
Rostra: A Framework for Detecting Redundant Object-Oriented Unit Tests

Tao Xie1 Darko Marinov2 David Notkin1

1 Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
2 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

1{taoxie,notkin }@cs.washington.edu 2marinov@lcs.mit.edu

Abstract

Object-oriented unit tests consist of sequences of method
invocations. Behavior of an invocation depends on the state
of the receiver object and method arguments at the begin-
ning of the invocation. Existing tools for automatic gen-
eration of object-oriented test suites, such as Jtest and
JCrasher for Java, typically ignore this state and thus gen-
erate redundant tests that exercise the same method behav-
ior, which increases the testing time without increasing the
ability to detect faults.

This paper proposes Rostra, a framework for detecting
redundant unit tests, and presents five fully automatic tech-
niques within this framework. We use Rostra to assess and
minimize test suites generated by test-generation tools. We
also present how Rostra can be added to these tools to avoid
generation of redundant tests. We have implemented the five
Rostra techniques and evaluated them on 11 subjects taken
from a variety of sources. The experimental results show
that Jtest and JCrasher generate a high percentage of re-
dundant tests and that Rostra can remove these redundant
tests without decreasing the quality of test suites.

1. Introduction

Several tools for automatic generation of object-oriented
unit test suites, such as Jtest [21] (a commercial tool for
Java) and JCrasher [7] (a research prototype for Java), test a
class by generating sequences of method invocations. Each
test consists of one sequence; when two sequences dif-
fer, these tools conservatively assume that the tests are not
equivalent. However, there are many cases when different
method sequences exercise the same behavior of the class
under test. For example, two sequences can produce equiv-
alent objects because some invocations do not modify state
or because different state modifications result in the same
state. Intuitively, invoking the same methods on such equiv-
alent objects is redundant. Since testing is typically con-
strained by time limits, a key issue is to avoid producing

and executing redundant tests that only increase the testing
time and do not increase the ability to detect faults.

We propose Rostra, a novel framework for detecting re-
dundant unit tests based on equivalent objects. Within Ros-
tra, we present five techniques with different tradeoffs in
1) the assumptions about the code under test, 2) time and
space taken to find redundant tests, and 3) the number
of redundant tests found. These techniques are fully auto-
matic and do not require any user input, except that two
of the techniques assume that classes have properly imple-
mented equality methods. Ideally, if a method claims that
two objects are equal, they should be observationally equiv-
alent [10,17], i.e., have the same behavior for all method se-
quences they can be subject to. This is typically the case for
equals methods in Java classes: thejava.lang.Object

class defines theequals method and subclasses often over-
ride it, as it is used pervasively, for example, to compare el-
ements in the Java collections [27].

Some existing testing tools also consider equivalent ob-
jects, but differently than Rostra. For example, AsmLT [11]
requires the user to provide an abstraction function [17]
and defines objects to be equivalent if they map to the
same abstract value. We can view some of our techniques
as automatically defining an abstraction function based on
equals . Several other projects [2, 10, 14] define equiva-
lent objects using observational equivalence, but checking
it precisely is expensive: by definition it takes infinite time
(to check all method sequences), so in practice approxima-
tions are used. Our techniques take much less time and are
more appropriate for testing.

We can use Rostra for several testing tasks. Rostra en-
ables assessing the quality of a test suite in terms of non-
equivalent objects and non-redundant tests, and we can thus
compare the quality of different test suites. We can also se-
lect a subset of automatically generated tests to augment an
existing (manually or automatically generated) test suite.
We can further minimize an automatically generated test
suite for manual inspection or regression testing. Finally,
existing test-generation tools can incorporate Rostra into
their test generation to avoid generation and execution of

redundant tests and instead invest the time in generation of
non-redundant tests that exercise more method behaviors.

This paper makes the following contributions:

• We propose Rostra, a formal framework for detecting
equivalent object states and redundant tests.

• We make Rostra concrete with five techniques and
present an implementation of these techniques.

• We propose four practical applications of Rostra.

• We evaluate Rostra on 11 subjects taken from a variety
of sources. The experimental results show that around
90% of the tests generated by Jtest for all subjects and
50% of the tests generated by JCrasher for almost half
of the subjects are redundant. The results also show
that removing these redundant tests does not decrease
the branch coverage, exception coverage, and fault de-
tection capability of the test suites.

2. Example

We next illustrate how our techniques determine redun-
dant tests. As a running example, we use an integer stack
implementation taken from Henkel and Diwan [14]. Fig-
ure 1 shows the relevant parts of the code.

The following is an exampletest suitewith three tests for
the IntStack class:

Test 1 (T1):
IntStack s1 = new IntStack ();
s1.isEmpty();
s1.push(3);
s1.push(2);
s1.pop();
s1.push(5);

Test 2 (T2):
IntStack s2 = new IntStack ();
s2.push(3);
s2.push(5);

Test 3 (T3):
IntStack s3 = new IntStack ();
s3.push(3);
s3.push(2);
s3.pop();

Eachtesthas a method sequence on the objects of the class.
For example, T2 creates a stacks2 and invokes twopush

methods on it. Tests of this form are generated by tools such
as Jtest [21] and JCrasher [7]. For such tests, the correct-
ness checking typically relies on design-by-contract anno-
tations [16,20]; if the code has annotations, the tools trans-
late them into run-time assertions [5, 21] that are checked
during the execution. If there are no annotations, the tools
only check the robustness of the code: they execute the tests
and check for uncaught exceptions [7].

