Automated Testing of Refactoring Engines

Brett Daniel Danny Dig

Kely Garcia

Darko Marinov

Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801, USA

{bdaniel3, dig, kgarcia2, marinov}@cs.uiuc.edu

ABSTRACT

Refactorings are behavior-preserving program transfboms that
improve the design of a program. Refactoring engines arks too
that automate the application of refactorings: first the aheoses
a refactoring to apply, then the engine checks if the transdition
is safe, and if so, transforms the program. Refactoringrersgare
a key component of modern IDEs, and programmers rely on them
to perform refactorings. A bug in the refactoring engine hawe
severe consequences as it can erroneously change largss lwddi
source code.

We present a technique for automated testing of refactaimg
gines. Testinputs for refactoring engines are programe.cohe of
our technique is a framework for iterative generation aicturally
complex test inputs. We instantiate the framework to gaaeaab-
stract syntax trees that represent Java programs. We aatecr
several kinds of oracles to automatically check that thaatefing
engine transformed the generated program correctly. We apv
plied our technique to testing Eclipse and NetBeans, twaijaop
open-source IDEs for Java, and we have exposed 21 new bugs i
Eclipse and 24 new bugs in NetBeans.

Categories and Subject DescriptorsD.2.5 [Software Engineer-
ing]: Testing and Debuggingtesting tools D.2.3 [Software En-
gineering]: Coding Tools and Techniquesebject-oriented pro-
gramming

General Terms: Verification

Keywords: Automated testing, bounded-exhaustive testing, imper-
ative generators, test data generation, refactoring esgin

1. INTRODUCTION

Refactoring [9] is a disciplined technique of applying babe
preserving transformations to a program with the intentgdriov-
ing its design. Examples of refactorings include renamimyaa
gram element to better convey its meaning, replacing fidierre
ences with calls to accessor methods, splitting large etassov-
ing methods to different classes, or extracting duplicatsdk into
a new method. Each refactoring has a name, a set of precomg]iti
and a set of specific transformations to perform [19].

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC/FSE’'07September 3-7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

Refactoring enginesre tools that automate the application of
refactorings. The programmer need only select which refaj
to apply, and the engine will automatically check the preiton
tions and apply the transformations across the entire progf
the preconditions are satisfied. Refactoring is gainingutaop
ity, as evidenced by the inclusion of refactoring enginesiod-
ern IDEs such as Eclips@ttp: //www.eclipse.org) or NetBeans
(http://www.netbeans.org) for Java. Refactoring is also a key
practice of agile software development methodologiesh siseX-
treme Programming [4], whose success prompts even moré deve
opers to use refactoring engines on a regular basis. Indeed,
common wisdom views the use of refactoring engines as orfeeof t
safest ways of transforming a program, since manual rafagtcs
error-prone.

It is important that refactoring engines be reliable—a bug i
refactoring engine can silently introduce bugs in the refi@z pro-
gram and lead to difficult debugging sessions. If the orilgime-
gram compiles but the refactored program does not, thetoefag

HS obviously incorrect and can be easily undone. Howevehef

refactoring engine erroneously produces a refactoredrpnoghat
compiles but does not preserve the semantics of the origial
gram, this can have severe consequences.

Since refactoring engines are very complex and must beotelia
developers of refactoring engines have invested heavitgsting.
For example, Eclipse version 3.2 has over 2,600 unit testefac-
torings (publicly available from the Eclipse CVS reposjjorCon-
ventionally, testing a refactoring engine involves creginput pro-
grams by hand along with their expected outputs, each oftwhic
is either a refactored program or an expected preconditibuaré.
The developers then execute these tests automaticallyantiviol
such as JUnit [10]. Writing such tests manually is tedioud an
results in incomplete test suites, potentially leaving ynhiiden
bugs in refactoring engines.

We present a technique that automates testing of refagterin
gines, both generation of test inputs and checking of tetgpubst
The core of our technique is a general framework for iteeagjgn-
eration of structurally complex test inputs. We instamtitite gen-
eral framework in a library calledSTGen ASTGen allows de-
velopers to writdmperative generatorgzhose executions produce
input programs for refactoring engines. More precisely,T/&8n
offers a library of generic, reusable, and composable géoer
that produce abstract syntax trees (ASTs). Using ASTGer-a d
veloper can focus on the creative aspects of testing rdtherthe
mechanical production of test inputs. Instead of manualiying
input programs, a developer writes a generator whose egecut
produces thousands of programs with structural propettiegsare
relevant for the specific refactoring being tested. For eplanto
test the RenameField refactoring, the input program shioale a

class that declares fields and variables with potential rdashes.
Our generators systematically produce a large number gf anas
that satisfy such constraints.

ASTGen follows thebounded-exhaustivapproach [5,11,12, 16,
22] for exhaustively testing all inputs within the given Imou This
approach covers all “corner cases” within the given bounatoin-
trast, manual testing requires identifying each cornee easl cov-
ering it with a manually written test. Bounded-exhaustiesting

has not been used before for test inputs as complex as Java pro

grams, and the approach of imperative generators intradindéis
paper differs from the previous techniques using declaaener-
ators [5,11, 12,16, 22]. Section 7 further discusses mlatek.

An important problem in automated generation of test injaits
automated checking of outputs, also known as dhecle prob-
lem Our technigue uses a variety of oracles. The simplest or-
acles check that the refactoring engine does not crash does
not throw an uncaught exception) and that the refactoregram
compiles. More advanced oracles take into account the gasan
of the refactoring and check specific properties such astibiley,
e.g., renaming an entity from to B and then back fronB to A
produces the same starting input program. The oracles héstkc
structural properties, e.g., moving an entity should indzreate the
entity in the new location. Finally, we ushfferential testing18]
in which one implementation serves as the oracle for anathge-
mentation. Specifically, we run the same input programs dip&ee
and NetBeans and compare their refactored outputs or pléimm
violations. Section 5.1 presents our oracles in detail.

This paper makes three main contributions.

Framework for imperative generators: We present a novel
framework for generation of structurally complex test itgouOur
framework uses imperative generators that speuify the inputs
should be generated. Previous work [5,11, 12, 16, 22] haslynos
used declarative generators that descwithat the inputs look like
and thus require potentially expensive search to gendratadtual
inputs.

Instantiation for generating ASTs: We instantiate the general
framework in ASTGen, a library that can generate abstrauiasy
trees (ASTSs) representing Java programs. Our instantigtio-
vides basic generators that follow the structure of sim@d dand
more complex generators that generate entire programsasgedt
inputs for refactoring engines.

