
STARTS: STAtic Regression Test Selection
Owolabi Legunsen, August Shi, Darko Marinov

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

{legunse2,awshi2,marinov}@illinois.edu

Abstract—Regression testing is an important part of software
development, but it can be very time consuming. Regression
test selection (RTS) aims to speed up regression testing by
running only impacted tests—the subset of tests that can change
behavior due to code changes. We present STARTS, a tool for
STAtic Regression Test Selection. Unlike dynamic RTS, STARTS
requires no code instrumentation or runtime information to
find impacted tests; instead, STARTS uses only compile-time
information. Specifically, STARTS builds a dependency graph
of program types and finds, as impacted, tests that can reach
some changed type in the transitive closure of the dependency
graph. STARTS is a Maven plugin that can be easily integrated
into any Maven-based Java project. We find that STARTS selects
on average 35.2% of tests, leading to an end-to-end runtime that
is on average 81.0% of running all the tests. A video demo of
STARTS can be found at https://youtu.be/PCNtk8jphrM.

I. INTRODUCTION

Regression testing [1] is an important part of software devel-
opment. After every code change, a developer runs the tests in
the regression test suite to ensure that the changes do not break
any existing functionality. However, when a regression test
suite contains many tests, running all tests after every change,
often called RetestAll, is very time consuming and slows down
the software development process. Companies such as Google
and Microsoft have reported how expensive it is for them to
perform regression testing [2]–[7]. Regression test selection
(RTS) is a way to reduce the cost of regression testing by
selecting to run only the tests impacted by the changes [1].
An RTS technique works by finding the dependencies of each
test and selecting tests that depend on the changes. Running
fewer, but necessary, tests speeds up regression testing, while
aiming not to miss any test failures.

In our prior work [8], we used a prototype static RTS tool
to compare with dynamic RTS, which computes test depen-
dencies dynamically. The results showed that static RTS with
dependencies computed at the class-level is comparable with
the state-of-the-art dynamic RTS tool Ekstazi [9], [10]. The
results are encouraging, showing that static RTS is feasible,
and worthy of further research. Performing RTS statically
could be particularly useful in contexts where dynamic RTS
is not feasible, such as when dynamic instrumentation to
collect test dependencies breaks time-sensitive tests or when
non-determinism causes dynamic RTS to collect wrong or
incomplete test dependencies.

We present STARTS (STAtic Regression Test Selection), a
robust tool for performing static RTS. STARTS constructs
a dependency graph relating all types (including classes,

interfaces, and enums) in an application and computes a tran-
sitive closure for each test to find its dependencies. STARTS
determines the types that changed by computing the checksum
of each type’s corresponding compiled classfile and comparing
the computed checksum with the one computed in the prior
run. STARTS selects to run impacted tests, which are tests
whose transitive dependencies include some changed type.
We made several changes to our initial prototype [8] to make
STARTS robust and usable on real, large software projects: we
added support for multi-module Maven projects and improved
the speed, including parsing constant pools instead of entire
classfiles, saving dependencies as type-to-tests instead of test-
to-types, using a faster graph library (yasgl [11], instead of
JGraphT [12]), and incrementally caching dependencies.

We evaluated STARTS on 32 Maven-based projects from
GitHub. We find that STARTS selects on average 35.2% of
all tests, leading to an end-to-end runtime (consisting of the
time to select what tests to run plus time to run those tests) that
is 81.0% of the RetestAll time to run all tests. STARTS scales
well, and for 11 projects with longer-running tests that take
over one minute to run, STARTS selects on average 40.5% of
all tests, leading to an end-to-end runtime that is only 68.2% of
the RetestAll time. STARTS source code is publicly available
on GitHub at https://github.com/TestingResearchIllinois/starts,
and binary code is released on Maven Central.

