
SRCIROR: A Toolset for Mutation Testing of C Source Code and
LLVM Intermediate Representation

Farah Hariri
University of Illinois at Urbana-Champaign

Illinois, USA
hariri2@illinois.edu

August Shi
University of Illinois at Urbana-Champaign

Illinois, USA
awshi2@illinois.edu

ABSTRACT

We present SRCIROR (pronounced “sorcerer“), a toolset for per-

forming mutation testing at the levels of C/C++ source code (SRC)

and the LLVM compiler intermediate representation (IR). At the

SRC level, SRCIROR identi�es program constructs for mutation by

pattern-matching on the Clang AST. At the IR level, SRCIROR di-

rectly mutates the LLVM IR instructions through LLVM passes.

Our implementation enables SRCIROR to (1) handle any program

that Clang can handle, extending to large programs with a mini-

mal overhead, and (2) have a small percentage of invalid mutants

that do not compile. SRCIROR enables performingmutation testing

using the same classes of mutation operators at both the SRC and

IR levels, and it is easily extensible to support more operators. In

addition, SRCIROR can collect coverage to generate mutants only

for covered code elements. Our tool is publicly available on GitHub

(https://github.com/TestingResearchIllinois/srciror). We evaluate

SRCIROR on Coreutils subjects. Our evaluation shows interesting

di�erences between SRC and IR, demonstrating the value of SR-

CIROR in enabling mutation testing research across di�erent levels

of code representation.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Software Testing, Mutation Testing

ACM Reference Format:
Farah Hariri and August Shi. 2018. SRCIROR: A Toolset for Mutation Test-

ing of C Source Code and LLVM Intermediate Representation. In Proceed-

ings of the 2018 33rd ACM/IEEE International Conference on Automated Soft-

ware Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3238147.3240482

1 INTRODUCTION

Software testing is commonly used in industry for quality assur-

ance. One key challenge of software testing is to properly evaluate

the quality of test suites in terms of their bug-�nding capability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240482

A test suite with a large number of tests, or that achieves a high

statement or branch coverage, does not necessarily have a high

bug-�nding capability.
Mutation testing is widely used in research to evaluate the qual-

ity of test suites [13], and it has recently started to gain momentum

in industry as well [17]. Mutation testing proceeds in two steps.

The �rst step is mutant generation. A mutant is a modi�ed version

of the original program obtained by applying a mutation operator.

Amutation operator is a program transformation that introduces a

small syntactic change to the original program. The second step of

mutation testing is to run the test suite and determine which mu-

tants are killed. A mutant is killed if the tests behave di�erently,

typically in their pass/fail status, when run on the mutant com-

pared against running the tests on the original program. Mutation

testing produces a measure of quality of the test suite called the

mutation score. The mutation score of a given test suite is the per-

centage of mutants killed by that test suite out of the total number

of generated mutants.
Multiple mutation testing tools were developed that perform

mutation at di�erent levels. Traditional mutation testing is per-

formed at the level of source code (SRC), e.g., for C [4–8, 11, 12], and

Java [14, 15]. More recently, mutation testing has been applied at

the level of compiler intermediate representation (IR), e.g., for the

LLVM IR [10, 18–20]. However, the currently available tools do not

meet all researchers’ needs. First, some of the tools apply transfor-

mations on the text of the source code without performing any

parsing [5, 9]. Such tools generate a large number of mutants that

do not compile and can waste a lot of the mutant generation time.

They also canmiss generating somemutants as they rely on syntac-

tic matching to detect mutation opportunities. Second, some tools

implement their own parsing trees and, therefore, may not sup-

port all language constructs and would fail to generate mutants on

even moderately sized programs. Lastly, there does not exist one

framework that supports mutation at di�erent levels (SRC and IR)

allowing fair comparison and easy extension for supporting more

operators.
We present SRCIROR (pronounced “sorcerer“), a toolset for per-

forming mutation testing at the levels of C/C++ source code (SRC)

and the LLVM compiler intermediate representation (IR). At the

SRC level, SRCIROR identi�es program constructs by performing

pattern-matching on the Clang AST. SRCIROR then applies the rel-

evant mutation operators on the found constructs. At the IR level,

SRCIROR �nds the instructions that should be mutated using an

LLVM pass and then directly mutates those IR instructions. Our

implementation enables SRCIROR to (1) handle any program that

Clang can handle, extending to large programs with a minimal

overhead, and (2) have a small percentage of invalid mutants that

860

https://github.com/TestingResearchIllinois/srciror
https://doi.org/10.1145/3238147.3240482
https://doi.org/10.1145/3238147.3240482