Case study: We have used ASTGen to test several refactorings
in Eclipse and NetBeans, two popular open-source IDEs fea.Ja
We have implemented automatic execution of refactoringresy
on the input programs that our generators produce. We hawe al
implemented several oracles to verify that refactoringeete as
expected. So far, our experiments have discovered 21 new bug

in Eclipse and 24 new bugs in NetBeans. We have reported these

bugs in the bug-tracking systems of both IDEs, and the Net8ea
developers have already fixed 2 of these bugs, declared Bseo
duplicates, and confirmed 19 (all but 1) other reports aslnegs.
Eclipse developers confirmed 20 (all but 1) reports as regsé.bu

Our ASTGen code, all experimental results, and the reported

bugs are publicly available online from the ASTGen web page a
http://mir.cs.uiuc.edu/astgen.

2. EXAMPLE

We use the EncapsulateField refactoring as an illustratiaen-
ple. This refactoring replaces all references to a field aétbesses
through setter and getter methods. The EncapsulateFieictoe
ing takes as input the name of the field to encapsulate andithes
of the new getter and setter methods. It performs the foligwi
transformations:

// before refactoring
class A {
public int f;
void m(int i) {
f=1i=xf¢£;

// after refactoring
class A {
private int f;
void m(int i) {
setF(i * getF());
}
}
public int getF() {
return this.f;
}
public void setF(int f) {
this.f = £f;
}
}

Figure 1: Example EncapsulateField refactoring

e creates a public getter method that returns the field’s value

creates a public setter method that updates the field’s value
to a given parameter’s value

e replaces all field reads with calls to the getter method
e replaces all field writes with calls to the setter method

e changes the field’s access modifier to private.

The EncapsulateField refactoring checks several pretonsi
including that the code does not already contain accesstirote
and that these methods are applicable to the expressioniidh w
the field appears. Figure 1 shows a sample program beforetand a
encapsulating the fieldlinto thegetF andsetF methods.

We next discuss three of the generators that we wrote to test E
capsulateField. These generators illustrate how to gensiaple
ASTs, how to generate ASTSs that satisfy involved semantic co
straints, and how to combine simpler generators into mamgbex
generators. We also present two bugs that these genereves,r
one each in Eclipse and NetBeans.

ASTGen allows the tester to write generators that can exhaus
tively generate programs containing field references. &bt has
an intuition for which programs to generate, but it is quédious
to manually write a large number of input programs that caler
kinds of field references. Using ASTGen, the tester can varite
generator that produces many such programs, each of whigh is
class that contains a field and a method that references thanfie
all kinds of relevant expressions. Section 4.2.1 desciibeetail
how to write this generator, effectively codifying the & intu-
ition into automatic generation. This generator is not amgful
for testing EncapsulateField but can also be reused to test o
refactorings that operate on fields such as RenameField asid P
DownField.

Our generator of programs with field references producesngm
others, the program in Figure 2 that reveals a bug in NetBeans
In this case, the parentheses around the field reference taeis
refactoring engine to leave the field reference unencaesuld his
omitted encapsulation could cause problems if the develoihes
to add logic to the accessor methods, since the unencapdilelid
reference would not trigger this additional logic. Our Bitntial
Oracle (Section 5.1) caught this bug since NetBeans angh<ecli
produced different refactored programs. Note that theatitefred”
program from NetBeans compiles, so a simple oracle that only
checks compilation does not catch the bug.

Another generator produces two classes,ssayds, that exhibit
all possible relationships involving (1) class inheritan€2) con-
tainment (i.e., inner or local class), or (3) class namereefee.
This generator produces many pairs of classes, includieg#ir
shown in Figure 3, which illustrates all three relationshipes:

// before refactoring // after refactoring

class A { class A {
int f; private int f;
void m() { void m() {
(new AQ).f) = 0; (new AQ).f) = 0;
} }
}

. getF ...
. setF ...

}

Figure 2: EncapsulateField bug in NetBeans: a field access-re
mains unencapsulated

class A {
class B extends A {
void m(A a) {}
}
}

Figure 3: Two classes illustrating all three relationship ypes

B inherits froma, B is an inner class of, andB references: via
method parameter. One can reuse this generator to tesakgyes
of refactorings that depend on class name or location, dimeiuRe-
nameClass, MemberToTop, and PushDownField.

The power of ASTGen appears when building more complex
generators from simpler ones. The developer can compogedhe
vious two generators into a third generator that generatsmore
expressive programs in which one class declares a field and th
other class references it in various ways. This generatiputsithe
program in Figure 4 that reveals a bug in Eclipse. In this ctee
refactoring engine mistakenly identifies theéper.f expression as
a field read. The DoesNotCompile Oracle quickly determiheés t
is a bug.

3. FRAMEWORK

This section describes our imperative approach to testgiata
eration and presents some important design decisions gétheral
framework that we built. We first provide motivation for intpéve
generation, then describe basic generators, and finally Bbw to
compose them. We present only the parts of the frameworksnece
sary to discuss ASTGen. Section 4 presents how we instartiat
framework into ASTGen for generation of Java programs.

3.1 Why Imperative Generation?

Our framework for test data generation is imperative, tteea
and bounded-exhaustive. ltimperativein that the tester defines
how to build input dataiterativein that it generates inputs lazily,
one at a time; anbdounded-exhaustivia that it systematically ex-
plores the entire combinatorial space of a given set of gaoes.
We believe that this approach offers several benefits:

e Easy to understand: Testers intuitively grasp the idea of
looping over a set of generated inputs. It is a natural exten-
sion to the hand-written tests that testers usually write.

e Easy to compose:Testers can combine generators to create
complex data or to tailor data generation to a particular tes
ing domain. Our framework is abstract and generic, allowing
testers to combine generators in an arbitrary fashion.

e Scales well with data sizeTesters can build very large and
complex data structures with a small number of generators.

e Scales well with amount of data: Generators produce in-
puts lazily, one at a time, so for generation of a large number

// before refactoring
class A {

// after refactoring
class A {

int f; private int f;
} . setF ...
. getF ...
}
class B extends A { class B extends A {
void m() { void m() {
super.f = 0; getF() = 0;
} }
} }

Figure 4: EncapsulateField bug in Eclipse: a write access en
capsulated into a getter method

of inputs, there is no time overhead for “pre-generation” of
all inputs or space overhead for storing them all.

e Catches corner cases:Bounded-exhaustive testing covers
all inputs within a given bound [5, 12, 22], including those
that random testing [7, 15] may miss or that testers are un-
aware of.

Additionally, we developed our framework in Java, so testhr
not have to learn any new languages or syntax, and they céwitexp
the full power of a general-purpose language. The main désad
tage of our approach is that testers have to whie/ to generate
test inputs instead of writingshatthe test inputs should look like.
We discuss more in Section 7.

3.2 Basic Generators

We define an iterative generator as an iterator that prodaces
value of some type every time a methodext is called. The sim-
plified interface for a generator is the following:

interface IGenerator<T> {
T next();
T current();
boolean hasNext();
void reset();
boolean isReset();

}

The current method returns the previously-generated value with-
out advancing the generator. ThesNext method checks whether
the generator can output any more values; if it returise, fu-
ture calls tonext are undefined. Theeset andisReset methods
allow repeating the sequence of values that the generaidupes.
Our generators support Java'serable interface, making it easy
to loop over all generated values using the following patter

IGenerator<T> valueGen = ...;
for (T value : valueGen) { doTest(value); }

We built several simple generators that implementitt@era-
tor interface. Tha.iteral class is the simplest example that pro-
duces a single value.