II. USAGE

STARTS is a Maven plugin [13] and can be easily integrated
with any Maven-based Java project.
Integrating STARTS: The easiest way to integrate STARTS
with a project is to add the latest version of the STARTS plugin
from Maven Central to the project’s pom.xml file:

1 <plugin>
2 <groupId>edu.illinois</groupId>
3 <artifactId>starts−maven−plugin</artifactId>
4 <version>${latest_STARTS_version}</version>
5 </plugin>

Using STARTS: Developers can use STARTS to perform
several RTS-related tasks: (i) finding the types that changed
semantically at the bytecode level (ii) finding the types (not
just tests) that are impacted by the changes (i.e., change-
impact analysis), (iii) finding the tests that are impacted by
the changes without running those tests, and (iv) finding and
running the tests that are impacted by the changes. To achieve
these tasks, STARTS provides several goals:

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

949

https://youtu.be/PCNtk8jphrM
https://github.com/TestingResearchIllinois/starts


1 $ mvn starts:help # list all goals
2 $ mvn starts:diff # find types that changed semantically
3 $ mvn starts:impacted # find types impacted by changes
4 $ mvn starts:select # find (but not run) impacted tests
5 $ mvn starts:starts # find and run impacted tests
6 $ mvn starts:clean # delete STARTS artifacts

The first goal, starts:help, lists all the goals in STARTS
and what they can be used for. The other five goals are related
to RTS. starts:diff displays all the Java types (including
classes, interfaces, and enums) that changed since the last time
STARTS was run. starts:impacted displays all types (not
just test classes) that are impacted by the changes, thereby
providing a means for change-impact analysis. starts:select
displays, but does not run, the test classes that are impacted by
the changes since the last time STARTS was run—allowing de-
velopers more flexibility to first select impacted tests and then
run those tests later. starts:starts runs the impacted tests; it
performs the functions of the previous RTS-related goals, plus
executing the impacted tests. Finally, starts:clean removes
all artifacts that STARTS stored from a previous run (in a
.starts directory), resetting STARTS so that in the next run,
all types are considered changed (and all tests are selected to
be run, if using starts:starts).

STARTS provides several options that give some flexibil-
ity to the user. The most important option is whether or
not to update the STARTS artifacts after invoking a goal.
As described in Section III-B, STARTS keeps track of the
checksums of all types from the previous run, storing them to
disk and using them in the new run to find impacted tests. All
RTS-related goals in STARTS provide an update∗Checksums
option, which, when true, updates the stored checksums after
a run. This option is set to true by default for the goal
starts:starts, but is by default false for all other goals.

III. TECHNIQUE AND IMPLEMENTATION

We describe the STARTS technique implemented in
STARTS, and the STARTS Maven plugin.

A. Technique

STARTS performs static RTS (SRTS) at the class level—
tests are selected at the test-class (not test-method) level and
the dependencies of these tests are also computed at the class/-
type level. Our recent work [8], showed that such class-level
SRTS outperformed method-level SRTS and was comparable
with the state-of-the-art class-level dynamic RTS technique
Ekstazi [9]. Thus, we implemented STARTS to perform class-
level SRTS based on the idea of a class firewall [14]–[16],
which encloses the types that need to be retested because
they may be impacted by a code change. The class firewall
is computed on a type-dependency graph (TDG) where each
node is a type in the application and there is a directed
edge from one type τ to another type τ ′ if τ has a direct
use or inheritance dependency on τ ′. Test class nodes are
also included in the TDG. If τc is a type that changed,
then τ is impacted by the change to τc iff 〈τ, τc〉 ∈ E∗,
where E is the set of all edges in the TDG, and ∗ denotes

the reflexive and transitive closure. The class firewall is the
set of all types that can transitively reach any of the types
that changed in the TDG, and can therefore be defined as
firewall(Tc) = Tc ◦ (E−1)∗, where Tc is the set of all
types that changed, −1 denotes the inverse relation, and ◦
denotes relation composition. Given (1) classfiles for all types
(obtained from compiling a new revision) in an application and
(2) checksums of classfiles from a prior revision, STARTS
can output the set of changed types (Tc), the class firewall
(firewall(Tc)), and Ti, the set of impacted tests. Ti is
computed as the set difference between the set of all tests in the
new revision and the set of tests that are not in firewall(Tc)
(which is computed from the old revision). We compute Ti
this way so that it includes any newly-added tests while still
using the TDG computed on the old revision.

