable evolving programs. As
we expected, some operators are better than others at generat-
ing compilable evolving programs. For example, increasing a
constant (E7) or copying a field (E2) does not introduce any
compilation error. On the other hand, removing a method (E9)
frequently leads to a compilation error, because those methods
are invoked from at least one of the tests. Finally, as expected,
copying a field or increasing a constant does not create any
evolving program when no field is present in the original
program (e.g., mode JD2 + E2) or all fields are references (JD1
+ E3). In total, AutoEP generated 31,104 evolving programs.



TABLE V: DefectsEP Subjects
(#P=Number of Evolving Pro-
grams, #VP=Number of Valid
Evolving Programs)

Project Name #P #VP

JFreechart 26 0
Closure-compiler 133 0
Commons-lang 65 26
Commons-math 106 100
Mockito 38 0
Joda-time 27 26

Total 395 152
Avg. 65.83 25.33

2) DefectsEP: In the-
ory, we could use all ex-
amples available in the
Defects4J bug database.
However, as our evalua-
tion in this paper uses a
specific set of RTS tools,
we filter out the exam-
ples on which it is known
that one of the RTS tool
does not explicitly sup-
port, e.g., using a build
system one of the RTS
tools does not support.

Specifically, we perform the following steps to obtain evolving
programs for DefectsEP:

a) Start with all the 395 examples in the Defects4J repository
(SHA 6bc92429) [50].

b) Filter out the 72 non-Maven examples; we filter non-
Maven projects because Clover and STARTS currently
support only the Maven build system.

c) Filter out the 138 examples that cannot build, due to issues
such as old dependencies that cannot be found anymore.

d) Filter out the 33 examples that do not compile with Java
8; we use Java 8 because STARTS does not work with
earlier Java versions.

e) Exclude the seven tests that are flaky or fail consistently
on the fixed program version (one test in Commons-lang,
one test in Commons-math, and five tests in Joda-time);
we detect flaky tests by running each test three times and
observing differences in test outcomes.

Table V shows the name of each project, total number of
evolving programs, and the number of valid evolving programs
after the aforementioned steps.

TABLE VI: EvoEP Subjects

Project Name SHA #Tests

Closure-compiler 8594a5cb 357
DBCP 23f6717c 43
IO 078af456 104
Commons-math 085816b7 483
Net 4e5a6992 43
Graphhopper 14d2d670 141
Guava 34c16162 496
HikariCP 471e27ec 35
OpenTripPlanner 8f1794da 139
Streamlib 6e0edb5f 25

Total N/A 1,866
Avg. N/A 186.6

3) EvoEP: The
EvoEP component
can be configured
to extract evolving
programs from any
project that uses
a version control
system, such as Git.
In our experiments
we use projects
that are available
on GitHub, use
the Maven build
system, and were

recently used in research on regression testing [13], [18].
We limit the max number of revisions to 20 to ensure that
running experiments and inspecting violations is feasible.

Table VI shows the list of projects used by EvoEP. For
each project, we show its name, the latest SHA used for the
experiments, and the number of tests at the latest SHA.

IV. EVALUATION

To assess the benefits of using RTSCHECK for checking
RTS tools, we answer the following research questions:

RQ1: What safety violations and bugs are detected by
RTSCHECK, and which components provide evolving pro-
grams on which violations are detected?

RQ2: What precision violations and bugs are detected by
RTSCHECK, and which components provide evolving pro-
grams on which violations are detected?

RQ3: What generality violations and bugs are detected by
RTSCHECK, and which components provide evolving pro-
grams on which violations are detected?

RQ4: What can be learned about efficiency of RTS tools by
using various RTSCHECK components?

A. Inspection Procedure

Our rules generated over 24K violations. It is not feasible
to manually inspect all these violations, so we used the
following sampling procedure. For violations from AutoEP
(total of 24,472), we sampled two violations for each AutoEP
mode, i.e., we inspected 84 violations. For violations from
DefectsEP (total of 348), we grouped the violations based on
which rules are violated, which tools violate the rules, and on
which projects the rules are violated. In total, we create 25
groups, from which we inspected 41 violations. We provide
in-depth description and the exact groupings of violations on
this paper’s companion website [54]. Finally, for the violations
observed by running evolving programs obtained by EvoEP we
inspected all 82 violations. While not all violations inspected
may indicate bugs in RTS tools, our inspection found only two
false positives among the violations.