Thechain class takes a number of values or other generators and
produces all values in order, for example:

Literal<String> literal = new Literal<String>("a");
Chain<String> chainl = new Chain<String>("b", "c", "d");
Chain<String> chain2 = new Chain<String>();
chain2.add(literal);

chain2.add(chaini);

chain2.add("e");

for (String s : chain2) { System.out.print(s + " "); }
// Outputs: abcde

3.3 Generator Composition

Literal, Chain, and other simple generators are useful, but our
framework’s true power appears when linking generatorsttoy.
When we build a more complex iterative generator from two or
more child generators, we need to address two concgemerator
iteration, which determines how to iterate children when iterating
the main generator, anthta compositiorwhich determines how to
build the value for the main generator from the values ofdrhih.
We first present a simple example that combines two childsargu
thereset, isReset, andcurrent methods. We then describe how
our actual implementation decouples the two concerns arisitre
the example.

Consider a composite generator that exhaustively procheies
of values given two children that produce left and right comgnts
of the pairs. Let the left and right children hg andrg, respec-
tively, and the composite generatey. If 1g produces two values
[m, n] andrg produces two valueg;, y], then we wantg to itera-
tively produce their cross produditm, z), (n,z), (m,y), (n,y)].
Each timenext is called oncg, cg iteratesig. Whenig reaches the
“end” of its valuescg resetsig to the first value and iterateg:

class NaivePairGenerator
implements IGenerator<Pair<L, R>> {
IGenerator<L> 1lg;
IGenerator<R> rg;
. constructors and accessors ...

Pair<L, R> next() {
if (!lg.hasNext()) {
lg.reset();
if (!rg.hasNext()) {
error();
}
rg.next();

lg.next();

if (rg.isReset()) {
rg.next();

}

return new Pair<L, R>(1lg.current(), rg.current());

. other methods from IGenerator ...

This methochext performs both generator iteration (eg and
rg) and data composition (by creating a newir). Our imple-
mentation actually separates these two concerns. Theabslkass
CompositeGenerator implements the generator iteration, basically
generalizing the method shown above to an arbitrary number o
children. This class delegates the data composition talitslasses:

abstract class CompositeGenerator<T>
implements IGenerator<T> {
// return all children for generator iteration
abstract List<IGenerator> getChildren();
// perform the data composition
abstract T composeData();
. implemented IGenerator methods ...

}

This decoupling makes it easier to develop composite gearsra
since they need not reimplement iteration. ToagpositeGener-
ator iterates the children returned from thetChildren method,
and thecomposeData method implements data composition. We
can now implement a generator for pairs simply by implenmenti
the two methods:

class PairGenerator<L, R>
extends CompositeGenerator<Pair<L, R>> {
IGenerator<L> lg;
IGenerator<R> rg;

. constructors and accessors ...

List<IGenerator> getChildren() {
return Arrays.asList(lg, rg);

}

Pair<L, R> composeData() {
return new Pair<L, R>(lg.current(), rg.current());

}
}

PairGenerator also illustrates the abstract and generic aspects of
our framework. It is common to declare child generatorscas-
erator objects, allowing the caller to reuse a particular geneiato
many contexts by simply supplying child generators thaté@mznt
the interface. Unlike grammars, which remain static onci¢tevr,
this abstractness allows generators to be specialized day rdif-
ferent contexts.

Furthermore, th€ompositeGenerator class is parametrized by
the type of values that the subclass generates. In the egaihpl
producesair objects that are further parametrized by the type of
the left and right values. These generic signatures, whiehuse
throughout the framework, allow one to compose generatore m
easily and verify that the compositions are type-correct.

Putting it all together, one can instantiate and uBgi@Genera-
tor in the following manner:

// child generators

Chain<String> leftGen = new Chain<String>("m",
Chain<String> rightGen = new Chain<String>("x",

Y
nyny;
// parent generator

PairGenerator<String, String> pairGen =
new PairGenerator<String, String>(leftGen, rightGen);

// generate values

for (Pair<String, String> pair :
System.out.print(pair);

}

// Outputs: (m,x) (n,x) (m,y) (n,y)

3.4 Dependent Composition

In the previou®airGenerator example, the values of child gen-
erators are independent of each other. We next describe bhow o
framework can handle dependent values.

As an illustrative example, suppose that we have two genera-
tors X andY such thatX produces integerd, 2], andY” adds or
subtracts one from the current value ®f The cross product of
these two generators 61, 2), (2, 3), (1, 0), (2,1)]. To implement
an imperative generator for such pairs, we can considee thpe
tions. First, we can “pass” the current value Xfto Y, but this
would require iteratingX and retrieving its value before iterating
Y. As discussed in the previous sectioBppositeGenerator de-
couples generator iteration and data composition, so degsbbas
no control over which generator is iterated first. Secdndan iter-
ate X directly, but this introduces unwanted coupling if we hope t
reuseX andY elsewhere. Also, it might lead to iteration problems
if multiple generators iterat&. Third, we can hav&” produce
objects that represent functions. We follow this approach.

Conceptuallyy should produce the valug¢sz.z + 1, Az.z —1].
This approach allows the framework to iterateandY” indepen-
dently and in any order. The data composition step pa&sesur-
rent value to the function produced B¥yand returns the resulting
pair of values. Since functions are not first-class entitie3ava,
we usemethod objectf3] to implement theY” generator:

pairGen) {

interface YFunc { int execute(int xVal); }

IGenerator<YFunc> yGen = new Chain<YFunc>(
new YFunc() { int execute(int xVal) { return xVal + 1; } }
new YFunc() { int execute(int xVal) { return xVal - 1; } }

)

The dependent pair generator then usesthgenerator and de-
fines the appropriate data composition:

class DependentPairGenerator
extends CompositeGenerator<Pair> {
IGenerator<Integer> x;
IGenerator<YFunc> y;
. constructors and accessors ...

Pair composeData() {
// get child values
int xVal = x.current();
YFunc yFunc = y.current();

// compute dependent values
int yVal = yFunc.execute(xVal);

return new Pair(xVal, yVal);

4. INSTANTIATION FOR ASTS

ASTGen in an instance of our general framework used to pro-
duce abstract syntax trees (ASTs) for testing refactoribges first
show how to implement a generator for a simple syntax element
We then show how to implement more complex AST generators
such as those described in Section 2.

4.1 Simple AST Generators

We first discuss AST generators that simply mirror the stmact
of their corresponding AST nodes. As an illustrative example
use an AST node that represent a (much-simplified) field decla
tion in Java:

class FieldDeclaration {
Modifier modifier;

Type type;
Identifier identifier;
. constructors and accessors ...