ASE ’18, September 3–7, 2018, Montpellier, France Farah Hariri and August Shi

do not compile. SRCIROR enables performing mutation testing us-

ing the same mutation operator classes at both the SRC and IR lev-

els, and SRCIROR is easily extensible to support more operators. In

addition, SRCIROR can collect coverage to generate mutants only

for covered code elements. SRCIROR is open-source and is publicly

available at https://github.com/TestingResearchIllinois/srciror.
We evaluate SRCIROR on �ve subjects from Coreutils. Coreutils

is a library of command line utilities for Unix that is widely used in

research. We are the �rst to performmutation testing on the entire

code of our �ve subjects for both SRC and IR levels. Our evaluation

shows interesting results demonstration the value of SRCIROR in

enabling mutation testing research across di�erent levels.

2 MUTATION TOOLS IMPLEMENTATION

In this section we describe the mutation operators in SRCIROR. We

then describe in detail the implementation of SRCIROR’s SRC and

IR mutant generation components. Finally, we describe using code

coverage to �lter out mutants for mutation testing.

2.1 Mutation Operators

We de�ne four mutation operators in common at both SRC and

IR levels. A similar set of mutation operators is often used in the

existing mutation tools for the C language, e.g., byAndrews et al. [4,

5] or Jia and Harman [11, 12]. These four mutation operators are:

● AOR replaces every arithmetic operator from the set {+, -,

*, /, %} with a di�erent arithmetic operator from the same

set. At the SRC level, the AOR class also includes replacing

the arithmetic assignment operators from the set {+=, -=,

*=, /=, %=} with other operators of that same set. Replac-

ing arithmetic assignment operators does not apply at the

IR level where such assignment operators are already trans-

lated into simpler instructions.

● LCR replaces every logical connector with another logical

connector. At the SRC level, it replaces every operator from

the set of logical operators {&&, ||}, the set of bitwise oper-

ators {&, |, ˆ}, and the set of logical assignment operators

{&=, |=, ˆ=} with a di�erent operator from the same set. At

the IR level, only bitwise operators are applicable, because

the other two sets are translated into di�erent instructions

(potentially bitwise operators or conditional branches).

● ROR replaces every relational operator with another rela-

tional operator. At the SRC level, it replaces every operator

from the set of relational operators {>, >=, <, <=, ==, !=}

with a di�erent operator from the same set. It also replaces

boolean conditions in conditional statements and loopswith

their negations; speci�cally, it replaces e with !e for every

expression from the set {if(e), while(e), for(...;e;...)}.

At the IR level, the operator involves replacing every IR in-

struction from the set {eq, ne, ugt, uge, ult, ule, sgt,

sge, slt, sle} with a di�erent predicate from the same set.

● ICR replaces every integer constant c with a value from the

set {-1, 0, 1, -c, c-1, c+1}∖{c}.

2.2 Source-level Mutant Generation Tool

We implement our source (SRC)-level mutant generation tool as

a source-to-source transformation tool based on Clang (version

Figure 1: SRC Mutator Architecture

Figure 2: IR Mutator Architecture

3.8.1). The architecture of our implementation is shown in Figure 1.

We perform the SRC mutation in three steps. First, we use Clang

to parse the input �les and build an abstract syntax tree (AST).

Second, we use AST Matchers [2] (combined with LibTooling [1])

to search for candidate mutation locations in the AST. Finally, for

each of these candidates, we use these same two libraries to mod-

ify the Clang AST, performing a source-to-source transformation

that mutates the AST based on the mutation, generating a di�erent

mutated source �le for each mutation.
SRCIROR supports generating mutants in di�erent �les for a

project. This feature is an essential characteristic of a mutation

tool, as code is generally organized in multiple �les and directo-

ries according to its functionality. For example, a signi�cant part

of the functionality used by the Coreutils tools is de�ned in a utility

directory that gets compiled into a shared library libcoreutils.a

that links to the executable. Failing to generate mutants for code

from libcoreutils.a decreases the con�dence in the value of the

mutation testing results.

2.3 IR-level Mutant Generation Tool

For IR-level mutant generation, SRCIROR uses transformation passes

in the LLVM compiler infrastructure (LLVM version 3.8.1) to gen-

erate mutants (Figure 2). First, we use Clang with the �ags -S

-emit-llvm to generate LLVM bitcode �les representing the code.