To determine redundant tests, our techniques dynami-
cally monitor test executions. Each execution consists of
transitions on the state of the Java program. Our tech-
niques track these transitions at the granularity of methods:

public class IntStack {
private int [] store;
private int size;
private static final int INITIAL_CAPACITY = 10;
public IntStack () {

this .store = new int [INITIAL_CAPACITY];
this .size = 0;

}
public void push(int value) {

if (this .size == this .store.length) {
int [] store = new int [this .store.length * 2];
System .arraycopy(this .store, 0, store, 0, this .size);
this .store = store;

}
this .store[this .size++] = value;

}
public int pop() {

return this .store[-- this .size];
}
public boolean isEmpty() {

return (this .size == 0);
}
public boolean equals(Object other) {

if (!(other instanceof IntStack)) return false ;
IntStack s = (IntStack)other;
if (this .size != s.size) return false ;
for (int i = 0; i < this .size; i++)

if (this .store[i] != s.store[i]) return false ;
return true ;

}
}

Figure 1. An integer stack implementation

each test execution produces a sequence of method execu-
tions. Eachmethod executionis characterized by the actual
method that is invoked and arepresentationof the state (re-
ceiver object and method arguments) at the beginning of
the execution. We call this statemethod-entry state, or sim-
ply state when it is clear from the context. For instance, T2
has three method executions:

1. a constructor without arguments is invoked;

2. push adds3 to the empty stack;

3. push adds5 to the previous stack.

In this list, we use English language to describe the method-
entry states. The techniques that we compare use several
formal representations for a state and several approaches for
determiningequivalentstates (Section 3.2).

We call two method executions equivalent if they are
invocations of the same method on equivalent states. Our
framework considersredundanttests: a test is redundant for
a test suite if every method execution of the test is equiva-
lent to some method execution of some test from the suite
(Section 3.4).

We next briefly explain different techniques for deter-
mining equivalent states and illustrate redundant tests that
these techniques find in the example test suite.

WholeSeq:This is the most conservative technique that
models the existing test-generation tools. Two tests are con-
sidered equivalent only if they are identical. The technique

represents states using method sequences that create ob-
jects and compares states using sequence equality. It finds
all three example tests to be non-redundant.

ModifyingSeq: This technique improves on the previ-
ous one by using in state representation only those method
invocations that actually modify the state. It finds that T3 is
redundant, because it exercises a subset of method execu-
tions that T1 exercises.

WholeState: This technique uses the whole concrete
state for representation and compares states by isomor-
phism (Section 3.2.2). It also finds that T3 is redundant be-
cause of T1. However, it does not find T2 to be redundant
because of T1: these two tests have different concrete states
beforepush(5) —the arraystore has the value[3,0] in
s2 and the value[3,2] in s1 .

MonitorEquals: This technique leverages theequals

method to extract only the relevant parts of the state. It finds
T2, as well as T3, to be redundant because of T1. Although
the whole concrete states in T2 and T1 beforepush(5)

are different, the relevant parts of the states are the same,
namely the subarray ofstore up tosize is [3] .

PairwiseEquals: This technique uses directly the
equals method to compare pairs of states. In the run-
ning example, it finds the same redundant tests as the
previous technique.

3. Formal Framework

This section formalizes the notions introduced infor-
mally in the previous section. We first discuss the assump-
tions that our techniques make about the code under test. We
next describe approaches for representing states and com-
paring them for equivalence. We then describe how each
of the five techniques builds the appropriate representation
and finds equivalent states. We finally show how equivalent
states give rise to equivalent method executions and define
redundant tests and test-suite minimization.

3.1. Assumptions

All five techniques make the following assumption about
the code under test:

A1: Method executions are deterministic given the state
reachable from the receiver and other arguments.

This is realistic for single-threaded code; otherwise, differ-
ent executions for the same input may produce different
results, so model-checking techniques are more applicable
than testing.

Techniques based on method-sequence representation
(Section 3.3.1 and 3.3.2) make an additional assumption:

A2s: Each method can only modify the state of the receiver
and return a result.

exp ::= prim| invoc “.state ” | invoc “.retval ”
invoc ::= method “(” exp* “) ”
prim ::= “null ” | “ true ” | “ false ” | “0” | “1” | “ -1 ” | . . .

Figure 2. Grammar for symbolic expressions

“State of the receiver” refers to the abstract state, not only
the fields of the concretethis object. For example, if the
receiver is a head of a linked list of nodes, any node can be
modified, not only the head. Henkel and Diwan make the
same assumption for algebraic specifications [14].

The WholeState technique makes no other assumption.
Techniques based on the user-definedequals methods

(Section 3.3.4 and 3.3.5) make an additional assumption:

A2e: The equals methods are implemented to respect the
contract injava.lang.Object [27].

The contract requires that eachequals implements an
equivalence relation, i.e., it should be reflexive, symmet-
ric, and transitive. In practice, we have found mostequals

methods to implement observational equivalence [10]: if
equals is stronger (i.e., returnsfalse for some objects
that are observationally equivalent), our techniques may not
remove some ideally redundant tests; ifequals is weaker
(i.e., returnstrue for some objects that are not observation-
ally equivalent), our techniques may remove some ideally
non-redundant tests. Rostra can dynamically check an ap-
proximation of observational equivalence forequals and
help the user tune the method.