B. Detected Bugs

In total, we discovered 27 real bugs from our inspection,
with only two false positives. Table VII shows the list of
bugs detected by RTSCHECK. We group the bugs into one
of three types based on inspected violations. Each row in the
table describes one bug. Column 1 shows a unique bug Id.
Column 2 is a short description of the bug. Column 3 is the
type of the bug, which can either be an implementation bug
(I) or a technique limitation (T). Column 4 shows the rule that
was violated; Column 5 shows which components’ evolving
program triggered the bug. Finally, Column 6 shows the status
of the bug: (1) “Confirmed” indicates that we reported a bug
and developers confirmed our findings; (2) “New” indicates
that we reported a bug, and developers did not yet respond;
and (3) “Known” indicates that we found a bug that has been
reported previously or known to developers.

C. RQ1: Safety Violations

Answer: We discovered nine bugs in three tools and no false
positive. AutoEP and EvoEP led to the discovery of eight bugs
and one bug, respectively.



TABLE VII: Detected Bugs (I=Implementation Bug, T=Technique Limitation)
Id Description Type Rule Component Status

Sa
fe

ty

Clover-1 Moving a class does not update dependency cache I R1 AutoEP Confirmed

Clover-2 Accessing a field does not create dependency T R1 AutoEP New

Clover-3 Overriding a method not captured T R1 AutoEP New

Clover-4 Using a class with the instanceof operator not captured T R1 AutoEP New

Clover-5 Invoking a constructor and introspecting the class does not create dependency T R1 AutoEP New

Clover-7 Hiding a field not detected T R1 AutoEP Confirmed

Clover-8 Having an overloaded method and then changing a class hierarchy not detected T R1 AutoEP Confirmed

STARTS-1 Invoking tests via Suite does not create compile-time dependencies on tests I R1 AutoEP Confirmed

All-1 Does not detect changes to non-Java files T R1 EvoEP Known

Pr
ec

is
io

n

Clover-9 Invoking tests via Suite class not supported I R3 AutoEP Confirmed

Ekstazi-1 Invoking tests via a JUnit3 runner is not wrapped to capture dependencies I R5 DefectsEP Known

Ekstazi-2 Always selects two tests when run on Joda-time even if no changes between runs I R5 DefectsEP New

STARTS-2 Invoking all tests by creating a single Suite always runs all tests I R3 DefectsEP Confirmed

G
en

er
al

ity

Clover-6 Instrumenting classes under test changes program behavior I R7 AutoEP/DefectsEP Known

Clover-10 Cannot parse a subset of Java syntax I R6 DefectsEP New

Clover-11 Inserts incompatible code during instrumentation I R6 DefectsEP New

Clover-12 Instrumentation cannot deal with two classes that have same fully qualified name I R6 EvoEP New

Clover-13 Introduces external libraries that pollute shared cache I R7 EvoEP New

Clover-14 Parser does not properly support checker framework’s annotations I R6 EvoEP New

Clover-15 Ignores tests explicitly requested to be executed in pom file I R6 EvoEP New

Clover-16 Not able to find a core Clover class at runtime due to problems with classpath I R6 EvoEP New

Ekstazi-3 Crashes due to incompatibility with outdated build systems I R6 DefectsEP Confirmed

Ekstazi-4 Unexpectedly triggers JUnit4 annotations under JUnit3 framework I R7 EvoEP Confirmed

Ekstazi-5 Improper support of @Inject annotations I R7 EvoEP New

STARTS-3 Incompatible with specific third-party libraries I R6 EvoEP Confirmed

STARTS-4 Cannot support tests in a non-conventional location on disk I R6 EvoEP Confirmed

STARTS-5 In-memory dependency graph grows out of available memory I R6 EvoEP Known

We illustrate one bug discovered by AutoEP and one bug
discovered by EvoEP; we simplify and format the code for
ease of presentation.

1) AutoEP: Field hiding (Clover-7). Figure 2a shows an
evolving program that triggers a bug in Clover due to incorrect
handling of field hiding. Clover misses to detect that a new
field was added to the class of the instance used during test
execution, thus skipping to select a failing test in the second
revision. This bug was detected by inspecting a violation of
rule R1 and the bug was confirmed by Clover developers.