This node has three other AST nodes as childresdifier,
type, andidentifier. Figure 5 show$ieldDeclarationGenera-
tor that contains a child generator for each of the three AST node
children. LikePairGenerator discussed in Section 3.8jeldDec-
larationGenerator extendSCompositeGenerator.

To use the generator, the tester can initialize it by settach
child generator to amGenerator Of the correct type as illustrated
in Figure 6. For simplicity, we show the Java syntax eleménts,
public, int) as if they were defined as variables, rather than show-
ing the code used to build the AST nodes for these elements. Th
tester can use the initialized eldDeclarationGenerator tO pro-
duce test data or to construct larger AST generators thaireeq
FieldDeclaration Objects.

The specific instantiation GfieldDeclarationGenerator shown
in Figure 6 effectively corresponds to the following granmnfar
declarations:

<FieldDeclaration> ::= <Modifier> <Type> <Identifier> ";"
<Modifier> ::= "public" | "private"
<Type> ::= "int" | "boolean"
<Identifier> ::= "someField" | "anotherField"

For simple generators, it is more succinct to write a grammar
than the corresponding Java code for generators. Howebvem w
generated AST nodes should satisfy more complex consrére
simplest being, say, that amt field should always berivate),
it is necessary to express these constraints in a languasgied®of

the grammar. ASTGen uses the same language, Java, to express

both the constraints and the generators.

class FieldDeclarationGenerator
extends CompositeGenerator<FieldDeclaration> {
IGenerator<Modifier> modifierGen;
IGenerator<Type> typeGen;
IGenerator<Identifier> idGen;
. constructors and accessors ...

List<IGenerator> getChildren() {
return Arrays.asList(modifierGen, typeGen, idGen) ;

}

FieldDeclaration composeData() {
FieldDeclaration generated = new FieldDeclaration();
generated.setModifier (modifierGen.current());
generated.setType (typeGen.current());
generated.setIdentifier(idGen.current());
return generated;

Figure 5: Field declaration generator

IGenerator<Modifier> modifierGen
new Chain<Modifier>(public, private);
IGenerator<Type> typeGen =
new Chain<Type>(int, boolean);
IGenerator<Identifier> idGen =
new Chain<Identifier>(someField, anotherField);
FieldDeclarationGenerator fieldDeclGen =
new FieldDeclarationGenerator (modifierGen, typeGen, idGen);

Figure 6: Example initialization of FieldDeclarationGenerator

We have implemented basic generators for 29 common Java syn-
tax elements. These generators encapsulate AST genegatibn
thus increase reusability in that one does not need to deéiree h
coded values for anain generator. For example, in Figure 6 we
could have useHodifierGenerator rather than @hain containing
valuespublic andprivate.

4.2 Complex AST Generators

We next show how our iterative approach can generate more
complex AST nodes. We use as examples the three generagers di
cussed in Section 2.

4.2.1 Field Reference Generator

TheFieldReferenceGenerator generates classes, each of which
contains a field and a method that references the field in scage w
It can produce several thousand classes, one of which isrshrow
Figure 2. It has the following five child generators:

e AN IGenerator<FieldDeclaration> (SUCh as &ieldDec-
larationGenerator from Figure 5), provided by the caller.
This generator produced thet f; declaration in Figure 2.

A FieldReferenceExpressionGenerator Uses the field name
from the field declaration to build a simple expression that
references the field. If the field #sin classa, this expression
can bef, this.f, A.this.f, Or, as in Figure 2pew A() .f.

A ParenthesizingExpressionGenerator optionally paren-
thesizes an expression. This generator parenthesizedfthe r
erencing expression yieldingew A(Q) .£) in Figure 2.

A NestedExpressionGenerator nests the optionally paren-
thesized expression in one of the many possible expressions
applicable to the field’s type. In Figure 2, the generated
expression is the assignment expressittew A().£) = 0.
Since the field has typat, other applicable expressions in-
clude the binary arithmetic operators, unary operatord, an
many others.

// Get method objects

FieldDeclaration fieldDecl = fieldDeclGen.current();

FieldReferenceExpressionMethObj fieldRefExprMO =
fieldRefExprGen.current () ;

ParenthesizingExpressionMethObj parenExprM0 =
parenExprGen.current () ;

NestedExpressionMethObj nestedExprM0 =
nestedExprGen.current () ;

ExpressionInStatementMethObj exprInStmtMO =
exprInStmtGen.current();

// Call method objects

Expression fieldRefExpr = fieldRefExprM0.fill(fieldDecl);
Expression parenExpr = parenExprMO.fill(fieldRefExpr) ;
Expression nestedExpr = nestedExprM0.fill(parenExpr);
Statement exprInStmt = exprInStmtM0.fill(nestedExpr);

// Build AST to return
MethodDeclaration methodDecl = makeMethod("m");
methodDecl.addStatement (exprInStmt) ;

TypeDeclaration typeDecl = makeClass("A");
typeDecl.addField(fieldDecl);
typeDecl.addMethod (methodDecl) ;

Figure 7: FieldReferenceGenerator generation

e An ExpressionInStatementGenerator nests the full expres-
sion in one of many types of statements. In Figure 2, the
statement simply contains the expression itself, but iedten
generate branching, looping, or other statements.

Itis interesting to note that thestedExpressionGenerator can
accept anothefestedExpressionGenerator, allowing one to cre-
ate expressions nested within each other to an arbitrah dép
deed, our initial instantiation of theieldreferenceGenerator in-
cluded aNestedExpressionGenerator in place of theParenthe-
sizingExpressionGenerator, but we found that the resulting com-
binatorial explosion increased testing time substamtialithout
yielding any new bugs. This illustrates how the tester cad @so
that the tester should) tailor generators (by using diffexehild
generators) to produce data applicable to a particulatdeget.

The last four child generators are exampleslebendent gener-
ators(see Section 3.4). The parenkldReferenceGenerator pro-
duces an AST by first retrieving the method objects from edch o
its child generators. Then, it builds AST fragments by pagpan-
termediate results down the sequence of method objectallyii
creates a top-level nodeypeDeclaration) that represents a class.
Figure 7 lists the pseudocode for this procedure.

4.2.2 Class Relationship Generator

ThecClassRelationshipGenerator produces combinations of in-
heritance, class name reference, or location-basediiner, or lo-
cal class) relationships between two generated classesn &o
literal class generators, this generator produces selvenared re-
lationship pairs, one of which is shown in Figure 3. It hasftile
lowing child generators:

e TWO IGenerator<TypeDeclaration> generators, provided by
the caller, that generate the classes to be related.

e An InheritanceGenerator determines whether one class in-
herits from the other.

e A ClassNameReferenceGenerator Similar to theFieldRef-
erenceGenerator from Section 4.2.1. It generates many ex-
pressions, statements, and declarations that can contfin a

e A LocationGenerator determines where one class is located
in relation to the other. In Figure 3, this generator spetifie
thats is an inner class af. Other possible locations are local
(in which a class is declared inside a method) and separate
(in which both classes are top-level elements).

e ThreeDirectionGenerator generators that determine the di-
rection in which the three relationships “point”. In Figue
all relationships are in the-to-a direction:B inherits froma,

B is an inner class of, ands referencea through a method
parameter.