B. Implementation

Figure 1 shows the STARTS architecture, which comprises
components to: (i) find dependencies among types in the
application, (ii) construct the TDG, (iii) find the changed types
between two revisions of the application, (iv) store checksums
of all types from the current revision, (v) select the tests
impacted by the changed types, and (vi) run the impacted tests.
Finding Dependencies Among Types: STARTS needs to
compute the dependencies among all types in the application.
The prototype in our prior work [8] used ASM to parse all the
bytecode in the compiled classfile of a given type in order to
compute its dependencies. However, parsing entire classfiles
just to find dependencies is rather slow because it requires
to recursively visit each type’s fields, methods, signatures,
and annotations to collect all the types that are referenced.
STARTS improves on computing dependencies among types
by only reading the constant pool in each classfile to determine
all types that the type in the classfile may depend on. We use
the recent Oracle jdeps tool [17], now part of the standard Java
library, to read the constant pools. After the new revision of an
application has been compiled to produce classfiles, STARTS
makes a single jdeps invocation (via the jdeps API) to parse
all classfiles in the application at once, and then processes the
jdeps output in memory to find the dependencies for each type.
Constructing the Dependency Graph: The TDG contains
an edge from one type to each of its dependencies. We use
a custom graph library called yasgl [11] to construct graphs
and to find tests that can transitively reach some changed
type. We add each type as a node in a yasgl graph and add
dependencies computed by jdeps as edges between nodes in
the graph. With a yasgl graph, STARTS computes the transitive
closure of each test class to find all types that each test depends
on. Our initial prototype [8] used JGraphT [12], but yasgl is
faster for computing the transitive closure. For example, yasgl
takes 1.4 sec to compute the transitive closure for a graph
with 41,960 nodes and 509,946 edges (coming from a single
module of a project with 110 test classes). JGraphT takes
2.7 sec to compute the same transitive closure, a difference
that accumulates when considering all the modules in the
project. Note that the yasgl TDG that STARTS uses does

950



Fig. 1. STARTS Architecture

not distinguish between use edges and inheritance edges, as
done in the Intertype Relation Graph (IRG) used in our initial
prototype and in prior work [16].
Finding Changed Types: STARTS finds the types that
changed since the last time it was run. STARTS uses the
same checksum function from Ekstazi [9], [10] to compute
a checksum that ignores debug-related information for each
classfile and stores that checksum to a file. STARTS tracks
changes in classfiles because the corresponding source file
can be different yet result in the same classfile that is actually
executed, so tracking classfiles is more precise. Also, STARTS
uses checksums for checking whether a classfile is modified
instead of seemingly faster methods like timestamps, which
can be unreliable (e.g., Maven’s incremental build system is
broken [18] and often recompiles every type on each run, so
one cannot rely on the timestamps of the classfiles). Once
compilation is complete in the new revision, STARTS com-
putes the checksums of all compiled classfiles and compares
against the stored checksums computed from the previous
revision for each file. If the old and new checksums differ,
STARTS considers that type to have changed. If the type
had no previously computed checksum (i.e., a new type was
added), its checksum is stored for future runs. Finally, if a type
for which STARTS previously computed a checksum cannot
be found in the new revision (i.e., an old type was deleted),
then that type is no longer stored in the checksum file for
future runs. If there is no checksum file on disk (e.g., on the
very first run, or after running mvn starts:clean), STARTS
considers all types as changed.
Computing and Storing Checksums: In our initial proto-
type [8], as well as in Ekstazi, the transitive closure of each
test class in the graph was stored as a mapping from each
test class to its dependencies, i.e., a test-to-types mapping.
Further, there was one dependency file per test. Once a tool