2) EvoEP: External dependencies (All-1). Figure 2b
shows an evolving program that illustrates the limitation of
RTS tools used in our study. In summary, EvoEP extracted an
evolving program from the Graphhopper project. Several tests
were accessing .txt files on disk, which is not captured by any
RTS tool used in our study. This was detected by inspecting
a violation of rule R1. Developers of RTS tools classified this
case as a known bug and a limitation of the RTS techniques.

3) Discussion: We note that only evolving programs ob-
tained by AutoEP and EvoEP discovered bugs due to safety
violations. We expected that EvoEP would not detect many
safety violations because public repositories rarely include
failing tests. Within the violations inspected, no bug due
to safety violation was discovered by DefectsEP. Our result

shows the benefit of automated test generation and using only
existing bug databases is not sufficient for checking RTS tools.

D. RQ2: Precision Violations

Answer: We discovered four bugs in the tools and identified
two false positives. Two components (AutoEP and DefectsEP)
led to the discovery of one and three bugs, respectively. The
bugs were discovered in all RTS tools.

We describe one bug discovered by AutoEP, one bug dis-
covered by DefectsEP, and a false positive reported by EvoEP.

1) AutoEP: @Suite (Clover-9). Figure 2c shows an evolv-
ing program that led to a bug found in Clover. Clover always
selects to run a test annotated with @RunWith(Suite.class).
The example violated rule R3. This is an implementation bug
and was confirmed by Clover developers. Indeed, we found
that any test generated by Randoop that includes @Suite
would lead to this violation, resulting in an overwhelming
number of violations. We eventually modified the default
generation in Randoop to output tests without @Suite. Our
total count of violations do not include those due to @Suite,
but we note that we could find a bug in Clover due to Randoop
generating such tests.

2) DefectsEP: Lack of JUnit3 support (Ekstazi-1). Fig-
ure 2d shows an evolving program that led to a bug found



1 class CTest {
2 @Test void test() {
3 C c = new C();
4 assertEquals(10, c.f); }}
5 public class A {
6 public int f = 10;
7 }
8 public class C extends A {

9 + public int f = 11;

10 }

(a) Clover-7 bug

1 class CTest {
2 public void test() {
3 assertEquals(1,
4 new A().readStatusCodeFromFile());
5 }
6 }
7 public class A {

8 private String filePath = "PATH/TO/FILE" ;
9 public int readStatusCodeFromFile() {

10 int status = .../* Read the status
11 code from the file at filePath*/
12 return status;
13 }
14 }

(b) All-1 bug

1 class CTest {
2 @Test void test1() throws

Throwable {
3 C c = new C();
4 int x = c.m1();
5 org.junit.Assert.assertTrue(x

== 0); }}

6 @RunWith(Suite.class)

7 @Suite.SuiteClasses({ CTest.class })
8 class RegressionTest {}
9 class C {

10 public int m1() { return 0; }
11 }

(c) Clover-9 bug

1 import junit.framework.*;//JUnit3

2 public class CTest extends TestCase{
3 public static Test suite() {
4 return new TestSuite(CTest.

class);
5 }
6 public void test() {
7 assertNotNull(new A());
8 }
9 }

(d) Ekstazi-1 bug

1 class CTest {
2 public void test() {
3 assertEquals(1,
4 B.class

5 .getDeclaredClasses()

6 .length);
7 }
8 }
9 public class A {}

10 public class B {
11 public A a;
12 public void m() {}
13 }

(e) Clover-6 bug
1 ...
2 <dependency>
3 <groupId>

4 com.h2database
5 </groupId>
6 <artifactId>h2</artifactId>
7 <version>1.4.197</version>
8 <scope>test</scope>
9 </dependency>

10 ...

(f) STARTS-3 bug

Fig. 2: Several examples of evolving programs that illustrate bugs in RTS tools under test; each subcaption corresponds to a
bug id in Table VII. The lines that are added are prefixed with “+”

in Ekstazi. This evolving program has tests in JUnit3 style,
and if the test is run with Ekstazi twice, the test is executed
both times. We noticed that this bug was fixed very recently
in the latest release of Ekstazi, so it is a known bug. This bug
was discovered because rule R5 was violated in the Apache
Commons-lang project.