The three generators for relationshifaheritanceGenerator,
ClassNameReferenceGenerator, andLocationGenerator) all gen-
erate method objects that consume two genermigebeclaration
nodes and a generatedrection, and return the same two nodes
related in a particular way. Note that these method objeeesin
to modify the nodes generated by other child generatorer Afp-
plying all three generated method objects, the pair of egsre-
turned to the caller.

Due to their exhaustive nature, generators often produoce pr
grams that do not compile. For example, depending on the com-
bination of direction and relationship, certain generatieds rela-
tionships may be invalid. The following code illustratese@uch
invalid relationship in whicls is related toa by location, buta is
related ta by inheritance:
class A extends B {

class B {}
}

We can overcome this problem in three ways. First, we cam filte
invalid data by testing the current values of all child gaters. In
this example, we can “skip” the generated value if theéation-
Generator’s current value is “inner” in the-to-a direction and the
InheritanceGenerator’s current value is “extends” in the-to-B
direction. Second, the caller can limit the generation ty timose
programs applicable to a particular task. We shall see iméx¢
section that th@oubleClassFieldReferenceGenerator generates
classes in all location and inheritance relationshipslidiegctions,
but omits the class name reference relationship becausériel-
evant to testing field references. Finally, we can delegatine
compiler to filter out any generated programs that do not délemp

4.2.3 Double-Class Field Reference Generator

TheDoubleClassFieldReferenceGenerator produces all possi-
ble class relationships in which one class declares a fialdtza
other references it. When supplied the simplest possiblescind
field generators, this generator produces over 14,000 anmugyrone
of which is shown in Figure 4.

This generator combines aspects of the other two complex gen
erators that we have discussed. First, it usesciA@sRelation-
shipGenerator t0 generate the inheritance and location relation-
ships between the supplied classes. Then, it usesiflg@eClass-
FieldReference t0 generate references to the field. Construction of
the AST proceeds similarly to the previous two cases. Nateftr
this generator, like foclassRelationshipGenerator, Some child
generators need to use the nodes generated by other chédagen
tors.

5. TESTING REFACTORING ENGINES

We next present how we test the refactoring engines in Eelips
and NetBeans with the input programs that ASTGen generétes.
describe the oracles that we use to verify whether a refiactbias

erence to the name of a class. In Figure 3, this generator completed correctly. We also discuss briefly how to autoradyi

produced the method declaration with a parameter type

run Eclipse and NetBeans on the generated programs.

5.1 Oracles

An important problem in automated generation of test injaits
automated checking of outputs, also known as drecle prob-
lem A seemingly ideal oracle for a refactoring engine would tel
whether an input program and its refactored version haveahe
semantics. However, checking that two programs have the sam
semantics is undecidable in general. Moreover, even if Wee t
programs have the same semantics, the refactoring engigte mi
not have performed the required changes on the program-a tri
“identity” engine that does not change any program always pr
duces semantically equivalent refactored programs bus o
implement refactoring correctly. (Recall the bug from Fg@2
where NetBeans left a field unencapsulated.) Fortunatefgcs
torings are program transformations that make well-defstagt-
tural changes, so we can still check several useful pragzedi a
refactored program. We have implemented six oracles.

DoesCrash Oracle: Our simplest oracle checks that the refac-
toring engine does not throw an uncaught exception. Sucheateo
is often used as a sanity check in “smoke testing”.

DoesNotCompile Oracle:Our next oracle checks that the refac-
tored program compiles. We filter all generated progransuiin
the compiler and pass to the refactoring engine only thogetin
programs that compile. A correct refactoring should thugagbs
produce output programs that compile.

WarningStatus Oracle: Refactoring engines should warn the
user when a refactoring might change the semantics of thyggaom
This oracle determines if the refactoring engine producearaing
status message after checking the preconditions of a spesfdic-
toring. This oracle is particularly useful with the generatthat in-
tentionally create programs that do not meet the precamditiFor
example, for testing RenameField refactoring, our genesatre-
ate programs such that the new field name would clash with same
of other fields or variables. A refactoring engine should finait
such programs do not meet the preconditions of the refactori

Inverse Oracle: Refactorings are invertible program transfor-
mations: given a transformation done by one refactoringcare
find another refactoring that “undoes” the transformationtioe
program. For example, renaming a program entity franto B
and then renaming again frofd to A should produce the same
original program. Due to the implementation of refactorem

gines, these programs do not need to be exactly the same when

String fieldName = "f";
FieldDeclarationGenerator fieldDeclGen =

new FieldDeclarationGenerator (fieldName);
IGenerator<Program> testGen = new ...(fieldDeclGen);
for (Program in : testGen) {

if (lin.compiles) { continue; }

Refactoring r = new EncapsulateFieldRefactoring();
r.setTargetField(fieldName) ;
Program out = r.performRefactoring(in);

checkOracles(out);

Figure 8: Pseudocode for testing EncapsulateField

5.2 Running Refactorings

We next illustrate how to run the Eclipse and NetBeans refact
ing engines on the input programs that ASTGen generates.sé/e u
the EncapsulateField example. Figure 8 shows the pseuddood
this process. It first createsFaeldDeclarationGenerator initial-
ized with the name of the field we expect to encapsulate. H the
passes this generator to a program generator like thoseitzksc
in Section 4.2. For each program that the generator prodtioes
code first tests if it compiles. If so, the code then instaetia
refactoring provided by the IDE, initializes it with the fiehame,
and invokes the refactoring engine. The engine yields atafad
program that the code passes to each of the oracles.

We implemented this process in Eclipse as a custom plugain th
uses the platform’s built-in test harness. In NetBeans, xteneled
the existing unit test suite.

6. CASE STUDY

We next present the results of using ASTGen to test refagjori
engines. Specifically, our goal is to find and report bugs ilipEe
and NetBeans. We have tested several refactorings and &ilind
bugs in Eclipse and 24 in NetBeans. We list the refactoriagtet,
present the generators used for those refactorings, discegen-
eration results, comment on the effort required to writesgener-
ators, discuss how well various oracles performed, and saanme
the reported bugs.

6.1 Refactorings Tested

viewed as sequence of characters. We can compare the brigina e tested the following eight refactorings:

and twice-refactored programs by determining whether th8iT's
are equivalent.