computed the set of types that changed, it then checked the
dependency file of each test to see if the test depends on any
of the changed types. However, we observed that STARTS
discovers many more test dependencies than Ekstazi, due to
inherent imprecision of static analysis, and that many tests
shared a lot of these dependencies. As a result, we reversed the
dependency storage format in STARTS to reduce the amount
of repetitive checking of test dependencies by storing a type-to-
tests mapping. STARTS stores in a single file a mapping from
each type in the application to the set of tests that depend on
that type. This file is stored in a directory called .starts under
the root directory of the application. More precisely, if the
application is a multi-module Maven-based project, STARTS
creates multiple .starts directories, each with its own type-
to-tests-mapping file, under each module, and the types may
span across modules if that is where the dependencies lead.
Updating the checksums that are stored on disk after invoking
a STARTS goal on a new revision can be turned on or off, as
described in Section II.

The type-to-tests storage format that STARTS uses, together
with processing only one file on disk, greatly improves the
performance of selecting impacted tests. For example, in
one project, STARTS takes 22.9 sec to check if any of the
dependencies changed when using the type-to-tests, single-
file format, but the same check takes 79.8 sec with Ekstazi’s
test-to-types, multiple-files format. One possible modification
of the test-to-types format could be to first read all the files
and then reverse the mapping (in memory) to be from type to
tests before comparing checksums. However, this modification
would still incur the cost of reading potentially many files
from disk, and it would put the mapping-reversal process on
the critical path from when testing is initiated until developers
obtain test results—mapping reversal in STARTS can happen
in a separate offline phase that is not on the critical path.

951



Selecting Impacted Tests: STARTS uses the type-to-tests
dependency mapping from the previous revision and the set
of all changed types to find the tests that are not impacted
by changes. STARTS then computes the impacted tests as
the difference between the set of all tests in the current
revision and the set of non-impacted tests. Thus, newly-added
tests are always in the set of impacted tests. Dependency
graph construction on the new revision is not required to
find impacted tests (allowing quicker computation of impacted
tests). Rather, STARTS reads the type-to-tests dependency
file which was computed based on the dependency graph
constructed in the previous revision. The fact that STARTS
requires only compile-time information to find impacted tests
can allow a clean separation of phases: an analysis phase (a)
finds changes and impacted tests, an execution phase (e) runs
the impacted tests, and a graph computation phase (g) builds
the dependency graph and uses it to create a type-to-tests
mapping for the next revision1. This separation can enable
the choice to run STARTS in an “online mode” (the a, e, and
g phases are run together) or an “offline mode” (the a and e
phases can run separately from or in parallel with the g phase).
We did not yet implement goals to toggle the online/offline
modes, but report times for offline mode as the time for online
mode minus the time for the g phase. starts:select displays
the impacted tests but does not run them.
Running Impacted Tests: STARTS computes the set of
selected tests to run as previously described: it excludes non-
impacted tests from the set of all tests in the application.
Specifically, STARTS dynamically adds the non-impacted tests
to the set of tests that Surefire plugin is already configured to
not run. As a result, when STARTS invokes the Maven Surefire
plugin to run the tests, Surefire will run only the tests that
are impacted by the changes. The goal starts:starts will
perform all the previous steps to find changed types, select
impacted tests and run those selected tests.

C. Important STARTS Options

STARTS provides a number of other options, in addition to
turning on/off the checksum file updates (Section II).
Caching jdeps output: One consideration in the design of
STARTS is how to handle the output of running jdeps on
third-party libraries (JARs). Many projects do not frequently
change their library versions, and using jdeps to parse the
library code on each revision would needlessly repeat work.
STARTS therefore provides options to (i) use a preprocessed
cache, (ii) incrementally build the cache on each revision, and
(iii) parse the third-party libraries on each revision. The default
is to incrementally build the cache on each revision. When
STARTS encounters a JAR in the application’s classpath, it
first checks whether a corresponding jdeps output file exists
in the jdeps-cache directory, which is found in each module
of the application. If there is one, STARTS reads it; otherwise,
STARTS runs jdeps on the JAR, uses the jdeps output for its

1The g phase in STARTS is analogous to the coverage-collection (c) phase
in Ekstazi and other dynamic RTS techniques where separation of c and e
phases is harder to achieve in practice.

current processing, and stores the jdeps output for that JAR in a
file in the jdeps-cache directory. The names of the files in the
jdeps-cache directory match the Group/ArtifactId/Revision
convention of naming Maven-based projects [19], and have
a .graph extension.