3) EvoEP: We found no bug due to precision violation from
the evolving programs obtained by EvoEP. We illustrate and
analyze the reason for a false positive.
RetestAll run after every n revisions. We discovered that
Clover forces the execution of all tests every 10 revisions.
Because this behavior is purposely implemented in Clover,
we do not consider this violation to indicate a real bug.

4) Discussion: Evolving programs obtained by EvoEP did
not discover any bug due to precision violations. At the same
time AutoEP and DefectsEP discovered several bugs. These
two components did not find any common bug, showing that
both components are valuable and orthogonal.

E. RQ3: Generality Violations
Answer: We discovered 14 bugs in the tools and no false

positive. Each component led to the discovery of at least one
bug, one bug is discovered by more than one component, and
the bugs were discovered in all RTS tools.

We describe one bug discovered by each component and
compare the results of various components.

1) AutoEP: Heavy instrumentation (Clover-6). Figure 2e
illustrates an evolving program that led to a bug in Clover.
Clover performs an intrusive instrumentation by inserting extra
methods and fields in most of the classes. Any test that
depends on the number of fields (e.g., via reflection) fails
as there are now more fields than expected. This bug is
discovered with an evolving program obtained by AutoEP,

violating rule R7 when using state comparison as a test oracle.
To avoid excessive number of violations due to the same
reason, we excluded fields added by Clover from subsequent
state comparisons after we discovered this bug.

2) DefectsEP: Heavy instrumentation (Clover-6). Defect-
sEP led to the discovery of the same bug as described for
AutoEP. The bug was found because an evolving program
extracted from the Joda-time project violated rule R7. This is
the only bug that was discovered by more than one component
in the inspected set of violations.

3) EvoEP: Incompatible with a third-party library
(STARTS-3). Figure 2f shows the build configuration script
that exposed a bug in STARTS. Any program with this
configuration leads to a NullPointerException in STARTS.
This bug was discovered because rule R6 was violated in the
DBCP project. We categorize it as an implementation bug,
which is confirmed by the developers of STARTS.

4) Discussion: Our results show that all the components
were able to detect generality violations. More importantly,
based on the discovered bugs, we found that only one bug
was reported by more than one component. This emphasizes
the value of each individual component in our framework.

F. RQ4: Efficiency Report
Answer: Only DefectsEP and EvoEP are useful for checking

efficiency of RTS tools; we find that Clover is inefficient and
frequently takes a longer time to run than RetestAll.

Evolving programs generated by AutoEP have tests that take
negligible time. Therefore, we did not find it appropriate to use
AutoEP to check and compare efficiency of RTS tools.

Figure 3 shows efficiency reports for running DefectsEP and
EvoEP. The figures show for each project the cumulative time
(for all revisions of all evolving programs) taken by RetestAll,



25000

30000

35000

40000

45000
Ti
m
e 
(s
)

RetestAll
Clover
Ekstazi
STARTS

Lang Math Time
0

2000

4000

6000
40000

45000

50000

55000

60000

Ti
m

e 
(s

)

RetestAll
Clover
Ekstazi
STARTS

Io Math Net
Planner

Streamlib
0

1000

2000

3000

Fig. 3: DefectsEP and EvoEP efficiency report

Clover, Ekstazi, and STARTS. When computing cumulative
time, we excluded those projects on which at least one RTS
tool crashes on at least one revision. This way, if an RTS tool
crashes early (e.g., due to a generality violation), we do not
report the other tools as being relatively slower.

Based on the figures, we see that over all projects Clover is,
in general, rather inefficient in terms of testing time. Clover
takes more time than RetestAll on three out of seven projects.
Additionally, we find that, on average, Ekstazi and STARTS
both outperform RetestAll, but it is inconclusive which tool
is more efficient based on the set of evolving programs used
in our study. Future work could explore how to combine the
benefits of these tools and how to automatically predict what
tool would perform the best for a given context.

V. DISCUSSION AND FUTURE WORK

Extending RTSCHECK. Once the framework was in place, it
was relatively easy to include new rules and subjects. During
our development of RTSCHECK, when we needed to add more
rules, we estimate it took us about an hour to add a new
rule that uses the data and logs collected already. Adding new
Maven projects to evaluate is trivial.
Mutation testing. An alternative approach to checking
RTS tools is to apply mutation testing on large existing
projects [46], [48], [58]. AutoEP component’s evolution op-
erators are similar to mutation testing operators, which may
also be used to simulate code changes for use in RTSCHECK.
Unfortunately, we found that mutation testing is currently
not feasible. The ideal mutation tool for checking RTS tools
should not use mutant schemata [59] (because code must
“evolve”), should mutate source code (some RTS tools an-
alyze sources), work with various Java versions, and perform
mutation statically. To the best of our knowledge, no existing
mutation tool satisfies all these requirements.