We implemented aAST Comparatothat performs an approxi-
mate comparison: it first normalizes two ASTs by sorting theghm

ods and fields by name and then compares the method bodies and

field expressions of the appropriate pairs of methods/fields

Custom Oracle: We implemented several refactoring-specific
oracles. These oracles are aware of the structural chaimagetheir
corresponding refactorings should make and thus checktlieat
refactored program exhibits the expected changes. Forpmram
we can verify that RenameField leaves no occurrences oflthe o
field name anywhere in the AST.

Differential Oracle: The last oracle we implemented is used in
differential testing [18]. This oracle takes an input progrand a
refactoring and feeds this pair to both Eclipse and NetBdatisen
takes the output programs returned by the two engines argkshe
whether their ASTs are equivalent using the AST Comparater d
scribed above. If the two ASTs differ, a human inspects the tw
output programs to check whether the difference is causeddog
in one of the refactoring engines.

e Rename: Rename a class, method, or field and update all
references to it.

e EncapsulateField: Replace every reference of a field with
an accessor method.

e PushDownField: Move a field from a superclass to all sub-
classes.

e PullUpField: Move a field from a subclass to some super-
class.

e PushDownMethod: Move a method from a superclass to all
subclasses.

e PullUpMethod: Move a method from a subclass to some
superclass.

e ChangeSignature:Change a method signature by changing
its return type, adding parameters, or removing parameters

e MemberToTop: Move an inner class out of its containing
class and declare it in a top level class.

Generation Oracles Bugs
Refactoring Generator TGI Time CI WS DNC Cll T Diff. Reported
Ecl [NB | Ecl | NB Ecl [NB

Rename(Class) ClassRelationships 108 1:02 88 0 0 0 0 0 0 0 0
Rename(Method) MethodReference 9540 | 89:12 | 9540 0 0 0 0 0 0 0 0
Rename(Field) FieldReference 3960 | 28:20 | 1512 0 0 0 |304| O 40 0 1
Rename(Field) DoubleClassFieldRef. | 14850 | 76:55 | 3969 0 0 0 0 0 0 0 0
ClassArrayField 72 0:45 72 0 0 48 0 0 48 1 0

FieldReference 3960 | 15:19 | 1512 0 0 320 | 432 | 14 121 4 3

EncapsulateField DoubleClassFieldRef. | 14850 | 41:45| 3969 0 0 187 | 256 | 100 | 511 1 2
SingleClassTwoFields 60 1:16 48 0 0 0 0 48 15 1 0

DoubleClassGetterSetten] 576 8:45 | 417 216 0 162 | 162 | 18 216 3 3

) DoubleClassFieldRef. 4635 | 10:56 | 1064 || 760 | 380 | 152 | 228 | O 380 2 3
PushDownField DoubleClassParentField| 360 | 6:50 | 270 || 246 | 168| 18 | 90 | o | 78 || 1 | 1
PushDownMethod DoubleClassParentMethofl 960 | 17:11 | 820 784 | 300 16 | 428 | O 484 2 3
PullUpField Do_ubleCIassChildl_:ieId 60 1:14 a4 0 18 | 10 6 0 44 1 1
TripleClassChildField 144 3:06 | 108 0 42 | 36 | 20 0 42 2 2

PullupMethod Do_ubIeCIassChildMethod 576 | 14:38| 448 0 176 | O 48 0 224 0 1
TripleClassChildMethod | 1152 | 29:08 | 864 0 336 | 160 | 160 0 336 2 2
CS(ChangeReturnType] MethodReference 3816 | 37:36 | 3816 || 1992 | nfa | O nfa| O n/a 0 n/a
CS(RemoveParameter| MethodReference 5724 | 54:29 | 5724 || 1908 | 0 0 0 0 0 0 0
CS(RemoveParameter| MethodParamRef. 1680 | 7:11 | 772 772 | 772 O 0 0 0 0 0
ClassRelationships 70 0:36 51 0 0 0 2 0 2 0 1

MemberToTop DoubleClassFieldRef. | 6600 | 29:04 | 2824 | o0 | o |353|507| 0 |2824] 1 | 1

| TotalBugs:[| 21 | 24 |

Figure 9: Refactorings tested and bugs reported; CS = Changignature, Ecl = Eclipse, NB = NetBeans;
Generation: TGI = Total Generated Inputs, Time is in min:sec Cl = Compilable Inputs;
Oracles: WS = WarningStatus, DNC = DoesNotCompile, C/I = Cusm/Inverse, Diff. = Differential

We chose these refactorings because they demonstrateetyvari 6.3 Experimental Results
of refactoring targets, e.g., EncapsulateField and PushBld The third column lists the total number of programs genekrate
target field declarations, ChangeSignature targets metaodra- This number is very sensitive to the way in which the tester in
tions, and MemberToTop targets inner classes. Eclipse @&td N tiglizes the generator. For example, a fully-exhaustiveite-
Beans have many more refactorings, and we leave it as theefutu cjassFieldReferenceGenerator used for Encapsulateffisttices
work to test more of them. We expect our approach to be general 14 850 programs, whereas a version limited to producingrinh

enough to test these other refactorings. . itance relationships for PushDownField produces just 3 6-
Figure 9 shows the results of our experiments. The first col- grams.

umn lists the specific refactorings performed. The last telarans The fourth column shows execution time needed both to gen-

list the number of bugs reported for each. Note that evewiaffi erate all input programand to perform the refactoring on these

refactorings such as Rename are susceptible to bugs. The Cha programs in Eclipse. We ran our tests on a dual-process@@HzA
geReturnType refactoring is not available in NetBeans, equt Dell D820 laptop with 1 GB of RAM. Performing the refactoring
n/a” in the corresponding cells. takes up the vast majority of the execution time. To illustrat
takes just 13 seconds for the DoubleClassFieldReferenmr gtor
6.2 Generators USQd . to produce 14,850 programs, but executing the EncapsidddeF
The second column of Figure 9 lists the generators used to tes refactoring on 3,969 compilable inputs takes about 41 rasuln

each refactoring. Full descriptions of all generators aafolind on general, Eclipse executes refactorings on compilabletérgiia rate
the ASTGen website. We give a short description of five gdnesa of about 100 per minute, while ASTGen generates inputs atea ra
that we discuss in the rest of the paper: of about 1,000 per second.