Next, we apply two LLVM passes. The �rst LLVM pass takes in the

bitcode �le and generates as output the list of mutation opportuni-

ties; a mutation opportunity is de�ned by a location (speci�c LLVM

instruction and one of its operands) that can be mutated and the

mutation type (the mutation operator and the value to substitute

the operand for). The second LLVM pass takes as input a bitcode

861

https://github.com/TestingResearchIllinois/srciror

SRCIROR: A Toolset for Mutation Testing for C Source Code and . . . ASE ’18, September 3–7, 2018, Montpellier, France

�le and the mutation opportunity to apply, and then actually ap-

plies themutation, creating a newmutated bitcode �le for eachmu-

tation. Finally, the mutated bitcode is passed along to the compiler

to resume the original compilation, resulting in a �nal compiled

mutant. Note that the second step of generating mutants is carried

by the user; a simple loop is needed to go over each mutation op-

portunity generated in the �rst step and feed it into SRCIROR along

with the original bitcode �le to perform the mutation.
For both SRC and IR, we create Python wrapper scripts that

are called by the project build scripts instead of Clang. The wrap-

per scripts implement the same interface as Clang, performing the

same operations as described earlier for SRC and IRmutations, and

then delegating the remaining compilation commands back to the

actual Clang. For example, in the case of SRC, the Python script

calls the mutator on the commands that have source �les in them.

In the case of IR, the Python script uses the commands along with

some inserted �ags to �rst generate LLVM bitcode, call the mu-

tator LLVM passes on the bitcode, and then �nish compiling the

mutated bitcode by delegating back to the original Clang compiler.

2.4 Incorporating Coverage

While we can run tests against all the mutants generated at the

SRC and IR level to compute the mutation score, the tests may not

necessarily cover some of the generated mutants. If tests do not

cover certain mutants, then those tests cannot kill such mutants.

While it is important for a developer using the mutation testing

tool to know when some mutants are not even covered, as it indi-

cates a weakness in the test suite, sometimes a developer wants to

know just how good the test suite is on the mutants already cov-

ered. Furthermore, checking only mutants killed of the mutants

covered leads to faster mutation testing as fewer mutants are run.

We allow for using code coverage to �lter out mutants that should

not be run with tests (Figures 1 and 2).
At the SRC-level, we run tests �rst on code instrumented using

llvm-cov gcov to collect simple coverage. Then we feed in the cov-

ered lines as input to the mutator; the pattern-matching logic will

only generate mutants of covered lines.
At the IR-level, there is no existing tool like llvm-cov gcov that

collects code coverage of IR instructions. As such, we implement

our own code coverage tool at the IR level as a new LLVM pass.

The pass iterates through each LLVM instruction while keeping

a counter, giving a unique count for each instruction. At each in-

struction, the pass inserts a call to a helper coverage instrumen-

tation method. When the tests are executed on the instrumented

code, executing the call records the instruction count, which is

then written into a trace �le. This trace �le represents the cover-

age at the IR-level. In the �rst LLVM mutator pass that determines

what instructions to mutate, the pass counts the instructions in the

same way as in the coverage pass, and then the pass only outputs

a mutation for an instruction if its count matches an instruction

count from the input coverage information.

3 EVALUATION

3.1 Splitting Coreutils Tests

We perform an evaluation of using SRCIROR on programs from

Coreutils version 6.11. The tests formost programs in Coreutils are

manually written scripts that invoke the program multiple times,

where each invocation conceptually represents a di�erent test. Such

scripts are not ideal for evaluating mutation testing. For example,

many of the programs have test script �les that contains tests. If

we were to execute such a test script for a given program directly

on the original and mutated versions of the program, it would exe-

cute all tests and report a failure if any of the tests fails. Therefore,

we would just know if a mutant is killed or not, but we would not

get the full test-mutant matrix, i.e., we would not know for each

test-mutant pair whether that test kills that mutant. If one were to

use a mutation testing tool to evaluate the quality of a test suite, it

is enough to know what mutants are killed by any test in the test

suite. However, it is often desirable to obtain the full test-mutant

matrix because it can facilitate a further analysis of mutants nor-

mally needed in mutation research, e.g., computation of minimal

mutant sets [3]. To get the full matrix for the programs, we man-

ually analyzed all the test script �les for the Coreutils programs

used in our evaluation, and we split each long script into several

shorter scripts that each runs an individual test.
We split long test scripts into shorter test scripts through a com-

bination of automated transformations (whenever it was possible)