3.2. State Representation and Comparison

Our techniques use two main approaches for state rep-
resentation: 1) method sequences and 2) concrete states of
the objects. Both approaches view classes under test as hav-
ing a set of methods (represented uniquely by their defining
class, name, and the entire signature) and consider construc-
tors as methods.

3.2.1. Method SequencesEach execution of a test cre-
ates several objects and invokes methods on these objects.
Our method-sequence approach represents states using se-
quences of method invocations, following Henkel and Di-
wan who use the representation to map Java classes to al-
gebras [14]. The state representation uses symbolic expres-
sions with the concrete grammar shown in Figure 2. Each
object and value are represented with an expression. Argu-
ments for method invocations are represented as sequences
of zero or more expressions; the receiver is treated as the
first method argument. The.state and .retval expres-
sions denote the state of the receiver after the invocation and
the result of the invocation, respectively. For brevity, Fig-

ure 2 does not specify types, but the expressions are well-
typed according to the Java typing rules [1].

For example,s2 at the end of T2 is represented as
push(push(<init>().state, 3).state, 5).state ,
where<init> represents the constructor that takes no re-
ceiver and<init>().state represents the object created
by the constructor invocation. This object becomes the re-
ceiver of the method invocationpush(3) , and so on.

Some of our techniques represent method-entry states
using tuples of expressions. Two tuples are equivalent iff
their expressions are component-wise identical.

Our method-sequence approach allows the tests to con-
tain loops, arithmetic, aliasing, and/or polymorphism. Con-
sider the following manually written tests T4 and T5:
Test 4 (T4): Test 5 (T5):

IntStack t = new IntStack (); IntStack s5 = new IntStack ();
IntStack s4 = t; int i = 0;
for (int i = 0; i <= 1; i++) s5.push(i);

s4.push(i); s5.push(i + 1);

Our current implementation dynamically monitors the invo-
cations of the methods on the actual objects created in the
tests and collects the actual argument values for these invo-
cations. It represents each object using a method sequence;
for example, it represents botht /s5 at the end of T4/T5 as
push(push(<init>().state, 0).state, 1).state .

In future work, we plan to add a static analysis that can
gather the method sequence without executing the test code.
Although this static analysis would be conservative and less
accurate than the dynamic analysis, it would enable detect-
ing some redundant tests without executing them.

3.2.2. Concrete StatesEach execution of a test operates
on the program state that includes a program heap. Our
concrete-state approach considers only parts of the heap; we
also call each part a “heap” and view it as a graph: nodes
represent objects and edges represent fields. LetP be the
set consisting of all primitive values, includingnull , inte-
gers, etc. LetO be a set of objects whose fields form a set
F . (Each object has a field that represents its class, and ar-
ray elements are considered index-labeled object fields.)

Definition 1 A heap is an edge-labelled graph〈O, E〉,
whereE = {〈o, f, o′〉|o ∈ O, f ∈ F, o′ ∈ O ∪ P}.

We define heap isomorphism as graph isomorphism
based on node bijection [3].

Definition 2 Two heaps〈O1, E1〉 and 〈O2, E2〉 are iso-
morphiciff there is a bijectionρ : O1 → O2 such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪

{〈ρ(o), f, o′〉|〈o, f, o′〉 ∈ E1, o
′ ∈ P}.

Note that the definition allows only nodes to vary: two
isomorphic heaps have the same fields for all objects and
the same values for all primitive fields.

Some techniques represent state withrootedheaps.

Map ids; // maps nodes into their unique ids
int [] linearize(Node root, Heap <O,E>) {

ids = new Map();
return lin(root, <O,E>);

}
int [] lin(Node root, Heap <O,E>) {

if (ids.containsKey(root))
return singletonSequence(ids.get(root));

int id = ids.size() + 1;
ids.put(root, id);
int [] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isPrimitive(o))
seq.add(uniqueRepresentation(o));

else
seq.append(lin(o, <O,E>));

}
return seq;

}

Figure 3. Pseudo-code of linearization

Definition 3 A rooted heap is a pair〈r, h〉 of a root object
r and a heaph whose all nodes are reachable fromr.

The techniques construct a rooted heap from a program
heap〈O, E〉 and a tuple〈v0, . . . , vn〉 of pointers and prim-
itive valuesvi ∈ O ∪ P , where0 ≤ i ≤ n. The con-
struction first creates the heaph′ = 〈O′, E′〉, whereO′ =
O ∪ {r} andE′ = E ∪ {〈r, i, vi〉|0 ≤ i ≤ n}; r 6∈ O
is the root object. It then creates the rooted heap〈r, h〉,
whereh = 〈Oh, Eh〉 is the subgraph ofh′ that contains
all nodes reachable fromr and their edges, i.e.,Oh ⊆ O′

is the set of all objects reachable fromr within h′ and
Eh = {〈o, f, o′〉 ∈ E′|o ∈ Oh}.

Although there is no polynomial-time algorithm known
for checking isomorphism of general graphs, it is possible to
efficiently check isomorphism of rooted heaps. Our imple-
mentationlinearizesheaps into sequences such that check-
ing heap isomorphism corresponds to checking sequence
equality. Figure 3 shows the pseudo-code of the lineariza-
tion algorithm. It traverses the entire heap depth first, start-
ing from the root. When it first visits a node, it assigns a
unique identifier to the node, keeping this mapping inids

to use again for nodes that appear in cycles. Similar lin-
earization was used in model checking [15,22]. It is easy to
show that the linearization normalizes rooted heaps.