The fifth column shows the number of compilable inputs. The
o FieldReference: Generates many classes. Each class con- generators that we wrote do not always produce input program
tains a field and a method that references the field in many that compile, so we used filtering as described in Sectio24l8is
ways. See Section 4.2.1. possible to write generators that produce only compilaiybeiis—
. _ . indeed, we did so with the MethodReference generator—hokeis
» ClassRelationship: Generates pairs of classes that are re- require additional effort. For our specific application ehgrators
lated in many ways. See Section 4.2.2. to test refactoring engines, this effort was rarely justifiehecking
whether a program compiles is faster than performing a refag
on it. However, this approach assumes that the compilerriecio
and would not be directly applicable for testing the commiigelf.
In the future, we plan to investigate improved approachasyto-
duce only compilable inputs.

e DoubleClassFieldReferenceGenerates pairs of classes re-
lated in many ways. One class declares a field and the other
references it in many ways. See Section 4.2.3.

e MethodReference:Generates many classes with two meth-
ods. One method calls the other and may overload it. .
6.4 Effort to Write Generators
o MethodParamReference: Generates method declarations, We next discuss our anecdotal experience with the effom'req
each of which has a parameter referenced. to develop generators. Section 4.1 describes how one céhaui

simple generator that produces AST nodes. Building suckrgen
tors is fairly straightforward. We built a large library afch simple
generators, but we did not closely track our effort since vesew
still experimenting with the design of our framework. THere,

we asked two colleagues to write a simple AST generator,-simi
lar to FieldDeclarationGenerator, after the design of tenkwork
had solidified. They had no experience with ASTGen but had lim
ited experience with the AST data structures. It took theehea
about an hour, including the time needed for us to briefly diesc
the important classes in ASTGen.

Section 4.2 describes how one can build complex generagers u
ful for testing refactorings. We tracked the effort reqdite write
two complex generators: MethodReferenceGenerator andddet
ParamReferenceGenerator. These two generators arertgiry-
sentative because they were built on the existing generatter
we already had had some experience with ASTGen.

It took the first author about two workdays to write the two-gen
eratorsand the infrastructure needed to run the four refactorings
that they test. While we cannot precisely divide the timeder
veloping generators and the infrastructure, we found tleetoabe
roughly equal across most complex generators. Togethese tfvo
generators produce 20,760 input programs (of which 19,852 c
pile). We believe that the number of inputs that the genesgim-
duce is larger than even the most talented tester could peokly
hand in the same amount of time. Note, however, that this does
imply that ASTGen is better than manual testing. In the feiture
plan to conduct a larger empirical study to compare our aggro
for imperative generation with other automated testingeg@ghes
and manual testing.

6.5 Oracle Evaluation

Columns six through eleven of Figure 9 show the number of pro-
grams that each oracle flagged as potentially incorrecttefed

refactorings. For example, when renaming a methazhe engine
may also rename all overloaded methods, while the other may n
Neither approach is semantically incorrect, so there isump bn
the future, we plan to better account for semantics and erdjin
ferences to reduce or eliminate the number of false positive

6.6 Bugs Reported

The last two columns of Figure 9 show the (likelypiquebugs
that we found with ASTGen and reported: 21 bugs in Eclipse and
24 bugs in NetBeans. ASTGen found even more bugs, but these
were either already reported or fixed in the latest versidrithe
IDEs (Eclipse version 3.3 and NetBeans version 6.0; oumigst
infrastructure ran on slightly older versions).

Since ASTGen generates a large number of input programs, in
a bounded-exhaustive fashion, the oracles can report nadnyefs
for each unique bug. For example, for RenameField, we regort
only one unique bug in NetBeans for the 40 variations caught b
the Differential Oracle.

7. RELATED WORK

There is a large body of work in the area of test-input genera-
tion. The most closely related to ASTGen are grammar-basdd a
bounded-exhaustive testing approaches.

Grammar-based testing [13, 14, 17, 20, 21] requires the toser
describe test inputs with a grammar, and the tools then gener
a set of strings that belong to the grammar (or sometimes a set
of strings that intentionally do not belong to the grammah.
1972, Purdom [20] pioneered the algorithms for selectingira m
imal set strings that achieve certain coverage criterigfammars,
e.g., strings that cover all terminals, all non-terminaisall pro-
ductions. More recently, Maurer [17], Sirer and Bershad,[athd
Malloy and Power [14] developed tools for grammar-based gen
eration that were used to find bugs in several applicationg W

programs. The DoesNotCompile Oracle revealed the most bugscan view grammar-based approaches as effectively usitgfiuler

in Eclipse, while the Differential Oracle revealed the musgs in
NetBeans. The Custom Oracle revealed one bug for Encapsulat

functional programs to specify the generation. The todisrpret
these programs typically to generassmdomstrings that belong to

Field. We do not show a column for the DoesCrash Oracle since the grammar.

neither refactoring engine crashed.

We use Custom Oracle, Inverse Oracle, and Differential @rac
in sequence. We apply the first two oracles directly on thacref
tored program in Eclipse since these oracles operate onrthe p
gram’s AST. (We do not apply these oracles on the output from
NetBeans.) If the two oracles flag the program, we definitelgch
to inspect it. We then use the Differential Oracle to comphee
outputs from Eclipse and NetBeans. Whenever there is ardiffe
ence, we need to manually inspect both outputs; based orharhet
Custom/Inverse did or did not flag the Eclipse output, we ekie
bug to be in Eclipse or NetBeans, respectively. Finallynafthere
is no difference but Custom/Inverse flagged the Eclipselautpe
also need to inspect the NetBeans output.

The WarningStatus Oracle and Differential Oracle prodaraes
false positives. For WarningStatus, the reason is that gmmer-
ators produce programs (1) for which the refactoring is etqu
to find preconditions violations and (2) for which the retattg
is expected to proceed and refactor the input program. Oulel co
reduce this problem by writing generators that produce anly
or the other kind of program. For Differential, the reasonhiat
our AST Comparator (described in Section 5.1) sometimes find
two programs different even though they are semanticallyveg
lent at the sub-method level. While the AST Comparator da¢s n
compare the programs purely syntactically, it does not amhot)
compare their full semantics. Additionally, Differenti@tacle can
be triggered by the different ways in which the two enginesqom

In contrast to random generation, the approach of Lammel and
Schulte [13] and our approadystematicallygenerate input data,
which can often catch “corner cases” that random testingesis
Lammel and Schulte base their approach on grammars andiprovi
several parameters with which testers can control the ‘esthee-
ness” of generation of strings from the grammar. Our approac
allows testers to use the full expressive power of a fampiar
gramming language such as Java to wiitgperative generators
that produce test inputs.

With our approach, testers can freely compose more basic gen
erators into more advanced generators. Achieving suclabdus
ity with grammars is fairly hard. For example, it is not olwso
how, in a grammar-based approach, one could combine the first
two generators from Section 2 to obtain the third. In additide-
pendent composition, discussed in Section 3.4, beconmfasudtibr
impossible with grammars. It has been long realized that dve
simplest cases require extensions to the grammar, e.gusthef
attributed grammars [8], and to generate valid programs @sts
(e.g., to test compilers) requires even further extensiogsntext-
free grammars [2, 6].

Our general framework for imperative generation was iregpir
by QuickCheck [7], a Haskell library for random generatidest
data. QuickCheck provides a set of basic generators (eaghiofi
is a Haskell monad) and combinators for building complexegen
ators from simpler ones. Our framework uses Java classesahs
of Haskell monads and provides bounded-exhaustive gemerat

In our framework, both generators and their compositioneare
pressed in Java, but we plan to consider other approachesifor
position such as GenVoca [1].