Nevertheless, we performed an initial experiment on two
open-source projects: Apache CSV and Google compile-
testing. We mutated bytecode of these projects using PIT [49],
resulting in 585 and 961 mutants, respectively. We semi-
automatically translated these mutants to source code to obtain
evolving programs. We then ran all three RTS tools on the
evolved programs. None of the bugs detected by RTSCHECK
were detected by mutation testing, providing an initial evi-
dence that mutants generated by traditional mutation testing
do not help expose bugs in RTS tools.

Effective generated tests. We investigated what test length is
the most effective in finding safety and generality violations
with AutoEP; recall (Section II-B2) that we used four values
for the maximum test lengths: {1, 2, 4, 100}. We had two
findings. First, tests generated when the maximum sequence
length was set to 4 led to the largest number of failing tests.
Shorter tests are likely to depend on a small number of code
elements, and thus more likely to expose safety and generality
violations. Also, too short sequences (length = 1) may not
execute enough code to lead to interesting dependencies.
Second, we found a few cases when a violation was only
revealed with very short tests (e.g., JD3+E6).
Flaky tests. Due to the limited Java model (e.g., no static
fields) used for program generation, AutoEP does not generate
flaky tests [22], [60], [61]. As described earlier, we filtered out
flaky tests for DefectsEP. Finally, we did not observe flaky
tests in our runs of EvoEP.
Execution cost. We executed AutoEP experiments in parallel
on a supercomputer (using up to 256 nodes); each node has
Intel Xeon Phi 7250. Program generation (excluding time in
the queue), computed as if it was run sequentially, took a
bit over five CPU days. Evolving those programs took over
two CPU days. Finally, executing 31,104 evolving programs
with RetestAll and three RTS tools took 139.3 CPU days.
Experiments with DefectsEP took 19.2 CPU hours and EvoEP
took 32 CPU hours. DefectsEP and EvoEP experiments were
run on a 4-core Intel i7-6700 CPU @ 3.40GHz machine with
16GB of RAM, running Ubuntu 17.04.
Future work. RTSCHECK can be improved and our infras-
tructure used as a basis for testing various incremental program
analysis techniques. We plan to explore other ways of program
generation, test generation, and evolution, as well as clustering
evolving programs that expose the same bug. We plan to
develop better strategies for grouping violations for inspection
such that violations in the same group indicate the same
bug(s). We plan on developing new rules and improving on
our existing ones. As described in Section II-A, our rules are
designed to be extreme to favor reducing false positives at the
risk of missing true positives. We plan on investigating better
thresholds for differences in tests selected as to better balance
trade-offs between true and false positives. For existing rules,
we plan to also expand them by inspecting which individual
failed tests are missed to be selected by an RTS tool, not just
the number of failed tests. Furthermore, we plan to look deeper
at each failed test to see if the test fails for the same way as
if run in RetestAll, e.g., fails for the same assertion or, in
the case of AutoEP, the state captured at the second revision
matches what was captured for RetestAll.

VI. THREATS TO VALIDITY

External. Our framework may not readily generalize to
RTS tools developed for other programming languages, e.g.,
C# [62]. Our current implementation supports only Java, but
our methodology can apply to any programming language. We
limited our experiment with DefectsEP to only the Defects4J
bug database. We plan to integrate other bug databases in the



future, e.g., Bugs.jar [63]. Projects that we used for EvoEP
may not be representative of all projects. To mitigate this threat
we chose popular open-source projects from GitHub that use
Maven and were used in recent work on regression testing.
We applied our framework to three RTS tools. We used the
default configuration of RTS tools, as well as for Randoop
and JDolly. Our reasoning is that the developers or tools
that we used tuned default configurations to obtain optimal
performance. We limited the number of generated tests to 50
per program for AutoEP. The limits on the number of programs
and tests were set to make the experiments feasible. Although
we used only one evolving program per project with EvoEP,
we configured EvoEP to extract evolving programs from the
most recent revisions of used projects.
Internal. RTSCHECK implementation or any scripts we wrote
to run experiments may contain bugs. To mitigate this threat,
we reviewed code and wrote unit tests.
Construct. We define seven rules and inspected violations
of these rules to find bugs in RTS tools. We sampled the
violations based on our own experiences with developing RTS
tools. Furthermore, we found very few false positives in terms
of violations indicating real bugs. Several of the bugs we found
were confirmed by developers as real bugs.