Theorem 4 Two rooted heaps〈o1, h1〉 and〈o2, h2〉 are iso-
morphic iff linearize (o1, h1) =linearize (o2, h2).

3.3. Techniques

Table 1 shows the techniques that we compare. Different
techniques use different representations for method-entry
states and different comparisons for equivalent states. Each
method-entry state describes the receiver object and argu-
ments before a method invocation. We next explain details
of all five techniques.

technique representation comparison

WholeSeq the entire method sequence equality
ModifyingSeq a part of the method sequenceequality
WholeState the entire concrete state isomorphism
MonitorEquals a part of the concrete state isomorphism
PairwiseEquals the entire concrete state equals

Table 1. State representation and comparison

3.3.1. WholeSeqThis technique uses the method-
sequence approach to represent state. It represents each
object with an expression that includesall methods in-
voked on the object since it has been created, including
the constructor. Our implementation obtains this represen-
tation by executing the tests and keeping a mapping from
objects to their corresponding expressions.

Each method-entry state is simply a tuple of expressions
that represent the receiver object and the arguments. Two
states are equivalent iff the tuples are identical. For ex-
ample, WholeSeq represents the states beforepush(2) in
T3 and T1 as<push(<init>().state, 3).state, 2>

and <push(isEmpty(<init>().st).st, 3).st, 2> ,
respectively, and these two states are not equivalent.

3.3.2. ModifyingSeq This technique also uses the meth-
od-sequence approach. However, it represents each object
with an expression that includesonly those methods that
modified the state of the object since it has been created, in-
cluding the constructor. Our implementation monitors the
method executions to determine at run time if some execu-
tion modifies the state or not. (Details are in Section 4.)

ModifyingSeq builds and compares method-entry
states in the same way as WholeSeq, but since Modify-
ingSeq uses a coarser representation for objects, it can find
more method-entry states to be equivalent. For example,
isEmpty does not modify the state of the stack, so Modi-
fyingSeq represents states beforepush(2) in both T3 and
T1 as <push(<init>().state, 3).state, 2> and
thus finds them to be equivalent.

3.3.3. WholeStateThis technique represents method-
entry states using the entire concrete state reachable from
the receiver object and the arguments. Assume that a test ex-
ecution is about to invokea0.m(a1, ..., an) and the
program heap is〈O, E〉. The execution has already eval-
uated the receiver object and the arguments to some val-
ues vi ∈ O ∪ P , where 0 ≤ i ≤ n. (Recall thatP
is the set of all primitive values.) WholeState repre-
sents the method-entry state with the rooted heap obtained
from 〈O, E〉 and 〈v0, . . . , vn〉. Two states are equiva-
lent iff the rooted heaps are isomorphic.

3.3.4. MonitorEquals This technique leverages user-
definedequals methods to extract only the relevant parts
of the state. Like WholeState, MonitorEquals also repre-
sents a state with a rooted heap, but this heap is only a
subgraph of the entire rooted heap. Conceptually, Mon-
itorEquals first obtains the entire rooted heap from the
program heap and the values〈v0, . . . , vn〉 of the re-
ceiver and arguments (as in WholeState). It then invokes
vi.equals(vi) for each non-primitivevi and moni-
tors the field accesses that these executions make. The
rationale behind MonitorEquals is that these executions ac-
cess only the relevant object fields that define an abstract
state. (The executions always returntrue for properly im-
plementedequals methods.)

MonitorEquals represents each method-entry state as a
rooted heap whose edges consist only of the accessed fields
and the edges from the root. Formally, let〈r, 〈O, E〉〉 be
the entire rooted heap andEa ⊆ E be the set of all fields
from E that are accessed duringequals executions. (The
executions may additionally allocate temporary objects and
access their fields, but these fields are not inE and these
objects are unreachable at the end of the executions.) The
method-entry state is the rooted heap〈r, 〈O′, E′〉〉, where
E′ = Ea ∪ {〈o, f, o′〉|o = r ∧ 〈o, f, o′〉 ∈ E} ⊆ E and
O′ = {o|〈o, f, o′〉 ∈ E′ ∨ 〈o′, f, o〉 ∈ E′} ⊆ O. In Mon-
itorEquals, two states are equivalent iff their rooted heaps
are isomorphic.

For illustration, recall the example and consider the state
of stacks beforepush(5) in T1 and T2. The whole con-
crete state ofs1 /s2 is shown in the left/right column:

// s1 before push(5) // s2 before push(5)
store = @766a24 store = @11ff43
store.length = 10 store.length = 10
store[0] = 3 store[0] = 3
store[1] = 2 store[1] = 0
store[2] = 0 store[2] = 0
... ...
store[9] = 0 store[9] = 0
size = 1 size = 1

where the values of thestore array are their identifiers
(reference addresses, prefixed with@). These states are not
equivalent, becausestore[1] differs. However, the exe-
cution of this.equals(this) accesses only the fields
size , store , and elements ofstore whose indices are up
to the value ofsize . In this example, the accessed part of
s1 /s2 is shown in the left/right column:

// this.equals(this) // this.equals(this)
// before s1.push(5) // before s2.push(5)
store = @766a24 store = @11ff43
store[0] = 3 store[0] = 3
size = 1 size = 1

These two states are not identical, as the addresses differ,
but they are isomorphic. Thus, MonitorEquals reports that
the method-entry states beforepush(5) in T1 and T2 are
equivalent.