If there is a cache (possibly computed elsewhere or even
from different applications), STARTS can be configured to
specify the location of this cache. The following command
shows using an RTS-related goal with a preprocessed cache,
where ${GRAPH_CACHE} is the directory containing the prepro-
cessed jdeps output for each third-party library and the jdeps
output files are organized as described for the default option:

1 $ mvn starts:starts −DgCache=${GRAPH_CACHE}

If no cache is input or the cache is empty, STARTS runs
jdeps on all libraries on each revision.
File Formats for Checksums and Dependencies: STARTS
supports two formats for storing the checksums of all types in
the application and the tests that transitively depend on them:
the new type-to-tests (ZLC) format and the old test-to-types
(CLZ) format (proposed in Ekstazi). Section III-B describes
these formats and their tradeoffs. ZLC is the default file format
that STARTS uses. To run STARTS using the CLZ file format:

1 $ mvn starts:starts −DdepFormat=CLZ

Controlling STARTS Artifact Storage: Configuring different
logging levels can control the amount of information that
STARTS stores between runs, where the logging levels are
the same as in the java.util.logging API. When running
at the default logging Level.INFO, STARTS stores only the
checksum and dependency file, .starts/deps.zlc, between
runs. At Level.FINEST, STARTS will store all its files: the lists
of all/impacted/non-impacted tests, the dependencies that jdeps
computed, the classpath that STARTS used, the yasgl graph
that STARTS constructed internally, and the set of changed
types. Running at logging level Level.FINER will store only
.starts/deps.zlc, the set of impacted tests, and the set of
all tests. To run STARTS while storing all its files:

1 $ mvn starts:starts −DstartsLogging=FINEST

IV. EVALUATION

We ran all experiments on a 3.40 GHz Intel Xeon E3-
1240 V2 machine with 16GB of RAM, running Ubuntu Linux
16.04.3 LTS and Oracle Java 64-Bit Server version 1.8.0_144.
We evaluated STARTS on 32 Maven projects. These projects
include 21 single-module Maven projects we used in our
previous study [8] and 11 multi-module Maven projects that
we did not evaluate before, showing that STARTS can be
integrated into larger Maven projects. We ran STARTS on
each project over a number of revisions and measured the
number of impacted tests that STARTS selected to run, relative
to the number of all tests. We also measured the percentage of
end-to-end time taken by STARTS relative to the end-to-end
time for running all tests, i.e., RetestAll. The STARTS end-
to-end time includes the time to compile, perform selection,

952



TABLE I
STATISTICS ABOUT SELECTED TESTS AND END-TO-END TIME OF STARTS COMPARED TO RETESTALL

Project SHAs ALL Selected Selected RTA[s] Offline Online Breakdown
[#] [#] [%] Time [%] Time [%] a e g Comp.