VII. RELATED WORK

Regression test selection. RTSCHECK already finds bugs
in dynamic and static approaches. Other techniques exist
which compute test dependencies and affected tests in different
ways. For example, AutoRTS [11] is a static, compiler-based
technique which computes the dependencies of a test, T, from
all the classes that must be compiled before T can be compiled.

RTS tools compute dependencies and affected tests using
analysis at different granularity levels. Whereas STARTS
and Ekstazi find test dependencies and affected tests at the
class level, Clover works at the method level. Future work
should include results on (1) more method-level RTS tools
(e.g., Chianti [43], FaultTracer [44]), (2) hybrid class-and-
method level RTS techniques like HyRTS [13], (3) hybrid
class-and-statement level RTS techniques like DejaVOO [17],
(4) statement-level techniques like Pythia [64], (5) module-
level techniques like GIB [65], and (6) tools that capture
dependencies across JVM boundaries like RTSLinux [66].
Automated test (input) generation. Bounded exhaustive
techniques generate all test inputs up to a specified bound [67],
[68]. TestEra [69] and Korat [70] generate test inputs based
on imperative predicates. ASTGen [37] was the first approach
for automatically testing refactoring engines; it used a frame-
work for iterative generation of structurally complex tests.
UDITA [71] introduced an expressive specification language
to enable combining imperative predicates and iterative gen-
eration. Csmith [36] is a randomized compiler-testing tool
for C. JDolly is the most recent work on testing refactor-
ing engines [27]. RTSCHECK systematically uses JDolly to
generate the first revision of each evolving program, but a
future direction is to utilize other existing tools for program

generation. We applied JDolly to a new domain, and we
introduced new evolution operators and test oracles.

Pacheco et al. [30] presented Randoop. Search-based tech-
niques are another popular approach for generating sequences
of method calls [58], [72], [73]. We chose Randoop due to
our familiarity with the tool.
Testing software engineering tools. RTSCHECK is the first
approach for checking RTS tools. Similar to prior work in
checking correctness of software engineering tools, we also
rely on program and test generation. Mongiovi et al. [74]
combined JDolly and Randoop to detect non-behavior preserv-
ing refactoring transformations. Cuoq et al. [75] used Csmith
to test Frama-C. Kapus and Cadar [76] used Csmith to test
symbolic execution engines. Recently, Dutta et al. [77] used
a template based approach to generate programs and data for
testing probabilistic programming systems. We differ from all
these prior work in that we need to generate evolving programs
(not a single program version).
Program transformations. Our proposed evolution operators
are similar to operators used for mutation testing. Mutation
testing has been traditionally used to evaluate the quality of
test suites [45], [46], [48], [78]. Many mutation testing tools
have been developed over the years, including Javalanche [79],
Major [47], muJava [80], and PIT [49]. While we have several
operators that are similar to existing mutation testing operators,
we define unique operators made for the purpose of exercising
interesting parts of the language to evolve the program in ways
as to stress RTS tools.

VIII. CONCLUSION
Recent interest from industry, evidenced by recent adoption

of RTS tools, has created a need to check and compare
RTS tools more properly and systematically. RTSCHECK
feeds evolving programs (i.e., sequences of program revi-
sions) to RTS tools and checks the output against rules that
specify potential violations of expected behavior. We applied
RTSCHECK on three RTS tools, obtained 31K evolving pro-
grams, and detected 24K violations of the rules. We inspected
207 violations, from which we discovered 20 implementation
issues and seven limitations of the underlying RTS techniques.
We reported all 27 bugs to the developers of these RTS tools,
who already confirmed 14 of them, 10 of which were pre-
viously unknown. Each RTSCHECK component contributed
to discovering several unique bugs, and we found at least six
bugs in each RTS tool. For researchers, RTSCHECK provides a
framework to check correctness of future RTS tools or variants
of the existing tools. For developers, RTSCHECK can provide
confidence in RTS tools they may want to adopt.
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