3.3.5. PairwiseEqualsThis technique also lever-
ages user-definedequals methods to detect equivalent
states. It implicitly uses the entire program heap to rep-
resent method-entry states. However, it does not com-
pare (parts of) states by isomorphism. Instead, it runs the
test to build the concrete objects that correspond to the re-
ceiver and arguments, and then uses theequals method to
compare pairs of states. Two statess1 ands2 are equiva-
lent iff s1.equals(s2) returnstrue .

This technique can find more equivalent objects than the
previous technique. For example, consider a class that im-
plements a set using an array. PairwiseEquals reports two
objects to be equivalent if they have the same set of array
elements, regardless of the order, whereas MonitorEquals
reports two objects with the same elements but different or-
der to be non-equivalent. However, PairwiseEquals is typi-
cally slower as it compares the whole state, whereas Moni-
torEquals compares only parts of the state, and additionally
Rostra uses efficient hashing and storing in MonitorEquals,
because we know the representation (sequence).

3.4. Redundant Tests

Each test execution produces several method executions.

Definition 5 A method execution〈m, s〉 is a pair of a
methodm and a method-entry states.

We denote with[[t]] the sequence of method executions
produced by a testt, and we write〈m, s〉 ∈ [[t]] when a
method execution〈m, s〉 is in the sequence fort. We define
equivalent method executions based on equivalent states.

Definition 6 Two method executions〈m1, s1〉 and〈m2, s2〉
areequivalentiff m1 = m2 ands1 ands2 are equivalent.

We further consider minimal test suites that contain no
redundant tests.

Definition 7 A testt is redundantfor a test suiteS iff for
each method execution of[[t]], there exists an equivalent
method execution of some test fromS.

Definition 8 A test suiteS is minimal iff there is not ∈ S
that is redundant forS\{t}.

Minimization of a test suiteS′ finds a minimal test
suiteS ⊆ S′ that exercises the same set of non-equivalent
method executions asS′ does.

Definition 9 A test suiteS minimizesa test suiteS′ iff S
is minimal and for eacht′ ∈ S′ and each〈m′, s′〉 ∈ [[t′]],
there existt ∈ S and 〈m, s〉 ∈ [[t]] such that〈m′, s′〉 and
〈m, s〉 are equivalent.

Given a test suiteS′, there can be several test suites
S ⊆ S′ that minimizeS′. Our implementation uses a greedy
algorithm to find one of the test suites that minimizesS′.

4. Implementation

We have implemented the five Rostra techniques for
collecting method-entry states and comparing equivalence
in Java. Our current implementation collects method-entry
states dynamically during test executions. We use the Byte
Code Engineering Library [8] to instrument the bytecodes
of the classes under test at the class-loading time. The in-
strumentation adds the code for collecting state representa-
tions at the entry of each method call in a test. It also adds
the code for monitoring instance-field reads and writes.

Our instrumentation collects the method signature, the
receiver-object reference, and the arguments at the begin-
ning of each method call in the test. The receiver of these
calls is usually an instance object of the class under test. The
instrumentation does not collect the method-entry states for
calls that are internal to these objects. Different techniques
also collect and maintain additional information.

The WholeSeq and ModifyingSeq techniques maintain a
table that maps each object to a method sequence that rep-
resents that object. At the end of each method call, the se-
quence that represents the receiver object is extended with
the appropriate information that represents the call, un-
less the method execution has not modified the receiver,
in which case ModifyingSeq does not extend the sequence.
ModifyingSeq dynamically monitors the execution and de-
termines that the receiver is modified if there is a write to a
field that is reachable from the receiver.

The WholeState technique uses Java reflection [1] to re-
cursively collect all the fields that are reachable from the
receiver and arguments before the method call. The Mon-
itorEquals technique executesvi.equals(vi) for the re-
ceiver and each non-primitive argumentvi before the
method call. It then monitors these executions to col-
lect all fields that are accessed. (The MonitorEquals
technique needs to carefully avoid the common opti-
mization pattern that compares the receiver and the argu-
ment for identity this == that within equals meth-
ods.) To compare states, WholeState and MonitorEquals
use our implementation of the linearization algorithm (Sec-
tion 3.2.2). The PairwiseEquals technique creates the
objects for the receiver and arguments and then com-
pares them usingequals methods. Note that subsequent
test execution can modify these objects, so PairwiseE-
quals needs to reproduce them for comparison. Our current
implementation re-executes method sequences; an alterna-
tive would be to maintain a copy of the objects.

5. Applications

We propose these four applications of Rostra: test-suite
assessment, test selection, test-suite minimization, and test
generation.

Assessment:Rostra provides a novel quantitative com-
parison of test suites, especially those generated by auto-
matic test-generation tools. For each test suite, Rostra can
find non-equivalent object states, non-equivalent method
executions, and non-redundant tests. We can then use their
metrics to compare the quality of different test suites.

Selection:We can use Rostra to select a subset of auto-
matically generated tests to augment an existing (manually
or automatically generated) test suite. We feed the existing
test suite and the new tests to Rostra, running the existing
test suite first. The minimal test suite that Rostra then pro-
duces will contain those new tests that are non-redundant
with respect to the existing test suite.