and manual changes. To ensure that our process for splitting the

test scripts does not a�ect the validity of the results, we executed

all shorter test scripts on their respective programs to verify that

each of them gives the expected result on the original code. More

precisely, executing a test on a program in Coreutils can give one

of the three possible results: PASS, FAIL, or SKIP. The tests are

skipped during execution when their precondition state is not es-

tablished, which can happen for a number of reasons. One reason

that we commonly found for skipped tests was that they required

to be run with the root privilege level. Another reason was that

a few tests required the presence of more than one disk partition

mounted on the �le system. These tests report the SKIP result for

the original program as well as for any mutant generated for the

program. Further, we inspected all tests that were getting skipped

after our splitting of long test scripts into shorter test scripts. For

most cases, the test was also originally skipped in the longer script

due to unavailable privileges or resources, which is the correct be-

havior. For a few cases, the test started being skipped after our

splitting. We carefully inspected the latter cases and found out that

some tests were getting skipped because their setup was getting

skipped—this setup usually sets some test environment variables

and is performed when all tests are run by invoking make check

from the top-most test directory; our shorter scripts do not invoke

tests thatway. However, themost important aspect is that the same

tests are skipped consistently, and thus they do not a�ect mutation

testing analyses using the artifact. The Coreutils artifacts (splitted

tests along with the scripts we wrote to perform the splitting) are

available at

http://mir.cs.illinois.edu/farah/artifacts/coreutils-artifact.tar.gz.

3.2 Results

Tables 1 and 2 show the numbers ofmutants generated by SRCIROR

that are covered by tests at the SRC and IR levels, respectively

(columns “#M”). SRCIROR generates many more mutants at the IR

level than at the SRC level, 15944 versus 4261, respectively.

862

http://mir.cs.illinois.edu/farah/artifacts/coreutils-artifact.tar.gz

ASE ’18, September 3–7, 2018, Montpellier, France Farah Hariri and August Shi

Table 1: Number of SRC mutants generated and the num-

ber/percentage of them that are equivalent/duplicated

Program Tests Overhead SRC

#M #E E% #D D% #NEND

factor 31 32.14 364 12 3.3 37 10.2 315

head 85 54.06 946 43 4.5 123 13.0 780

seq 37 72.96 989 40 4.0 123 12.4 826

stat 68 150.96 1619 72 4.4 246 15.2 1301

unexpand 38 18.02 343 8 2.3 37 10.8 298

Overall 259 328.14 4261 175 4.1 566 13.3 3520

Table 2: Number of IR mutants generated and the num-

ber/percentage of them that are equivalent/duplicated

Program Tests Overhead IR

#M #E E% #D D% #NEND

factor 31 20.92 599 60 10.0 64 10.7 475

head 85 157.38 2611 174 6.7 312 11.9 2125

seq 37 431.02 4441 362 8.2 595 13.4 3484

stat 68 562.50 7127 375 5.3 934 13.1 5818

unexpand 38 36.53 1166 54 4.6 214 18.4 898

Overall 259 1208.35 15944 1025 6.4 2119 13.3 12800

Table 3: Raw mutation scores and NEND mutation scores

Program SRC IR

Raw NEND Raw NEND

factor 52.5 53.0 20.4 24.8

head 44.0 44.7 8.0 9.7

seq 56.4 58.5 16.2 20.1

stat 16.4 16.5 5.1 5.9

unexpand 65.0 66.4 18.3 22.6

Overall 38.8 40.1 10.2 12.2

We also compute the number/percentage of equivalent/dupli-

catedmutants for each of the SRC and IRmutants separately. Equiv-

alent mutants are mutants that are the same as the original pro-

gram. Duplicated mutants are mutants that are equivalent to one

another but not necessarily equivalent to the original program.

All equivalent mutants should be ignored, while all but one mu-

tant from an equivalence class of duplicated mutants should be

ignored. The remaining mutants are then what we consider non-

equivalent, non-duplicated (NEND) mutants [10]. We detect equiv-

alent/duplicated mutants using trivial compiler equivalence [16].

We show these number/percentage of equivalent/duplicated mu-

tants and the number of NEND mutants for SRC and IR in Tables 1

and 2. Even when considering only NENDmutants, there aremany

more mutants at the IR level than at the SRC level.
Table 3 shows the raw mutation scores (considering all covered

mutants) and the mutation scores with only NEND mutants at the

SRC and IR level. We see that mutation scores at SRC tend to be

higher than scores at IR. These di�erences show the value of the

tool in enabling research that asks interesting questions about mu-

tation testing at the di�erent levels.
Lastly, to understand the e�ciency of SRCIROR, we measure the

time overhead for mutant generation at both the SRC and IR levels.