headius/invokebinder 68 2.1 1.6 76.0 3.3 110.7 134.8 0.0 20.0 20.0 60.0
google/compile-testing 32 7.3 3.1 44.1 4.4 118.3 137.6 0.0 18.3 13.3 68.3
apache/commons-cli 52 23.0 10.2 44.1 4.8 109.4 126.1 0.0 10.3 10.3 79.3
logstash/logstash-logback-encoder 45 18.2 3.7 23.5 5.6 112.8 129.8 0.0 13.7 12.3 74.0
apache/commons-dbutils 15 24.6 8.2 33.0 5.6 109.1 121.6 0.0 13.0 13.0 73.9
apache/commons-validator 22 61.0 13.8 22.6 6.6 93.5 107.2 0.0 17.1 11.4 71.4
apache/commons-fileupload 8 12.0 3.8 31.2 6.8 98.2 102.1 0.0 12.9 5.7 81.4
apache/commons-codec 65 47.4 2.1 4.5 9.3 69.5 73.9 0.0 10.1 7.2 82.6
srt/asterisk-java 47 38.1 2.3 6.0 9.6 70.2 79.4 0.0 18.4 10.5 71.1
apache/commons-functor 20 164.0 23.2 14.1 10.7 91.7 96.3 0.0 8.7 5.8 85.6
apache/commons-compress 12 89.4 23.8 26.6 13.3 79.8 83.5 0.0 25.9 4.5 69.6
apache/commons-email 10 18.0 5.4 30.0 16.2 68.0 71.9 0.0 39.7 6.0 54.3
square/retrofit 13 32.2 10.3 32.2 21.1 79.7 86.8 5.9 43.0 9.7 41.4
apache/commons-lang 63 133.7 42.8 32.0 24.8 73.3 76.8 0.0 35.3 4.7 60.0
apache/commons-collections 12 164.0 7.2 4.4 25.3 58.3 58.9 0.0 10.0 1.3 88.7
AdoptOpenJDK/jitwatch 23 26.0 10.6 40.6 26.4 58.4 60.9 0.0 62.5 4.4 33.1
graphhopper/graphhopper 8 106.8 70.1 65.7 29.8 90.8 97.3 0.0 45.2 6.9 47.9
apache/commons-imaging 89 58.8 21.5 37.9 29.5 65.2 67.5 0.0 51.5 3.5 45.0
cloudera/oryx 17 58.0 17.3 29.8 37.6 85.0 91.3 6.0 40.1 6.6 47.3
robovm/robovm 11 32.0 9.1 28.4 39.5 107.5 111.6 1.4 5.7 3.6 89.3
ninjaframework/ninja 6 102.0 55.0 53.9 40.5 93.6 120.3 7.2 42.0 22.5 28.3
Average(SHORT) 30.4 58.0 16.4 32.4 17.6 87.8 96.9 1.0 25.9 8.7 64.4
apache/commons-math 63 449.9 42.4 9.4 98.3 28.9 30.3 0.3 36.8 4.7 58.2
addthis/stream-lib 7 24.0 5.4 22.6 106.4 47.5 48.4 0.0 88.8 2.1 9.1
apache/commons-io 13 99.2 23.4 23.5 132.0 43.4 43.9 0.0 85.0 1.2 13.8
brettwooldridge/HikariCP 18 26.4 22.4 84.7 132.9 95.2 96.6 0.8 92.9 1.5 4.8
opentripplanner/OpenTripPlanner 9 136.0 76.4 56.2 179.3 82.3 85.4 1.8 83.9 3.7 10.5
undertow-io/undertow 28 220.1 151.5 68.8 181.0 80.5 82.9 1.1 82.4 2.9 13.6
Graylog2/graylog2-server 14 187.6 25.8 13.8 284.0 103.5 106.3 1.8 6.0 2.6 89.6
apache/commons-pool 16 20.0 6.7 33.4 303.1 56.8 57.0 0.0 96.1 0.3 3.5
openmrs/OpenMrs 20 244.1 101.7 41.7 315.0 48.1 49.8 1.8 83.6 3.5 11.1
aws/aws-sdk-java 7 134.1 58.0 43.5 424.0 96.5 97.2 0.2 45.2 0.7 54.0
jankotek/mapdb 7 173.6 81.7 47.3 449.1 67.3 68.5 0.6 77.9 1.6 19.9
Average(LONG) 18.4 155.9 54.1 40.5 236.8 68.2 69.7 0.8 70.8 2.3 26.2
Average(OVERALL) 26.2 91.7 29.4 35.2 93.0 81.0 87.6 0.9 41.3 6.5 51.3