Minimization: We can use Rostra to minimize an auto-
matically generated test suite for correctness inspection and
regression executions. Without a priori specifications, au-
tomatically generated tests typically do not have test ora-
cles for correctness checking, and the tester needs to manu-
ally inspect the correctness of (some) tests. Rostra helps the
tester to focus only on the non-redundant tests, or more pre-
cisely the non-equivalent method executions. Running re-
dundant tests is inefficient, and Rostra can remove these
tests from a regression test suite. However, we need to be
careful because changing the code can make a test that is
redundant in the old code to be non-redundant in the new
code. If two method sequences in the old code produce
equivalent object states,and the code changes do not im-
pact these two method sequences [25], we can still safely
determine that the two sequences in the new code produce
equivalent object states. Additionally, we can always safely
use Rostra to perform regression test prioritization [24] in-
stead of test-suite minimization.

Generation: Existing test-generation tools can incorpo-
rate Rostra to avoid generating and executing redundant
tests. Although our five Rostra techniques are dynamic, they
can determine whether a method executionme is equivalent
to some other executionbefore running me; the method-
entry state required for determining equivalence is avail-
able before the execution. Test-generation tools that execute
tests, such as Jtest [21], can easily integrate Rostra. Jtest ex-
ecutes already generated tests and observes their behavior
to guide the generation of future tests. Running Jtest is cur-
rently expensive—it spends over 10 minutes generating the
tests for relatively large classes in our experiments (Sec-
tion 6)—but much of this time is spent on redundant tests.

We have implemented a prototype test-generation tool
based on Rostra [28]. It dynamically and iteratively gen-
erates non-redundant tests to exercise non-equivalent ob-
ject states. Our prototype performs combinatorial testing
by generating tests that exercise each possible combina-
tion of non-equivalent method, receiver, and arguments. Our
preliminary results show that our prototype generates test
suites better by several metrics than Jtest.

class meths public ncnb Jtest JCrasher
meths loc tests tests

IntStack 5 5 44 94 6
UBStack 11 11 106 1423 14
ShoppingCart 9 8 70 470 31
BankAccount 7 7 34 519 135
BinSearchTree 13 8 246 277 56
BinomialHeap 22 17 535 6205 438
DisjSet 10 7 166 779 64
FibonacciHeap 24 14 468 3743 150
HashMap 27 19 597 5186 47
LinkedList 38 32 398 3028 86
TreeMap 61 25 949 931 1000

Table 2. Experimental subjects

6. Experiments

This section presents two experiments that assess how
well Rostra detects redundant tests: 1) we investigate the
benefit of applying Rostra on tests generated by existing
tools; and 2) we validate that removing redundant tests iden-
tified by Rostra does not decrease the quality of test suites.
We have performed the experiments on a Linux machine
with a Pentium IV 2.8 GHz processor using Sun’s Java 2
SDK 1.4.2 JVM with 512 MB allocated memory.

6.1. Experimental Setup

Table 2 lists the 11 Java classes that we use in our exper-
iments. TheIntStack class is our running example. The
UBStack class is taken from the experimental subjects used
by Stotts et al. [26]. TheShoppingCart class is a popular
example for JUnit [6]. TheBankAccount class is an exam-
ple distributed with Jtest [21]. The remaining seven classes
are data structures used to evaluate Korat [3, 19]. The first
four columns show the class name, the number of meth-
ods, the number of public methods, and the number of non-
comment, non-blank lines of code for each subject.

We use two third-party test generation tools, Jtest [21]
and JCrasher [7], to automatically generate test inputs for
program subjects. Jtest allows users to set the length of call-
ing sequences between one and three; we set it to three,
and Jtest first generates all calling sequences of length
one, then those of length two, and finally those of length
three. JCrasher automatically constructs method sequences
to generate non-primitive arguments and uses default data
values for primitive arguments. JCrasher generates tests
as calling sequences with the length of one. The last two
columns of Table 2 show the number of tests generated by
Jtest and JCrasher.

Our first experiment uses the five Rostra tech-
niques to detect redundant tests among those gener-

Figure 4. Percentage of redundant tests
among Jtest-generated tests

ated by Jtest and JCrasher. Our second experiment com-
pares the quality of original and Rostra-minimized test
suites using 1) branch coverage, 2) non-equivalent, un-
caught-exception count, and 3) fault-detection capabil-
ity. We adapt Hansel [12] to measure branch coverage
and non-equivalent, uncaught-exception count. (Two ex-
ceptions are equivalent if they have the same throwing
location and type.) To estimate the fault-detection capa-
bility, we use two mutation-analysis tools for Java: Jmuta-
tion [18] and Ferastrau [19]. We select the first 300 mutants
produced by Jmutation and configure Ferastrau to pro-
duce around 300 mutants for each subject. We have writ-
ten specifications and used the JML runtime verifier [5] to
compare the method-exit states and returns of the origi-
nal and mutated method executions.

6.2. Experimental Results

Figures 4 and 5 show the results of the first experiment—
the percentage of redundant tests generated—for Jtest and
JCrasher, respectively. We observe that all techniques ex-
cept WholeSeq identify around 90% of Jtest-generated tests
to be redundant for all subjects and 50% of JCrasher-
generated tests to be redundant for five out of 11 subjects.
Possible reasons for higher redundancy of Jtest-generated
tests include: 1) Jtest generates more tests; and 2) Jtest-
generated tests have longer call length.

The two method-sequence techniques identify fewer re-
dundant tests than the three concrete-state techniques, and
there is no significant difference in the results for the lat-
ter three techniques. We hypothesize that our experimental
subjects do not have many irrelevant object fields for defin-
ing object states and/or the irrelevant object fields do not
significantly affect the redundant test detection.