If the code is built from scratch for every mutant, the overhead of

SRCIROR would be equal to the number of mutants generated, i.e.,

4261X for SRC and 15944X for IR. However, one can use various

optimizations to improve SRCIROR’s performance. In our evalua-

tion, we use a simple setup that performs incremental compilation

between mutants. Columns marked “Overhead” in Tables 1 and 2

show the overheads as the ratio of the time needed to generate

all mutants for a given program to the time needed to perform

a clean build of that program (without mutation). The overhead

varies from 18.02X to 562.50X. Overall, SRCIROR incurs an over-

head of 328.14X for 4261 SRC mutants and 1208.35X for 15944 IR

mutants; overheads are much lower than the number of mutants.

4 CONCLUSIONS

We present SRCIROR, a toolset for performing mutation testing at

the C/C++ source and LLVM IR levels. We evaluate SRCIROR on a

subset of programs fromCoreutils and how SRC and IR compare in

terms of number of mutants generated, mutation score, and num-

ber of equivalent and duplicated mutants. SRCIROR opens the door

for performing mutation testing research for C/C++ programs on

multiple levels and comparing them.

ACKNOWLEDGMENTS

We thank Darko Marinov and the anonymous reviewers for their

constructive feedback. This work is partially supported by the NSF

grants CCF-1409423 and CCF-1421503.

REFERENCES
[1] Libtooling. http://clang.llvm.org/docs/LibTooling.html.
[2] Matching the Clang AST. http://clang.llvm.org/docs/LibASTMatchers.html.
[3] Paul Ammann, Marcio Eduardo Delamaro, and Je� O�utt. Establishing theoret-

ical minimal sets of mutants. In ICST, pages 21–30, 2014.
[4] James H. Andrews and Amin Alipour. MutGen tool.

https://github.com/alipourm/cmutate.
[5] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for

testing experiments? In ICSE, pages 402–411, 2005.
[6] Marcio Eduardo Delamaro and Jose Carlos Maldonado. Proteum tool for muta-

tion testing of C programs. https://github.com/magsilva/proteum.
[7] Márcio Eduardo Delamaro and José Carlos Maldonado. Proteum—A tool for the

assessment of test adequacy for C programs. In PCS, pages 79–95, 1996.
[8] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.

Measuring e�ectiveness of mutant sets. In ICSTW, pages 132–141, 2016.
[9] Alex Groce, Josie Holmes, DarkoMarinov, August Shi, and Lingming Zhang. An

extensible, regular-expression-based tool for multi-language mutant generation.
2018.

[10] Farah Hariri, August Shi, Hayes Converse, Sarfraz Khurshid, and Darko Mari-
nov. Evaluating the e�ects of compiler optimizations on mutation testing at the
compiler IR level. In ISSRE, pages 105–115, 2016.

[11] Yue Jia. Milu: A higher order mutation testing tool.
https://github.com/yuejia/Milu.

[12] Yue Jia and Mark Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In TAIC PART, pages 94–98,
2008.

[13] Yue Jia and Mark Harman. An analysis and survey of the development of muta-
tion testing. TSE, 37(5):649–678, 2011.

[14] René Just. The Major mutation framework: E�cient and scalable mutation anal-
ysis for Java. In ISSTA, pages 433–436, 2014.

[15] Yu-Seung Ma, Je� O�utt, and Yong-Rae Kwon. Mujava: a mutation system for
Java. In ICSE, pages 827–830, 2006.

[16] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and e�ective equiva-
lent mutant detection technique. In ICSE, pages 936–946, 2015.

[17] Goran Petrovic and Marko Ivankovic. State of mutation testing at google. In
ICSE SEIP, 2018.

[18] Eric Schulte. llvm-mutate. http://eschulte.github.io/llvm-mutate/.
[19] Eric Schulte. Neutral Networks of Real-World Programs and their Application to

Automated Software Evolution. PhD thesis, University of New Mexico, 2014.
[20] Marcelo Sousa and Alper Sen. Generation of TLM testbenches using mutation

testing. In CODES+ISSS, pages 323–332, 2012.

863

http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibASTMatchers.html

	Abstract
	1 Introduction
	2 Mutation Tools Implementation
	2.1 Mutation Operators
	2.2 Source-level Mutant Generation Tool
	2.3 IR-level Mutant Generation Tool
	2.4 Incorporating Coverage

	3 Evaluation
	3.1 Splitting Coreutils Tests
	3.2 Results

	4 Conclusions
	References