run the impacted tests, and update dependencies for the next
run, while the RetestAll time is compile time plus time to run
all tests. We include compile time because, after a change, a
continuous integration system, e.g., Travis [20], typically also
compiles the application. We wanted to evaluate any savings in
the overall build time when using STARTS. Table I shows for
each project (sorted by increasing RetestAll time), the number
of revisions evaluated (SHAs [#]), average number of all tests
across all revisions (ALL), average number of tests selected
by STARTS (Selected [#]), average percentage of all tests
selected by STARTS (Selected [%]), RetestAll time (RTA[s]),
and average percentage of RetestAll time that STARTS takes,
for both the “online” mode (Online Time [%]) (Section III-B)
that includes time for the a, e, and g phases, and the “offline”
mode (Offline Time [%]) that excludes time for the g phase.
The last columns break down STARTS time into a, e, g and
compilation (Comp.) times. In the offline mode, a developer
can get test results faster by not having to wait until STARTS
finishes the computation of dependencies before seeing those
test results—dependency and transitive closure computation
can be removed from the developer’s critical path.

We divide the projects in Table I into short-running if
RetestAll takes less than one minute (upper part), and long-

0 100 200 300 400 500

Average time to run RetestAll [s]

0

20

40

60

80

100

120

S
TA

R
TS

tim
e

/R
et

es
tA

ll
tim

e
[%

]

Fig. 2. Correlation between project end-to-end test time vs. percentage of
time to run STARTS

running if RetestAll takes more than one minute (lower part).
Table I shows that STARTS runs fewer tests compared with
RetestAll: STARTS selects between 4.4% (apache/commons-
collections) and 84.7% (brettwooldridge/HikariCP) of all tests,
with an average of 35.2% of all tests across all projects.
Table I shows that STARTS also provides time savings, with

953



an average end-to-end time of 81.0% of RetestAll time in
the offline mode, and 87.6% of RetestAll time in the on-
line mode. STARTS provides greater time savings for long-
running projects (68.2% in the offline mode and 69.7% in
the online mode) than for short-running projects (87.8% in
the offline mode and 96.9% in the online mode). STARTS
is more expensive than RetestAll (i.e., the offline percentage
of RetestAll time is greater than 100%) in six (of 21) short-
running projects, and only one (of 11) long-running project. As
expected, STARTS is better suited for long-running projects.
Figure 2 plots the correlation between the average RetestAll
time per project (x-axis) and the percentage time savings from
the STARTS offline mode (y-axis); the Kendall-τb value is
−0.3, and p < 0.01, a weak negative correlation. Finally, the
breakdown of the end-to-end time shows that STARTS spends
most of its non-compilation time in the e phase (41.3% of end-
to-end time, on average), while a and g take up much smaller
percentages. The time for short-running projects is dominated
by compilation and these projects likely cannot benefit much
from any RTS, including STARTS

V. LIMITATIONS AND FUTURE WORK

We discuss some limitations of STARTS as well as future
research and development directions.
Limitations of STARTS: In our previous study [8], we found
that SRTS performed comparably with dynamic RTS (we
evaluated against Ekstazi) in terms of time. However, we also
found that SRTS is as expected, less precise than dynamic
RTS and can be unsafe. (An RTS technique is precise if it
selects to run only the impacted tests, and safe if it does not
miss to select an impacted test.) We also found that reflection
was the only cause of unsafety of SRTS when compared
with Ekstazi. STARTS does not yet address these safety and
precision limitations of SRTS. STARTS can be unsafe when
the path between tests and changed types can only be reached
via reflection, and is inherently imprecise because the static
dependencies it finds among the types in the application may
not be runtime dependencies. STARTS also assumes that there
is no test-order dependence [21], [22].
Future Work: Open research directions are how to make
SRTS more precise, how to make SRTS safer with respect
to other potential sources of unsafety (such as dependency of
tests on external files or native code ), and how to apply SRTS
to other programming languages. Future development plans in-
clude (i) developing faster checksum and dependency storage
formats, (ii) supporting other build systems, such as Bazel or
Gradle, (iii) making STARTS usable in continuous-integration
systems, e.g., Jenkins or Travis, and (iv) evaluating STARTS
on even larger applications than those we have evaluated so
far and further improving the scalability of STARTS.