Figure 5. Percentage of redundant tests
among JCrasher-generated tests

We also measured the percentages of equivalent object
states and equivalent method executions; they have similar
distributions as the redundant tests.

The elapsed real time of running our implementation is
reasonable: it ranges from a couple of seconds up to sev-
eral minutes, determined primarily by the class complexity
and the number of generated tests. To put this time into per-
spective, we need to consider the whole test generation: if
test-generation tools such as Jtest incorporated Rostra into
generation, the time savings achieved by avoiding redun-
dant tests would significantly exceed the extra cost of run-
ning Rostra [28].

Table 3 shows the results of the second experi-
ment: non-equivalent, uncaught-exception counts (columns
2 and 3), branch-coverage percentages (columns 4 and
5), killing rates for Ferastrau mutants (columns 6 and 7),
and killing rates for Jmutation mutants (columns 8 and 9).
The columns marked “jte” and “jcr” correspond to Jtest
and JCrasher, respectively. The original Jtest-generated
and JCrasher-generated test suites have the same mea-
sures as their corresponding Rostra-minimized test suites
in all cases except for the four cases whose entries are
marked with “*”. The differences are due only to the Mon-
itorEquals and PairwiseEquals techniques. The minimized
Jtest-generated test suites forIntStack andTreeMap can-
not kill three Ferastrau-generated mutants that the origi-
nal test suites can kill. This shows that minimization based
on equals can reduce the fault-detection capability of a
test suite, but the probability is very low. The minimized
Jtest-generated test suites forHashMap andTreeMap can-
not cover two branches that the original test suites can
cover. We have reviewed the code and found that two fields
of these classes are used for caching; these fields do not af-
fect object equivalence (defined byequals) but do affect
branch coverage. These four cases suggest a further in-

class excptn branch Ferastrau Jmutation
count cov [%] kill [%] kill [%]

jte jcr jte jcr jte jcr jte jcr

IntStack 1 1 67 50 *45 40 24 23
UBStack 2 0 94 56 57 25 78 37
ShoppingCart 2 1 93 71 57 51 80 20
BankAccount 3 3 100 100 98 98 89 89
BinSearchTree 3 0 67 14 33 5 57 11
BinomialHeap 3 3 90 66 89 34 64 48
DisjSet 0 0 61 51 26 18 40 29
FibonacciHeap 2 2 86 58 73 21 68 35
HashMap 1 1 *72 43 52 23 48 24
LinkedList 19 10 79 48 24 7 25 9
TreeMap 4 3 *33 11 *16 4 16 7

Table 3. Quality of Jtest-generated, JCrasher-
generated, and minimized test suites

vestigation on the use ofequals methods in detecting
redundant tests as future work.

6.3. Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject programs and third-party test gen-
eration tools are representative of true practice. Our subjects
are from various sources and the Korat data structures have
nontrivial size for unit tests. Of the two third-party tools,
one—Jtest—is popular and used in industry. These threats
could be further reduced by experiments on more subjects
and third-party tools. The main threats to internal valid-
ity include instrumentation effects that can bias our results.
Faults in our implementation, Jtest, JCrasher, or other mea-
surement tools might cause such effects. To reduce these
threats, we have manually inspected the collected execution
traces for several program subjects.

7. Related Work

Rostra techniques are related to work on state represen-
tation and comparison, and Rostra itself is related to work
on test selection and minimization. (Test generation based
on Rostra is also related to work on test generation [28].)

Iosif [15] and Robby et al. [22] use linearization to en-
code states in model checkers. They do not apply any tech-
nique as our MonitorEquals to collect only the relevant ob-
ject fields, but always collect all fields. Zimmermann and
Zeller use a memory graph and its visualization to repre-
sent and explore states during C program executions [30].
They reduce the comparison of program states to the com-
parison of graphs.

Most of the previous work on detecting equivalence of
object states [2, 10, 14] has developed techniques based on

observational equivalence [17]. These techniques are typi-
cally used to infer axioms in algebraic specifications or ver-
ify their correctness, while our Rostra techniques are used
to detect redundant tests. Previous techniques are typically
much slower than our techniques, but our non-equals -
based techniques can find fewer equivalent objects (too con-
servative) and ourequals -based techniques can, depend-
ing onequals , find more equivalent objects (unsound) than
observational equivalence.

Grieskamp et al. present the AsmLT test-generation tool
that incorporates test selection [11]. AsmLT allows the user
to provide an abstraction function (α) that maps states of ab-
stract state machines into so-called “hyperstates”; two tests
are equivalent if they lead to the states (s1 and s2) that
map to the same hyperstate (s1 ≡ s2 ⇔ α(s1) = α(s2)).
Rostra, instead, allows the user to define equivalence more
directly via a binary, boolean-returning method (m) that
takes two states (s1 and s2) and determines their equiva-
lence (s1 ≡ s2 ⇔ m(s1, s2)). In practice, the existing
equals methods suffice and Rostra uses them fully auto-
matically, but in principle, Rostra allows the user to provide
other methods for equivalence. Moreover, our WholeState
and MonitorEquals techniques compare states using iso-
morphism, whereas AsmLT always uses equality. Our test-
generation tool based on Rostra [28] uses combinatorial
generation similar to AsmLT, with different selections.