Bounded-exhaustive testing [5, 11,12, 16, 22] is an apjréac
testing code exhaustively on all inputs within the givenrmhuWe
previously developed two approaches, TestEra [12] andt{bta
that can in principle be used for bounded-exhaustive géneraf
complex test inputs such as Java programs. These two apeac
aredeclarative they require the user to specify the constraints that
describewhat the test inputs look like (as well as the bound on
the size of test inputs), and the tools then automaticabyctethe
(bounded) input space to generate all inputs that satisfyctm-
straints. TestEra requires the user to specify the constran a
declarative language, while Korat requires the users toifgpthe
constraints in an imperative language. In both previousaghes,
the user just specifies the constraints.

The approach presented in this paper differs in thatiihjsera-
tive: the programmer specifiégmwthe test generation should pro-
ceed. The imperative approach makes the generation fastens
search is necessary. Also, the imperative approach gieeprti
grammer more control over the generation, for example dweot-
der of generation. Finally, the two previous declarativerapches
have not been applied to generate inputs as complex as Java pr
grams, whereas we have applied our new imperative appraach t
generate Java programs to test refactoring engines indecépd
NetBeans.

Nevertheless, the imperative approach has some disadesnta
compared to the declarative approach. The declarativeoappr
may be more appealing when the testers are not willing toewrit
generators or the constraints are fairly simple. Also, #xdatative
approach always generates valid inputs, whereas most afreur
perative generators rely on the compiler to filter valid itgpwhich
can reduce performance of generation for larger ASTs. We fola
investigate whether the two approaches can be combinedtlisatch
testers can use, for various parts of the same generati@t|ara-
tive or imperative approach, depending on which one appears
appropriate for which part.

8. CONCLUSIONS

Refactoring engines have become popular because they allow,

programmers to quickly and (for the most part) safely chdagge
programs. These tools also influence the culture of software
velopment: programmers who use refactoring engines are mor
inclined to change large programs. Despite the high quality
widespread use of existing refactoring engines, they atiitain
bugs. Our goal is to help the developers of refactoring exgin
find bugs and reduce their number.

We have presented a practical approach that automateggtesti
refactoring engines. The key part of our approach is AST@dn,
brary for generating abstract syntax trees (ASTs) of Javgrpms.
With ASTGen, testers can quickly write generators that onithe

AST nodes of Java programs. The generators can be also be com-

Acknowledgments: We thank Jesus DelaTorre for his help in
the initial stages of this research; Marcelo d’Amorim anév8h
Lauterburg for developing some example generators with@&T,
Ralph Johnson and the SAG group at UIUC, Don Batory, and the
anonymous reviewers for their insightful comments on aiprey
version of this paper; Jan Becicka (NetBeans), Martin AlsEnn

and Markus Keller (Eclipse) for reviewing our bug reportsarkp
also thanks Wolfram Schulte and the FSE group at Microsoft Re
search for their help in developing an earlier framework ifor
perative generation. This material is based upon work gbyti
supported by the NSF under Grant Nos. CNS-0613665 and CNS-
0615372. We also acknowledge support from Microsoft Resear

9. REFERENCES

[1] D.S. Batory and S. W. O’'Malley. The design and implem#éataof

hierarchical software systems with reusable compon&@s/

Trans. Softw. Eng. Methodpll(4):355-398, 1992.

F. Bazzichi and I. Spadafora. An automatic generatoctonpiler

testing.|[EEE Trans. Software Eng8(4):343-353, July 1982.

K. Beck. Smalltalk Best Practice PatternBrentice Hall, 1997.

K. Beck. Extreme Programming Explained: Embrace Change

Addison-Wesley, 2000.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: Autoredttesting

based on Java predicates.Rroc. International Symposium on

Software Testing and Analysis (ISST2Yly 2002.

[6] A. Celentano, S. C. Reghizzi, P. D. Vigna, C. Ghezzi, Gafata,

and F. Savoretti. Compiler testing using a sentence genmerat

Software - Practice and Experienci0(11):897-918, 1980.

K. Claessen and J. Hughes. Quickcheck: A lightweight oo

random testing of Haskell programs.fmoc. Fifth ACM SIGPLAN

International Conference on Functional Programmi2§00.

[8] A.G. Duncan and J. S. Hutchison. Using attributed gramsniatest

designs and implementations. Pnoc. of the 5th International

Conference on Software Engineering (ICSiges 170-178, 1981.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Cod®99.

E. Gamma and K. Beck. JUnit, 19%ttp://www. junit.org.

S. Khurshid.Generating Structurally Complex Tests from

Declarative ConstraintsPhD thesis, Dept. of Electrical Engineering

and Computer Science, Massachusetts Institute of Teand603.

[12] S. Khurshid and D. Marinov. TestEra: Specificationdzhgesting of
Java programs using SARutomated Software Engineering Journal
2004.

[13] R. Lammel and W. Schulte. Controllable combinatoriaderage in
grammar-based testing. TestCompages 19-38, 2006.

[14] B. A. Malloy and J. F. Power. An interpretation of Purdsm

algorithm for automatic generation of test caskest. Annual

International Conf. on Computer and Information Scigri2z@01.

J. J. Marciniak Encyclopedia of Software Engineerjrchapter

Random Testing, pages 1095-1104. Wiley-Intersciencel.200

D. Marinov. Automatic Testing of Software with Structurally Complex

Inputs PhD thesis, Dept. of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, 2004.

P. M. Maurer. Generating test data with enhanced caoifite®

grammarslEEE Software7(4), July 1990.

[18] W. M. McKeeman. Differential testing for softwarBigital

Technical Journal10(1), 1998.

(2]

(3]
(4]

(5]

(7]

El

[10]
[11]

[15]

[16]

[17]

posed and reused to generate complex programs. Our approachii9] W. F. Opdyke and R. E. Johnson. Refactoring: an aid iigeésy

found 45 previously unreported bugs in Eclipse and NetBemrs
of the most popular refactoring engines for Java.

In the future, we plan to test more refactorings. We also ptan
apply ASTGen in new domains; we believe that ASTGen can help
in generating test inputs for a variety of applications thpé¢rate
on ASTs, including compilers, code editors and IDEs, and pro
gram analyzers. Although we have presented generationvaf Ja
programs, the ideas behind ASTGen directly translate uages
other than Java. Finally, we plan to investigate further dpe
proaches for generation of structurally complex inputs.

application frameworks and evolving object-oriented sys. In
Proc. Symposium on Object-Oriented Programming Emphasizi
Practical Applications (SOOPPAPept 1990.

P. Purdom. A sentence generator for testing par8aisavior and
Information Technologyl12(3):366-375, 1972.

E. G. Sirer and B. N. Bershad. Using production gramniars
software testing. IfProc. 2nd conference on Domain-specific
languages1999.

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jsah.
Software assurance by bounded exhaustive testirigrdo.
International Symposium on Software Testing and Anal26i84.

[20]

[21]

[22]