VI. CONCLUSION

We presented STARTS, a publicly available, purely static,
class-level RTS tool. STARTS is motivated by the need in
the research community to further investigate static RTS
approaches, because its counterpart, dynamic RTS, is gaining

some adoption in practice. We discussed the firewall technique
on which STARTS is based, and we presented the usage,
design, and implementation of STARTS. Our evaluation on
32 open-source projects showed that STARTS can save time
compared to RetestAll, and we highlighted some future re-
search and development directions. We believe that STARTS
can help to facilitate collaboration and contribute greatly to
further (static) RTS research.

ACKNOWLEDGMENTS

We thank Felicia Chandra, Alex Gyori, Milica Hadzi-
Tanovic, Farah Hariri, Hanjie Wang, Xin Wei, Lingming
Zhang, and Peiyuan Zhao for their contributions to STARTS.
Deniz Arsan and David Craig provided valuable feedback on
a draft of this paper. This work was partially supported by
National Science Foundation grants CCF-1409423 and CCF-
1421503. We gratefully acknowledge support for regression
testing from Google, Microsoft, and Qualcomm.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” STVR, vol. 22, no. 2, 2012.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in FSE, 2014.

[3] P. Gupta, M. Ivey, and J. Penix, “Testing at the speed and
scale of Google,” http://google-engtools.blogspot.com/2011/06/
testing-at-speed-and-scale-of-google.html.

[4] N. York, “Tools for continuous integration at Google scale,” Jan 2011,
https://www.youtube.com/watch?v=b52aXZ2yi08.

[5] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in ICSE SEIP, 2016.

[6] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in devel-
opment environment,” in ISSTA, 2002.

[7] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in ICSE, 2015.

[8] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE, 2016.

[9] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in ISSTA, 2015.

[10] ——, “Ekstazi: Lightweight test selection,” in ICSE Demo, 2015.
[11] “Yet Another Simple Graph Library,” https://github.com/

TestingResearchIllinois/yasgl.
[12] “JGraphT,” http://jgrapht.org/.
[13] “Introduction to Maven 2.0 Plugin Development,” https://maven.apache.

org/guides/introduction/introduction-to-plugins.html.
[14] H. K. Leung and L. White, “A study of integration testing and software

regression at the integration level,” in ICSM, 1990.
[15] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall,

test order, and regression testing of object-oriented programs,” JOOP,
vol. 8, no. 2, 1995.

[16] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in FSE, 2004.

[17] “jdeps,” https://docs.oracle.com/javase/8/docs/technotes/tools/unix/
jdeps.html.

[18] “Maven is broken by design,” https://blog.ltgt.net/
maven-is-broken-by-design/.

[19] “Guide to naming conventions,” https://maven.apache.org/guides/mini/
guide-naming-conventions.html.

[20] “Travis-CI,” https://travis-ci.org/.
[21] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: detecting

state-polluting tests to prevent test dependency,” in ISSTA, 2015.
[22] S. Zhang, D. Jalali, J. Wuttke, K. Mucslu, W. Lam, M. D. Ernst, and

D. Notkin, “Empirically revisiting the test independence assumption,”
in ISSTA, 2014.

954

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=b52aXZ2yi08
https://github.com/TestingResearchIllinois/yasgl
https://github.com/TestingResearchIllinois/yasgl
http://jgrapht.org/
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdeps.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdeps.html
https://blog.ltgt.net/maven-is-broken-by-design/
https://blog.ltgt.net/maven-is-broken-by-design/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://travis-ci.org/

	Introduction
	Usage
	Technique and Implementation
	Technique
	Implementation
	Important STARTS Options

	Evaluation
	Limitations and Future Work
	Conclusion
	References