Chang and Richardson use specification-coverage crite-
ria for selecting tests that exercise new aspects of a priori
provided unit specifications [4]. Without requiring a pri-
ori specifications, Harder et al. use the operational differ-
ence technique to augment and minimize regression test
suites [13]. Our previous work uses operational violations
to select a small valuable subset of automatically generated
tests for manual inspection [29]. Clustering and sampling
the execution profiles are also used to select tests for in-
spection [9]. There are also several approaches to minimiz-
ing [23] or prioritizing [24] tests for regression testing, pri-
marily based on structural coverage. Rostra complements
these existing approaches based on specifications or struc-
tural coverage. These approaches typically select fewer tests
than Rostra, but Rostra differs in that it aims to select tests
that preserve the quality of the original test suite.

8. Conclusion

We have proposed Rostra, a novel framework for de-
tecting redundant object-oriented unit tests, and presented
five techniques within this framework. We have proposed
four practical applications of the framework. We have con-
ducted experiments that evaluate the effectiveness of Rostra
on detecting redundant tests in test suites generated by two
third-party test-generation tools. The results show that Ros-
tra can substantially reduce the size of these test suites with-

out decreasing their quality. These results strongly suggest
that tools and techniques for generation of object-oriented
test suites must consider avoiding redundant tests.

Acknowledgments

We thank Yu-Seung Ma and Jeff Offutt for providing the
Jmutation tool. We thank Andrew Petersen, Vibha Sazawal,
and the anonymous reviewers for their valuable feedback
on an earlier version of this paper. This work was supported
in part by the National Science Foundation under grants
ITR 0086003 and CCR00-86154. We acknowledge support
through the High Dependability Computing Program from
NASA Ames cooperative agreement NCC-2-1298.

References

[1] K. Arnold, J. Gosling, and D. Holmes.The Java Program-
ming Language. Addison-Wesley Longman Publishing Co.,
Inc., 2000.

[2] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool.Softw.
Eng. J., 6(6):387–405, 1991.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InProceedings of the Inter-
national Symposium on Software Testing and Analysis, pages
123–133, 2002.

[4] J. Chang and D. J. Richardson. Structural specification-based
testing: Automated support and experimental evaluation. In
Proceedings of the 7th ESEC/FSE, pages 285–302, 1999.

[5] Y. Cheon and G. T. Leavens. A simple and practical approach
to unit testing: The JML and junit way. InProc. European
Conference on Object-Oriented Programming (ECOOP),
pages 231–255, 2002.

[6] M. Clark. Junit primer. Draft manuscript, October 2000.
[7] C. Csallner and Y. Smaragdakis. Jcrasher documents. Online

manual, December 2003.
[8] M. Dahm and J. van Zyl. Byte code engineering library, April

2003.
[9] W. Dickinson, D. Leon, and A. Podgurski. Finding failures

by cluster analysis of execution profiles. InProceedings of
the 23rd International Conference on Software Engineering,
pages 339–348, 2001.

[10] R.-K. Doong and P. G. Frankl. The astoot approach to
testing object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 3(2):101–130, 1994.

[11] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state ma-
chines. InProceedings of the International Symposium on
Software Testing and Analysis, pages 112–122, 2002.

[12] Hansel 1.0, 2003. http://hansel.sourceforge.
net/ .

[13] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InProceedings of the 25th Inter-
national Conference on Software Engineering, pages 60–71,
2003.

[14] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. In17th European Conference on
Object-Oriented Programming, pages 431–456, 2003.

[15] R. Iosif. Symmetry reduction criteria for software model
checking. InProceedings of the 9th SPIN Workshop on Soft-
ware Model Checking, pages 22–41, July 2002.

[16] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: A behavioral interface specification language
for Java. Technical Report TR 98-06i, Department of Com-
puter Science, Iowa State University, June 1998.

[17] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[18] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation op-
erators for Java. InProceedings of International Symposium
on Software Reliability Engineering, pages 352–363, 2002.

[19] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Ri-
nard. An evaluation of exhaustive testing for data struc-
tures. Technical Report MIT-LCS-TR-921, MIT CSAIL,
Cambridge, MA, September 2003.

[20] B. Meyer. Eiffel: The Language. Prentice Hall, New York,
N.Y., 1992.

[21] Parasoft. Jtest manuals version 4.5. Online manual, October
2002.

[22] Robby, M. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction
strategies for model checking dynamic software. InProceed-
ings of the 2003 Workshop on Software Model Checking, vol-
ume 89 ofENTCS, 2003.

[23] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An em-
pirical study of the effects of minimization on the fault de-
tection capabilities of test suites. InProc. the International
Conference on Software Maintenance, pages 34–43, 1998.

[24] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing.IEEE Trans. Softw. Eng., 27(10):929–
948, 2001.

[25] B. G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. InProceedings of ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 46–53, 2001.

[26] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic junit test case generation. InProceed-
ings of the 2002 XP/Agile Universe, pages 131–143, 2002.

[27] Sun Microsystems. Java 2 Platform, Standard Edition,
v1.3.1 API Specification. http://java.sun.com/
j2se/1.3/docs/api/ .

[28] T. Xie, D. Marinov, and D. Notkin. Improving generation of
object-oriented test suites by avoiding redundant tests. Tech-
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, January 2004.

[29] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. InProceedings of 18th IEEE In-
ternational Conference on Automated Software Engineering,
pages 40–48, 2003.

[30] T. Zimmermann and A. Zeller. Visualizing memory graphs.
In the Dagstuhl Seminar on Software Visualization, volume
2269 ofLNCS, pages 191–204, 2001.

